| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Limit num_syncs to prevent oversized allocations
The exec and vm_bind ioctl allow userspace to specify an arbitrary
num_syncs value. Without bounds checking, a very large num_syncs
can force an excessively large allocation, leading to kernel warnings
from the page allocator as below.
Introduce DRM_XE_MAX_SYNCS (set to 1024) and reject any request
exceeding this limit.
"
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1217 at mm/page_alloc.c:5124 __alloc_frozen_pages_noprof+0x2f8/0x2180 mm/page_alloc.c:5124
...
Call Trace:
<TASK>
alloc_pages_mpol+0xe4/0x330 mm/mempolicy.c:2416
___kmalloc_large_node+0xd8/0x110 mm/slub.c:4317
__kmalloc_large_node_noprof+0x18/0xe0 mm/slub.c:4348
__do_kmalloc_node mm/slub.c:4364 [inline]
__kmalloc_noprof+0x3d4/0x4b0 mm/slub.c:4388
kmalloc_noprof include/linux/slab.h:909 [inline]
kmalloc_array_noprof include/linux/slab.h:948 [inline]
xe_exec_ioctl+0xa47/0x1e70 drivers/gpu/drm/xe/xe_exec.c:158
drm_ioctl_kernel+0x1f1/0x3e0 drivers/gpu/drm/drm_ioctl.c:797
drm_ioctl+0x5e7/0xc50 drivers/gpu/drm/drm_ioctl.c:894
xe_drm_ioctl+0x10b/0x170 drivers/gpu/drm/xe/xe_device.c:224
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:598 [inline]
__se_sys_ioctl fs/ioctl.c:584 [inline]
__x64_sys_ioctl+0x18b/0x210 fs/ioctl.c:584
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xbb/0x380 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
"
v2: Add "Reported-by" and Cc stable kernels.
v3: Change XE_MAX_SYNCS from 64 to 1024. (Matt & Ashutosh)
v4: s/XE_MAX_SYNCS/DRM_XE_MAX_SYNCS/ (Matt)
v5: Do the check at the top of the exec func. (Matt)
(cherry picked from commit b07bac9bd708ec468cd1b8a5fe70ae2ac9b0a11c) |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix buffer validation by including null terminator size in EA length
The smb2_set_ea function, which handles Extended Attributes (EA),
was performing buffer validation checks that incorrectly omitted the size
of the null terminating character (+1 byte) for EA Name.
This patch fixes the issue by explicitly adding '+ 1' to EaNameLength where
the null terminator is expected to be present in the buffer, ensuring
the validation accurately reflects the total required buffer size. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: vfs: fix race on m_flags in vfs_cache
ksmbd maintains delete-on-close and pending-delete state in
ksmbd_inode->m_flags. In vfs_cache.c this field is accessed under
inconsistent locking: some paths read and modify m_flags under
ci->m_lock while others do so without taking the lock at all.
Examples:
- ksmbd_query_inode_status() and __ksmbd_inode_close() use
ci->m_lock when checking or updating m_flags.
- ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(),
ksmbd_clear_inode_pending_delete() and ksmbd_fd_set_delete_on_close()
used to read and modify m_flags without ci->m_lock.
This creates a potential data race on m_flags when multiple threads
open, close and delete the same file concurrently. In the worst case
delete-on-close and pending-delete bits can be lost or observed in an
inconsistent state, leading to confusing delete semantics (files that
stay on disk after delete-on-close, or files that disappear while still
in use).
Fix it by:
- Making ksmbd_query_inode_status() look at m_flags under ci->m_lock
after dropping inode_hash_lock.
- Adding ci->m_lock protection to all helpers that read or modify
m_flags (ksmbd_inode_pending_delete(), ksmbd_set_inode_pending_delete(),
ksmbd_clear_inode_pending_delete(), ksmbd_fd_set_delete_on_close()).
- Keeping the existing ci->m_lock protection in __ksmbd_inode_close(),
and moving the actual unlink/xattr removal outside the lock.
This unifies the locking around m_flags and removes the data race while
preserving the existing delete-on-close behaviour. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: alps - fix use-after-free bugs caused by dev3_register_work
The dev3_register_work delayed work item is initialized within
alps_reconnect() and scheduled upon receipt of the first bare
PS/2 packet from an external PS/2 device connected to the ALPS
touchpad. During device detachment, the original implementation
calls flush_workqueue() in psmouse_disconnect() to ensure
completion of dev3_register_work. However, the flush_workqueue()
in psmouse_disconnect() only blocks and waits for work items that
were already queued to the workqueue prior to its invocation. Any
work items submitted after flush_workqueue() is called are not
included in the set of tasks that the flush operation awaits.
This means that after flush_workqueue() has finished executing,
the dev3_register_work could still be scheduled. Although the
psmouse state is set to PSMOUSE_CMD_MODE in psmouse_disconnect(),
the scheduling of dev3_register_work remains unaffected.
The race condition can occur as follows:
CPU 0 (cleanup path) | CPU 1 (delayed work)
psmouse_disconnect() |
psmouse_set_state() |
flush_workqueue() | alps_report_bare_ps2_packet()
alps_disconnect() | psmouse_queue_work()
kfree(priv); // FREE | alps_register_bare_ps2_mouse()
| priv = container_of(work...); // USE
| priv->dev3 // USE
Add disable_delayed_work_sync() in alps_disconnect() to ensure
that dev3_register_work is properly canceled and prevented from
executing after the alps_data structure has been deallocated.
This bug is identified by static analysis. |
| In the Linux kernel, the following vulnerability has been resolved:
shmem: fix recovery on rename failures
maple_tree insertions can fail if we are seriously short on memory;
simple_offset_rename() does not recover well if it runs into that.
The same goes for simple_offset_rename_exchange().
Moreover, shmem_whiteout() expects that if it succeeds, the caller will
progress to d_move(), i.e. that shmem_rename2() won't fail past the
successful call of shmem_whiteout().
Not hard to fix, fortunately - mtree_store() can't fail if the index we
are trying to store into is already present in the tree as a singleton.
For simple_offset_rename_exchange() that's enough - we just need to be
careful about the order of operations.
For simple_offset_rename() solution is to preinsert the target into the
tree for new_dir; the rest can be done without any potentially failing
operations.
That preinsertion has to be done in shmem_rename2() rather than in
simple_offset_rename() itself - otherwise we'd need to deal with the
possibility of failure after successful shmem_whiteout(). |
| In the Linux kernel, the following vulnerability has been resolved:
Input: lkkbd - disable pending work before freeing device
lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work
handler lkkbd_reinit() dereferences the lkkbd structure and its
serio/input_dev fields.
lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd
structure without preventing the reinit work from being queued again
until serio_close() returns. This can allow the work handler to run
after the structure has been freed, leading to a potential use-after-free.
Use disable_work_sync() instead of cancel_work_sync() to ensure the
reinit work cannot be re-queued, and call it both in lkkbd_disconnect()
and in lkkbd_connect() error paths after serio_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix a BUG in rt6_get_pcpu_route() under PREEMPT_RT
On PREEMPT_RT kernels, after rt6_get_pcpu_route() returns NULL, the
current task can be preempted. Another task running on the same CPU
may then execute rt6_make_pcpu_route() and successfully install a
pcpu_rt entry. When the first task resumes execution, its cmpxchg()
in rt6_make_pcpu_route() will fail because rt6i_pcpu is no longer
NULL, triggering the BUG_ON(prev). It's easy to reproduce it by adding
mdelay() after rt6_get_pcpu_route().
Using preempt_disable/enable is not appropriate here because
ip6_rt_pcpu_alloc() may sleep.
Fix this by handling the cmpxchg() failure gracefully on PREEMPT_RT:
free our allocation and return the existing pcpu_rt installed by
another task. The BUG_ON is replaced by WARN_ON_ONCE for non-PREEMPT_RT
kernels where such races should not occur. |
| The CP Image Store with Slideshow plugin for WordPress is vulnerable to authorization bypass in all versions up to, and including, 1.1.9 due to a logic error in the 'cpis_admin_init' function's permission check. This makes it possible for authenticated attackers, with Contributor-level access and above, to import arbitrary products via XML, if the XML file has already been uploaded to the server. |
| An authentication bypass vulnerability in NETGEAR Orbi devices allows
users connected to the local network to access the router web interface
as an admin. |
| Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Lemonsoft WordPress add on allows Cross-Site Scripting (XSS).This issue affects WordPress add on: 2025.7.1. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: hp-bioscfg: Fix out-of-bounds array access in ACPI package parsing
The hp_populate_*_elements_from_package() functions in the hp-bioscfg
driver contain out-of-bounds array access vulnerabilities.
These functions parse ACPI packages into internal data structures using
a for loop with index variable 'elem' that iterates through
enum_obj/integer_obj/order_obj/password_obj/string_obj arrays.
When processing multi-element fields like PREREQUISITES and
ENUM_POSSIBLE_VALUES, these functions read multiple consecutive array
elements using expressions like 'enum_obj[elem + reqs]' and
'enum_obj[elem + pos_values]' within nested loops.
The bug is that the bounds check only validated elem, but did not consider
the additional offset when accessing elem + reqs or elem + pos_values.
The fix changes the bounds check to validate the actual accessed index. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: 8192cu: fix tid out of range in rtl92cu_tx_fill_desc()
TID getting from ieee80211_get_tid() might be out of range of array size
of sta_entry->tids[], so check TID is less than MAX_TID_COUNT. Othwerwise,
UBSAN warn:
UBSAN: array-index-out-of-bounds in drivers/net/wireless/realtek/rtlwifi/rtl8192cu/trx.c:514:30
index 10 is out of range for type 'rtl_tid_data [9]' |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| In the Linux kernel, the following vulnerability has been resolved:
ublk: clean up user copy references on ublk server exit
If a ublk server process releases a ublk char device file, any requests
dispatched to the ublk server but not yet completed will retain a ref
value of UBLK_REFCOUNT_INIT. Before commit e63d2228ef83 ("ublk: simplify
aborting ublk request"), __ublk_fail_req() would decrement the reference
count before completing the failed request. However, that commit
optimized __ublk_fail_req() to call __ublk_complete_rq() directly
without decrementing the request reference count.
The leaked reference count incorrectly allows user copy and zero copy
operations on the completed ublk request. It also triggers the
WARN_ON_ONCE(refcount_read(&io->ref)) warnings in ublk_queue_reinit()
and ublk_deinit_queue().
Commit c5c5eb24ed61 ("ublk: avoid ublk_io_release() called after ublk
char dev is closed") already fixed the issue for ublk devices using
UBLK_F_SUPPORT_ZERO_COPY or UBLK_F_AUTO_BUF_REG. However, the reference
count leak also affects UBLK_F_USER_COPY, the other reference-counted
data copy mode. Fix the condition in ublk_check_and_reset_active_ref()
to include all reference-counted data copy modes. This ensures that any
ublk requests still owned by the ublk server when it exits have their
reference counts reset to 0. |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: use rc_pageoff for memcpy byte offset
svc_rdma_copy_inline_range added rc_curpage (page index) to the page
base instead of the byte offset rc_pageoff. Use rc_pageoff so copies
land within the current page.
Found by ZeroPath (https://zeropath.com) |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: adjust read range correctly for non-block-aligned positions
iomap_adjust_read_range() assumes that the position and length passed in
are block-aligned. This is not always the case however, as shown in the
syzbot generated case for erofs. This causes too many bytes to be
skipped for uptodate blocks, which results in returning the incorrect
position and length to read in. If all the blocks are uptodate, this
underflows length and returns a position beyond the folio.
Fix the calculation to also take into account the block offset when
calculating how many bytes can be skipped for uptodate blocks. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix a UAF problem in xattr repair
The xchk_setup_xattr_buf function can allocate a new value buffer, which
means that any reference to ab->value before the call could become a
dangling pointer. Fix this by moving an assignment to after the buffer
setup. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Avoid unregistering PSP twice
PSP is unregistered twice in:
_mlx5e_remove -> mlx5e_psp_unregister
mlx5e_nic_cleanup -> mlx5e_psp_unregister
This leads to a refcount underflow in some conditions:
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 2 PID: 1694 at lib/refcount.c:28 refcount_warn_saturate+0xd8/0xe0
[...]
mlx5e_psp_unregister+0x26/0x50 [mlx5_core]
mlx5e_nic_cleanup+0x26/0x90 [mlx5_core]
mlx5e_remove+0xe6/0x1f0 [mlx5_core]
auxiliary_bus_remove+0x18/0x30
device_release_driver_internal+0x194/0x1f0
bus_remove_device+0xc6/0x130
device_del+0x159/0x3c0
mlx5_rescan_drivers_locked+0xbc/0x2a0 [mlx5_core]
[...]
Do not directly remove psp from the _mlx5e_remove path, the PSP cleanup
happens as part of profile cleanup. |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |
| OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters |