Search

Search Results (328883 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-71095 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix the crash issue for zero copy XDP_TX action There is a crash issue when running zero copy XDP_TX action, the crash log is shown below. [ 216.122464] Unable to handle kernel paging request at virtual address fffeffff80000000 [ 216.187524] Internal error: Oops: 0000000096000144 [#1] SMP [ 216.301694] Call trace: [ 216.304130] dcache_clean_poc+0x20/0x38 (P) [ 216.308308] __dma_sync_single_for_device+0x1bc/0x1e0 [ 216.313351] stmmac_xdp_xmit_xdpf+0x354/0x400 [ 216.317701] __stmmac_xdp_run_prog+0x164/0x368 [ 216.322139] stmmac_napi_poll_rxtx+0xba8/0xf00 [ 216.326576] __napi_poll+0x40/0x218 [ 216.408054] Kernel panic - not syncing: Oops: Fatal exception in interrupt For XDP_TX action, the xdp_buff is converted to xdp_frame by xdp_convert_buff_to_frame(). The memory type of the resulting xdp_frame depends on the memory type of the xdp_buff. For page pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_POOL. For zero copy XSK pool based xdp_buff it produces xdp_frame with memory type MEM_TYPE_PAGE_ORDER0. However, stmmac_xdp_xmit_back() does not check the memory type and always uses the page pool type, this leads to invalid mappings and causes the crash. Therefore, check the xdp_buff memory type in stmmac_xdp_xmit_back() to fix this issue.
CVE-2025-68791 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: missing copy_finish in fuse-over-io-uring argument copies Fix a possible reference count leak of payload pages during fuse argument copies. [Joanne: simplified error cleanup]
CVE-2025-68812 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: media: iris: Add sanity check for stop streaming Add sanity check in iris_vb2_stop_streaming. If inst->state is already IRIS_INST_ERROR, we should skip the stream_off operation because it would still send packets to the firmware. In iris_kill_session, inst->state is set to IRIS_INST_ERROR and session_close is executed, which will kfree(inst_hfi_gen2->packet). If stop_streaming is called afterward, it will cause a crash. [bod: remove qcom from patch title]
CVE-2025-11250 1 Zohocorp 1 Manageengine Adselfservice Plus 2026-01-14 9.1 Critical
Zohocorp ManageEngine ADSelfService Plus versions before 6519 are vulnerable to Authentication Bypass due to improper filter configurations.
CVE-2025-68778 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't log conflicting inode if it's a dir moved in the current transaction We can't log a conflicting inode if it's a directory and it was moved from one parent directory to another parent directory in the current transaction, as this can result an attempt to have a directory with two hard links during log replay, one for the old parent directory and another for the new parent directory. The following scenario triggers that issue: 1) We have directories "dir1" and "dir2" created in a past transaction. Directory "dir1" has inode A as its parent directory; 2) We move "dir1" to some other directory; 3) We create a file with the name "dir1" in directory inode A; 4) We fsync the new file. This results in logging the inode of the new file and the inode for the directory "dir1" that was previously moved in the current transaction. So the log tree has the INODE_REF item for the new location of "dir1"; 5) We move the new file to some other directory. This results in updating the log tree to included the new INODE_REF for the new location of the file and removes the INODE_REF for the old location. This happens during the rename when we call btrfs_log_new_name(); 6) We fsync the file, and that persists the log tree changes done in the previous step (btrfs_log_new_name() only updates the log tree in memory); 7) We have a power failure; 8) Next time the fs is mounted, log replay happens and when processing the inode for directory "dir1" we find a new INODE_REF and add that link, but we don't remove the old link of the inode since we have not logged the old parent directory of the directory inode "dir1". As a result after log replay finishes when we trigger writeback of the subvolume tree's extent buffers, the tree check will detect that we have a directory a hard link count of 2 and we get a mount failure. The errors and stack traces reported in dmesg/syslog are like this: [ 3845.729764] BTRFS info (device dm-0): start tree-log replay [ 3845.730304] page: refcount:3 mapcount:0 mapping:000000005c8a3027 index:0x1d00 pfn:0x11510c [ 3845.731236] memcg:ffff9264c02f4e00 [ 3845.731751] aops:btree_aops [btrfs] ino:1 [ 3845.732300] flags: 0x17fffc00000400a(uptodate|private|writeback|node=0|zone=2|lastcpupid=0x1ffff) [ 3845.733346] raw: 017fffc00000400a 0000000000000000 dead000000000122 ffff9264d978aea8 [ 3845.734265] raw: 0000000000001d00 ffff92650e6d4738 00000003ffffffff ffff9264c02f4e00 [ 3845.735305] page dumped because: eb page dump [ 3845.735981] BTRFS critical (device dm-0): corrupt leaf: root=5 block=30408704 slot=6 ino=257, invalid nlink: has 2 expect no more than 1 for dir [ 3845.737786] BTRFS info (device dm-0): leaf 30408704 gen 10 total ptrs 17 free space 14881 owner 5 [ 3845.737789] BTRFS info (device dm-0): refs 4 lock_owner 0 current 30701 [ 3845.737792] item 0 key (256 INODE_ITEM 0) itemoff 16123 itemsize 160 [ 3845.737794] inode generation 3 transid 9 size 16 nbytes 16384 [ 3845.737795] block group 0 mode 40755 links 1 uid 0 gid 0 [ 3845.737797] rdev 0 sequence 2 flags 0x0 [ 3845.737798] atime 1764259517.0 [ 3845.737800] ctime 1764259517.572889464 [ 3845.737801] mtime 1764259517.572889464 [ 3845.737802] otime 1764259517.0 [ 3845.737803] item 1 key (256 INODE_REF 256) itemoff 16111 itemsize 12 [ 3845.737805] index 0 name_len 2 [ 3845.737807] item 2 key (256 DIR_ITEM 2363071922) itemoff 16077 itemsize 34 [ 3845.737808] location key (257 1 0) type 2 [ 3845.737810] transid 9 data_len 0 name_len 4 [ 3845.737811] item 3 key (256 DIR_ITEM 2676584006) itemoff 16043 itemsize 34 [ 3845.737813] location key (258 1 0) type 2 [ 3845.737814] transid 9 data_len 0 name_len 4 [ 3845.737815] item 4 key (256 DIR_INDEX 2) itemoff 16009 itemsize 34 [ 3845.737816] location key (257 1 0) type 2 [ ---truncated---
CVE-2025-68805 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests.
CVE-2025-71065 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid potential deadlock As Jiaming Zhang and syzbot reported, there is potential deadlock in f2fs as below: Chain exists of: &sbi->cp_rwsem --> fs_reclaim --> sb_internal#2 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); rlock(&sbi->cp_rwsem); *** DEADLOCK *** 3 locks held by kswapd0/73: #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat mm/vmscan.c:7015 [inline] #0: ffffffff8e247a40 (fs_reclaim){+.+.}-{0:0}, at: kswapd+0x951/0x2800 mm/vmscan.c:7389 #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_trylock_shared fs/super.c:562 [inline] #1: ffff8880118400e0 (&type->s_umount_key#50){.+.+}-{4:4}, at: super_cache_scan+0x91/0x4b0 fs/super.c:197 #2: ffff888011840610 (sb_internal#2){.+.+}-{0:0}, at: f2fs_evict_inode+0x8d9/0x1b60 fs/f2fs/inode.c:890 stack backtrace: CPU: 0 UID: 0 PID: 73 Comm: kswapd0 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120 print_circular_bug+0x2ee/0x310 kernel/locking/lockdep.c:2043 check_noncircular+0x134/0x160 kernel/locking/lockdep.c:2175 check_prev_add kernel/locking/lockdep.c:3165 [inline] check_prevs_add kernel/locking/lockdep.c:3284 [inline] validate_chain+0xb9b/0x2140 kernel/locking/lockdep.c:3908 __lock_acquire+0xab9/0xd20 kernel/locking/lockdep.c:5237 lock_acquire+0x120/0x360 kernel/locking/lockdep.c:5868 down_read+0x46/0x2e0 kernel/locking/rwsem.c:1537 f2fs_down_read fs/f2fs/f2fs.h:2278 [inline] f2fs_lock_op fs/f2fs/f2fs.h:2357 [inline] f2fs_do_truncate_blocks+0x21c/0x10c0 fs/f2fs/file.c:791 f2fs_truncate_blocks+0x10a/0x300 fs/f2fs/file.c:867 f2fs_truncate+0x489/0x7c0 fs/f2fs/file.c:925 f2fs_evict_inode+0x9f2/0x1b60 fs/f2fs/inode.c:897 evict+0x504/0x9c0 fs/inode.c:810 f2fs_evict_inode+0x1dc/0x1b60 fs/f2fs/inode.c:853 evict+0x504/0x9c0 fs/inode.c:810 dispose_list fs/inode.c:852 [inline] prune_icache_sb+0x21b/0x2c0 fs/inode.c:1000 super_cache_scan+0x39b/0x4b0 fs/super.c:224 do_shrink_slab+0x6ef/0x1110 mm/shrinker.c:437 shrink_slab_memcg mm/shrinker.c:550 [inline] shrink_slab+0x7ef/0x10d0 mm/shrinker.c:628 shrink_one+0x28a/0x7c0 mm/vmscan.c:4955 shrink_many mm/vmscan.c:5016 [inline] lru_gen_shrink_node mm/vmscan.c:5094 [inline] shrink_node+0x315d/0x3780 mm/vmscan.c:6081 kswapd_shrink_node mm/vmscan.c:6941 [inline] balance_pgdat mm/vmscan.c:7124 [inline] kswapd+0x147c/0x2800 mm/vmscan.c:7389 kthread+0x70e/0x8a0 kernel/kthread.c:463 ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The root cause is deadlock among four locks as below: kswapd - fs_reclaim --- Lock A - shrink_one - evict - f2fs_evict_inode - sb_start_intwrite --- Lock B - iput - evict - f2fs_evict_inode - sb_start_intwrite --- Lock B - f2fs_truncate - f2fs_truncate_blocks - f2fs_do_truncate_blocks - f2fs_lock_op --- Lock C ioctl - f2fs_ioc_commit_atomic_write - f2fs_lock_op --- Lock C - __f2fs_commit_atomic_write - __replace_atomic_write_block - f2fs_get_dnode_of_data - __get_node_folio - f2fs_check_nid_range - f2fs_handle_error - f2fs_record_errors - f2fs_down_write --- Lock D open - do_open - do_truncate - security_inode_need_killpriv - f2fs_getxattr - lookup_all_xattrs - f2fs_handle_error - f2fs_record_errors - f2fs_down_write --- Lock D - f2fs_commit_super - read_mapping_folio - filemap_alloc_folio_noprof - prepare_alloc_pages - fs_reclaim_acquire --- Lock A In order to a ---truncated---
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-71088 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: fallback earlier on simult connection Syzkaller reports a simult-connect race leading to inconsistent fallback status: WARNING: CPU: 3 PID: 33 at net/mptcp/subflow.c:1515 subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Modules linked in: CPU: 3 UID: 0 PID: 33 Comm: ksoftirqd/3 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:subflow_data_ready+0x40b/0x7c0 net/mptcp/subflow.c:1515 Code: 89 ee e8 78 61 3c f6 40 84 ed 75 21 e8 8e 66 3c f6 44 89 fe bf 07 00 00 00 e8 c1 61 3c f6 41 83 ff 07 74 09 e8 76 66 3c f6 90 <0f> 0b 90 e8 6d 66 3c f6 48 89 df e8 e5 ad ff ff 31 ff 89 c5 89 c6 RSP: 0018:ffffc900006cf338 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888031acd100 RCX: ffffffff8b7f2abf RDX: ffff88801e6ea440 RSI: ffffffff8b7f2aca RDI: 0000000000000005 RBP: 0000000000000000 R08: 0000000000000005 R09: 0000000000000007 R10: 0000000000000004 R11: 0000000000002c10 R12: ffff88802ba69900 R13: 1ffff920000d9e67 R14: ffff888046f81800 R15: 0000000000000004 FS: 0000000000000000(0000) GS:ffff8880d69bc000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000560fc0ca1670 CR3: 0000000032c3a000 CR4: 0000000000352ef0 Call Trace: <TASK> tcp_data_queue+0x13b0/0x4f90 net/ipv4/tcp_input.c:5197 tcp_rcv_state_process+0xfdf/0x4ec0 net/ipv4/tcp_input.c:6922 tcp_v6_do_rcv+0x492/0x1740 net/ipv6/tcp_ipv6.c:1672 tcp_v6_rcv+0x2976/0x41e0 net/ipv6/tcp_ipv6.c:1918 ip6_protocol_deliver_rcu+0x188/0x1520 net/ipv6/ip6_input.c:438 ip6_input_finish+0x1e4/0x4b0 net/ipv6/ip6_input.c:489 NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ip6_input+0x105/0x2f0 net/ipv6/ip6_input.c:500 dst_input include/net/dst.h:471 [inline] ip6_rcv_finish net/ipv6/ip6_input.c:79 [inline] NF_HOOK include/linux/netfilter.h:318 [inline] NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0x264/0x650 net/ipv6/ip6_input.c:311 __netif_receive_skb_one_core+0x12d/0x1e0 net/core/dev.c:5979 __netif_receive_skb+0x1d/0x160 net/core/dev.c:6092 process_backlog+0x442/0x15e0 net/core/dev.c:6444 __napi_poll.constprop.0+0xba/0x550 net/core/dev.c:7494 napi_poll net/core/dev.c:7557 [inline] net_rx_action+0xa9f/0xfe0 net/core/dev.c:7684 handle_softirqs+0x216/0x8e0 kernel/softirq.c:579 run_ksoftirqd kernel/softirq.c:968 [inline] run_ksoftirqd+0x3a/0x60 kernel/softirq.c:960 smpboot_thread_fn+0x3f7/0xae0 kernel/smpboot.c:160 kthread+0x3c2/0x780 kernel/kthread.c:463 ret_from_fork+0x5d7/0x6f0 arch/x86/kernel/process.c:148 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 </TASK> The TCP subflow can process the simult-connect syn-ack packet after transitioning to TCP_FIN1 state, bypassing the MPTCP fallback check, as the sk_state_change() callback is not invoked for * -> FIN_WAIT1 transitions. That will move the msk socket to an inconsistent status and the next incoming data will hit the reported splat. Close the race moving the simult-fallback check at the earliest possible stage - that is at syn-ack generation time. About the fixes tags: [2] was supposed to also fix this issue introduced by [3]. [1] is required as a dependence: it was not explicitly marked as a fix, but it is one and it has already been backported before [3]. In other words, this commit should be backported up to [3], including [2] and [1] if that's not already there.
CVE-2025-68817 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in ksmbd_tree_connect_put under concurrency Under high concurrency, A tree-connection object (tcon) is freed on a disconnect path while another path still holds a reference and later executes *_put()/write on it.
CVE-2025-68786 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: skip lock-range check on equal size to avoid size==0 underflow When size equals the current i_size (including 0), the code used to call check_lock_range(filp, i_size, size - 1, WRITE), which computes `size - 1` and can underflow for size==0. Skip the equal case.
CVE-2025-66698 1 Semantic 1 Machines 2026-01-14 8.6 High
An issue in Semantic machines v5.4.8 allows attackers to bypass authentication via sending a crafted HTTP request to various API endpoints.
CVE-2025-71071 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: iommu/mediatek: fix use-after-free on probe deferral The driver is dropping the references taken to the larb devices during probe after successful lookup as well as on errors. This can potentially lead to a use-after-free in case a larb device has not yet been bound to its driver so that the iommu driver probe defers. Fix this by keeping the references as expected while the iommu driver is bound.
CVE-2025-71092 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Fix OOB write in bnxt_re_copy_err_stats() Commit ef56081d1864 ("RDMA/bnxt_re: RoCE related hardware counters update") added three new counters and placed them after BNXT_RE_OUT_OF_SEQ_ERR. BNXT_RE_OUT_OF_SEQ_ERR acts as a boundary marker for allocating hardware statistics with different num_counters values on chip_gen_p5_p7 devices. As a result, BNXT_RE_NUM_STD_COUNTERS are used when allocating hw_stats, which leads to an out-of-bounds write in bnxt_re_copy_err_stats(). The counters BNXT_RE_REQ_CQE_ERROR, BNXT_RE_RESP_CQE_ERROR, and BNXT_RE_RESP_REMOTE_ACCESS_ERRS are applicable to generic hardware, not only p5/p7 devices. Fix this by moving these counters before BNXT_RE_OUT_OF_SEQ_ERR so they are included in the generic counter set.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2025-71099 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl() In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping metrics_lock. Since this lock protects the lifetime of oa_config, an attacker could guess the id and call xe_oa_remove_config_ioctl() with perfect timing, freeing oa_config before we dereference it, leading to a potential use-after-free. Fix this by caching the id in a local variable while holding the lock. v2: (Matt A) - Dropped mutex_unlock(&oa->metrics_lock) ordering change from xe_oa_remove_config_ioctl() (cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31)
CVE-2025-68790 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix double unregister of HCA_PORTS component Clear hca_devcom_comp in device's private data after unregistering it in LAG teardown. Otherwise a slightly lagging second pass through mlx5_unload_one() might try to unregister it again and trip over use-after-free. On s390 almost all PCI level recovery events trigger two passes through mxl5_unload_one() - one through the poll_health() method and one through mlx5_pci_err_detected() as callback from generic PCI error recovery. While testing PCI error recovery paths with more kernel debug features enabled, this issue reproducibly led to kernel panics with the following call chain: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI Fault in home space mode while using kernel ASCE. AS:00000000705c4007 R3:0000000000000024 Oops: 0038 ilc:3 [#1]SMP CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted 6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000 0000000000000000 0000000000000000 0000000000000001 0000000000000000 0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100 0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8 Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832 0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4 *0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820 >0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2) 0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4 0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8 0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec 0000020fc86aa1f2: a7eb00e8 aghi %r14,232 Call Trace: __lock_acquire+0x5c/0x15f0 lock_acquire.part.0+0xf8/0x270 lock_acquire+0xb0/0x1b0 down_write+0x5a/0x250 mlx5_detach_device+0x42/0x110 [mlx5_core] mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core] mlx5_unload_one+0x42/0x60 [mlx5_core] mlx5_pci_err_detected+0x94/0x150 [mlx5_core] zpci_event_attempt_error_recovery+0xcc/0x388
CVE-2026-0403 1 Netgear 10 Rbe970, Rbe971, Rbr750 and 7 more 2026-01-14 N/A
An insufficient input validation vulnerability in NETGEAR Orbi routers allows attackers connected to the router's LAN to execute OS command injections.
CVE-2026-0404 1 Netgear 12 Rbr750, Rbr840, Rbr850 and 9 more 2026-01-14 N/A
An insufficient input validation vulnerability in NETGEAR Orbi devices' DHCPv6 functionality allows network adjacent attackers authenticated over WiFi or on LAN to execute OS command injections on the router. DHCPv6 is not enabled by default.
CVE-2026-0406 1 Netgear 1 Xr1000v2 2026-01-14 N/A
An insufficient input validation vulnerability in the NETGEAR XR1000v2 allows attackers connected to the router's LAN to execute OS command injections.