| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Software installed and run as a non-privileged user may conduct improper GPU system calls to cause mismanagement of resources reference counting creating a potential use after free scenario.
Improper resource management and reference counting on an internal resource caused scenario where potential write use after free was present. |
| Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Information Tampering. |
| Pega Customer Service Framework versions 8.7.0 through 25.1.0 are affected by a Unrestricted file upload vulnerability, where a privileged user could potentially upload a malicious file. |
| A vulnerability affecting HPE Networking Instant On Access Points has been identified where a device processing a specially crafted packet could enter a non-responsive state, in some cases requiring a hard reset to re-establish services. A malicious actor could leverage this vulnerability to conduct a Denial-of-Service attack on a target network. |
| A lack of data validation vulnerability in the HTML export feature in Quill in allows Cross-Site Scripting (XSS).
This issue affects Quill: 2.0.3. |
| Authenticated arbitrary file write vulnerability exists in the web-based management interface of mobility conductors running either AOS-10 or AOS-8 operating systems. Successful exploitation could allow an authenticated malicious actor to create or modify arbitrary files and execute arbitrary commands as a privileged user on the underlying operating system. |
| An exposure of sensitive information to an unauthorized actor [CWE-200] vulnerability in Fortinet FortiFone 7.0.0 through 7.0.1, FortiFone 3.0.13 through 3.0.23 allows an unauthenticated attacker to obtain the device configuration via crafted HTTP or HTTPS requests. |
| NSecsoft 'NSecKrnl' is a Windows driver that allows a local, authenticated attacker to terminate processes owned by other users, including SYSTEM and Protected Processes by issuing crafted IOCTL requests to the driver. |
| Dell SupportAssist OS Recovery, versions prior to 5.5.15.1, contain a Creation of Temporary File With Insecure Permissions vulnerability. A low privileged attacker with local access could potentially exploit this vulnerability, leading to Elevation of privileges. |
| OpenC3 COSMOS provides the functionality needed to send commands to and receive data from one or more embedded systems. From 5.0.0 to 6.10.1, OpenC3 COSMOS contains a critical remote code execution vulnerability reachable through the JSON-RPC API. When a JSON-RPC request uses the string form of certain APIs, attacker-controlled parameter text is parsed into values using String#convert_to_value. For array-like inputs, convert_to_value executes eval(). Because the cmd code path parses the command string before calling authorize(), an unauthenticated attacker can trigger Ruby code execution even though the request ultimately fails authorization (401). This vulnerability is fixed in 6.10.2. |
| A path traversal vulnerability in NETGEAR WiFi range extenders allows
an attacker with LAN authentication to access the router's IP and
review the contents of the dynamically generated webproc file, which
records the username and password submitted to the router GUI. |
| An arbitrary file deletion vulnerability has been identified in the command-line interface of mobility conductors running either AOS-10 or AOS-8 operating systems. Successful exploitation of this vulnerability could allow an authenticated remote malicious actor to delete arbitrary files within the affected system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| Authenticated command injection vulnerabilities exist in the web-based management interface of mobility conductors running AOS-8 operating system. Successful exploitation could allow an authenticated malicious actor to execute arbitrary commands as a privileged user on the underlying operating system. |
| In the Linux kernel, the following vulnerability has been resolved:
cpuset: fix warning when disabling remote partition
A warning was triggered as follows:
WARNING: kernel/cgroup/cpuset.c:1651 at remote_partition_disable+0xf7/0x110
RIP: 0010:remote_partition_disable+0xf7/0x110
RSP: 0018:ffffc90001947d88 EFLAGS: 00000206
RAX: 0000000000007fff RBX: ffff888103b6e000 RCX: 0000000000006f40
RDX: 0000000000006f00 RSI: ffffc90001947da8 RDI: ffff888103b6e000
RBP: ffff888103b6e000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000001 R11: ffff88810b2e2728 R12: ffffc90001947da8
R13: 0000000000000000 R14: ffffc90001947da8 R15: ffff8881081f1c00
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f55c8bbe0b2 CR3: 000000010b14c000 CR4: 00000000000006f0
Call Trace:
<TASK>
update_prstate+0x2d3/0x580
cpuset_partition_write+0x94/0xf0
kernfs_fop_write_iter+0x147/0x200
vfs_write+0x35d/0x500
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f55c8cd4887
Reproduction steps (on a 16-CPU machine):
# cd /sys/fs/cgroup/
# mkdir A1
# echo +cpuset > A1/cgroup.subtree_control
# echo "0-14" > A1/cpuset.cpus.exclusive
# mkdir A1/A2
# echo "0-14" > A1/A2/cpuset.cpus.exclusive
# echo "root" > A1/A2/cpuset.cpus.partition
# echo 0 > /sys/devices/system/cpu/cpu15/online
# echo member > A1/A2/cpuset.cpus.partition
When CPU 15 is offlined, subpartitions_cpus gets cleared because no CPUs
remain available for the top_cpuset, forcing partitions to share CPUs with
the top_cpuset. In this scenario, disabling the remote partition triggers
a warning stating that effective_xcpus is not a subset of
subpartitions_cpus. Partitions should be invalidated in this case to
inform users that the partition is now invalid(cpus are shared with
top_cpuset).
To fix this issue:
1. Only emit the warning only if subpartitions_cpus is not empty and the
effective_xcpus is not a subset of subpartitions_cpus.
2. During the CPU hotplug process, invalidate partitions if
subpartitions_cpus is empty. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/kexec: Enable SMT before waking offline CPUs
If SMT is disabled or a partial SMT state is enabled, when a new kernel
image is loaded for kexec, on reboot the following warning is observed:
kexec: Waking offline cpu 228.
WARNING: CPU: 0 PID: 9062 at arch/powerpc/kexec/core_64.c:223 kexec_prepare_cpus+0x1b0/0x1bc
[snip]
NIP kexec_prepare_cpus+0x1b0/0x1bc
LR kexec_prepare_cpus+0x1a0/0x1bc
Call Trace:
kexec_prepare_cpus+0x1a0/0x1bc (unreliable)
default_machine_kexec+0x160/0x19c
machine_kexec+0x80/0x88
kernel_kexec+0xd0/0x118
__do_sys_reboot+0x210/0x2c4
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
This occurs as add_cpu() fails due to cpu_bootable() returning false for
CPUs that fail the cpu_smt_thread_allowed() check or non primary
threads if SMT is disabled.
Fix the issue by enabling SMT and resetting the number of SMT threads to
the number of threads per core, before attempting to wake up all present
CPUs. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: ensure context reset on disconnect()
After the blamed commit below, if the MPC subflow is already in TCP_CLOSE
status or has fallback to TCP at mptcp_disconnect() time,
mptcp_do_fastclose() skips setting the `send_fastclose flag` and the later
__mptcp_close_ssk() does not reset anymore the related subflow context.
Any later connection will be created with both the `request_mptcp` flag
and the msk-level fallback status off (it is unconditionally cleared at
MPTCP disconnect time), leading to a warning in subflow_data_ready():
WARNING: CPU: 26 PID: 8996 at net/mptcp/subflow.c:1519 subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Modules linked in:
CPU: 26 UID: 0 PID: 8996 Comm: syz.22.39 Not tainted 6.18.0-rc7-05427-g11fc074f6c36 #1 PREEMPT(voluntary)
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
RIP: 0010:subflow_data_ready (net/mptcp/subflow.c:1519 (discriminator 13))
Code: 90 0f 0b 90 90 e9 04 fe ff ff e8 b7 1e f5 fe 89 ee bf 07 00 00 00 e8 db 19 f5 fe 83 fd 07 0f 84 35 ff ff ff e8 9d 1e f5 fe 90 <0f> 0b 90 e9 27 ff ff ff e8 8f 1e f5 fe 4c 89 e7 48 89 de e8 14 09
RSP: 0018:ffffc9002646fb30 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffff88813b218000 RCX: ffffffff825c8435
RDX: ffff8881300b3580 RSI: ffffffff825c8443 RDI: 0000000000000005
RBP: 000000000000000b R08: ffffffff825c8435 R09: 000000000000000b
R10: 0000000000000005 R11: 0000000000000007 R12: ffff888131ac0000
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f88330af6c0(0000) GS:ffff888a93dd2000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f88330aefe8 CR3: 000000010ff59000 CR4: 0000000000350ef0
Call Trace:
<TASK>
tcp_data_ready (net/ipv4/tcp_input.c:5356)
tcp_data_queue (net/ipv4/tcp_input.c:5445)
tcp_rcv_state_process (net/ipv4/tcp_input.c:7165)
tcp_v4_do_rcv (net/ipv4/tcp_ipv4.c:1955)
__release_sock (include/net/sock.h:1158 (discriminator 6) net/core/sock.c:3180 (discriminator 6))
release_sock (net/core/sock.c:3737)
mptcp_sendmsg (net/mptcp/protocol.c:1763 net/mptcp/protocol.c:1857)
inet_sendmsg (net/ipv4/af_inet.c:853 (discriminator 7))
__sys_sendto (net/socket.c:727 (discriminator 15) net/socket.c:742 (discriminator 15) net/socket.c:2244 (discriminator 15))
__x64_sys_sendto (net/socket.c:2247)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f883326702d
Address the issue setting an explicit `fastclosing` flag at fastclose
time, and checking such flag after mptcp_do_fastclose(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tilcdc: Fix removal actions in case of failed probe
The drm_kms_helper_poll_fini() and drm_atomic_helper_shutdown() helpers
should only be called when the device has been successfully registered.
Currently, these functions are called unconditionally in tilcdc_fini(),
which causes warnings during probe deferral scenarios.
[ 7.972317] WARNING: CPU: 0 PID: 23 at drivers/gpu/drm/drm_atomic_state_helper.c:175 drm_atomic_helper_crtc_duplicate_state+0x60/0x68
...
[ 8.005820] drm_atomic_helper_crtc_duplicate_state from drm_atomic_get_crtc_state+0x68/0x108
[ 8.005858] drm_atomic_get_crtc_state from drm_atomic_helper_disable_all+0x90/0x1c8
[ 8.005885] drm_atomic_helper_disable_all from drm_atomic_helper_shutdown+0x90/0x144
[ 8.005911] drm_atomic_helper_shutdown from tilcdc_fini+0x68/0xf8 [tilcdc]
[ 8.005957] tilcdc_fini [tilcdc] from tilcdc_pdev_probe+0xb0/0x6d4 [tilcdc]
Fix this by rewriting the failed probe cleanup path using the standard
goto error handling pattern, which ensures that cleanup functions are
only called on successfully initialized resources. Additionally, remove
the now-unnecessary is_registered flag. |
| In the Linux kernel, the following vulnerability has been resolved:
kernel/kexec: fix IMA when allocation happens in CMA area
*** Bug description ***
When I tested kexec with the latest kernel, I ran into the following warning:
[ 40.712410] ------------[ cut here ]------------
[ 40.712576] WARNING: CPU: 2 PID: 1562 at kernel/kexec_core.c:1001 kimage_map_segment+0x144/0x198
[...]
[ 40.816047] Call trace:
[ 40.818498] kimage_map_segment+0x144/0x198 (P)
[ 40.823221] ima_kexec_post_load+0x58/0xc0
[ 40.827246] __do_sys_kexec_file_load+0x29c/0x368
[...]
[ 40.855423] ---[ end trace 0000000000000000 ]---
*** How to reproduce ***
This bug is only triggered when the kexec target address is allocated in
the CMA area. If no CMA area is reserved in the kernel, use the "cma="
option in the kernel command line to reserve one.
*** Root cause ***
The commit 07d24902977e ("kexec: enable CMA based contiguous
allocation") allocates the kexec target address directly on the CMA area
to avoid copying during the jump. In this case, there is no IND_SOURCE
for the kexec segment. But the current implementation of
kimage_map_segment() assumes that IND_SOURCE pages exist and map them
into a contiguous virtual address by vmap().
*** Solution ***
If IMA segment is allocated in the CMA area, use its page_address()
directly. |
| In the Linux kernel, the following vulnerability has been resolved:
erspan: Initialize options_len before referencing options.
The struct ip_tunnel_info has a flexible array member named
options that is protected by a counted_by(options_len)
attribute.
The compiler will use this information to enforce runtime bounds
checking deployed by FORTIFY_SOURCE string helpers.
As laid out in the GCC documentation, the counter must be
initialized before the first reference to the flexible array
member.
After scanning through the files that use struct ip_tunnel_info
and also refer to options or options_len, it appears the normal
case is to use the ip_tunnel_info_opts_set() helper.
Said helper would initialize options_len properly before copying
data into options, however in the GRE ERSPAN code a partial
update is done, preventing the use of the helper function.
Before this change the handling of ERSPAN traffic in GRE tunnels
would cause a kernel panic when the kernel is compiled with
GCC 15+ and having FORTIFY_SOURCE configured:
memcpy: detected buffer overflow: 4 byte write of buffer size 0
Call Trace:
<IRQ>
__fortify_panic+0xd/0xf
erspan_rcv.cold+0x68/0x83
? ip_route_input_slow+0x816/0x9d0
gre_rcv+0x1b2/0x1c0
gre_rcv+0x8e/0x100
? raw_v4_input+0x2a0/0x2b0
ip_protocol_deliver_rcu+0x1ea/0x210
ip_local_deliver_finish+0x86/0x110
ip_local_deliver+0x65/0x110
? ip_rcv_finish_core+0xd6/0x360
ip_rcv+0x186/0x1a0
Reported-at: https://launchpad.net/bugs/2129580 |