| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: LAG, fix logic over MLX5_LAG_FLAG_NDEVS_READY
Only set MLX5_LAG_FLAG_NDEVS_READY if both netdevices are registered.
Doing so guarantees that both ldev->pf[MLX5_LAG_P0].dev and
ldev->pf[MLX5_LAG_P1].dev have valid pointers when
MLX5_LAG_FLAG_NDEVS_READY is set.
The core issue is asymmetry in setting MLX5_LAG_FLAG_NDEVS_READY and
clearing it. Setting it is done wrongly when both
ldev->pf[MLX5_LAG_P0].dev and ldev->pf[MLX5_LAG_P1].dev are set;
clearing it is done right when either of ldev->pf[i].netdev is cleared.
Consider the following scenario:
1. PF0 loads and sets ldev->pf[MLX5_LAG_P0].dev to a valid pointer
2. PF1 loads and sets both ldev->pf[MLX5_LAG_P1].dev and
ldev->pf[MLX5_LAG_P1].netdev with valid pointers. This results in
MLX5_LAG_FLAG_NDEVS_READY is set.
3. PF0 is unloaded before setting dev->pf[MLX5_LAG_P0].netdev.
MLX5_LAG_FLAG_NDEVS_READY remains set.
Further execution of mlx5_do_bond() will result in null pointer
dereference when calling mlx5_lag_is_multipath()
This patch fixes the following call trace actually encountered:
[ 1293.475195] BUG: kernel NULL pointer dereference, address: 00000000000009a8
[ 1293.478756] #PF: supervisor read access in kernel mode
[ 1293.481320] #PF: error_code(0x0000) - not-present page
[ 1293.483686] PGD 0 P4D 0
[ 1293.484434] Oops: 0000 [#1] SMP PTI
[ 1293.485377] CPU: 1 PID: 23690 Comm: kworker/u16:2 Not tainted 5.18.0-rc5_for_upstream_min_debug_2022_05_05_10_13 #1
[ 1293.488039] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
[ 1293.490836] Workqueue: mlx5_lag mlx5_do_bond_work [mlx5_core]
[ 1293.492448] RIP: 0010:mlx5_lag_is_multipath+0x5/0x50 [mlx5_core]
[ 1293.494044] Code: e8 70 40 ff e0 48 8b 14 24 48 83 05 5c 1a 1b 00 01 e9 19 ff ff ff 48 83 05 47 1a 1b 00 01 eb d7 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 87 a8 09 00 00 48 85 c0 74 26 48 83 05 a7 1b 1b 00 01 41 b8
[ 1293.498673] RSP: 0018:ffff88811b2fbe40 EFLAGS: 00010202
[ 1293.500152] RAX: ffff88818a94e1c0 RBX: ffff888165eca6c0 RCX: 0000000000000000
[ 1293.501841] RDX: 0000000000000001 RSI: ffff88818a94e1c0 RDI: 0000000000000000
[ 1293.503585] RBP: 0000000000000000 R08: ffff888119886740 R09: ffff888165eca73c
[ 1293.505286] R10: 0000000000000018 R11: 0000000000000018 R12: ffff88818a94e1c0
[ 1293.506979] R13: ffff888112729800 R14: 0000000000000000 R15: ffff888112729858
[ 1293.508753] FS: 0000000000000000(0000) GS:ffff88852cc40000(0000) knlGS:0000000000000000
[ 1293.510782] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1293.512265] CR2: 00000000000009a8 CR3: 00000001032d4002 CR4: 0000000000370ea0
[ 1293.514001] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1293.515806] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 |
| In the Linux kernel, the following vulnerability has been resolved:
ice: xsk: prohibit usage of non-balanced queue id
Fix the following scenario:
1. ethtool -L $IFACE rx 8 tx 96
2. xdpsock -q 10 -t -z
Above refers to a case where user would like to attach XSK socket in
txonly mode at a queue id that does not have a corresponding Rx queue.
At this moment ice's XSK logic is tightly bound to act on a "queue pair",
e.g. both Tx and Rx queues at a given queue id are disabled/enabled and
both of them will get XSK pool assigned, which is broken for the presented
queue configuration. This results in the splat included at the bottom,
which is basically an OOB access to Rx ring array.
To fix this, allow using the ids only in scope of "combined" queues
reported by ethtool. However, logic should be rewritten to allow such
configurations later on, which would end up as a complete rewrite of the
control path, so let us go with this temporary fix.
[420160.558008] BUG: kernel NULL pointer dereference, address: 0000000000000082
[420160.566359] #PF: supervisor read access in kernel mode
[420160.572657] #PF: error_code(0x0000) - not-present page
[420160.579002] PGD 0 P4D 0
[420160.582756] Oops: 0000 [#1] PREEMPT SMP NOPTI
[420160.588396] CPU: 10 PID: 21232 Comm: xdpsock Tainted: G OE 5.19.0-rc7+ #10
[420160.597893] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0008.031920191559 03/19/2019
[420160.609894] RIP: 0010:ice_xsk_pool_setup+0x44/0x7d0 [ice]
[420160.616968] Code: f3 48 83 ec 40 48 8b 4f 20 48 8b 3f 65 48 8b 04 25 28 00 00 00 48 89 44 24 38 31 c0 48 8d 04 ed 00 00 00 00 48 01 c1 48 8b 11 <0f> b7 92 82 00 00 00 48 85 d2 0f 84 2d 75 00 00 48 8d 72 ff 48 85
[420160.639421] RSP: 0018:ffffc9002d2afd48 EFLAGS: 00010282
[420160.646650] RAX: 0000000000000050 RBX: ffff88811d8bdd00 RCX: ffff888112c14ff8
[420160.655893] RDX: 0000000000000000 RSI: ffff88811d8bdd00 RDI: ffff888109861000
[420160.665166] RBP: 000000000000000a R08: 000000000000000a R09: 0000000000000000
[420160.674493] R10: 000000000000889f R11: 0000000000000000 R12: 000000000000000a
[420160.683833] R13: 000000000000000a R14: 0000000000000000 R15: ffff888117611828
[420160.693211] FS: 00007fa869fc1f80(0000) GS:ffff8897e0880000(0000) knlGS:0000000000000000
[420160.703645] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[420160.711783] CR2: 0000000000000082 CR3: 00000001d076c001 CR4: 00000000007706e0
[420160.721399] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[420160.731045] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[420160.740707] PKRU: 55555554
[420160.745960] Call Trace:
[420160.750962] <TASK>
[420160.755597] ? kmalloc_large_node+0x79/0x90
[420160.762703] ? __kmalloc_node+0x3f5/0x4b0
[420160.769341] xp_assign_dev+0xfd/0x210
[420160.775661] ? shmem_file_read_iter+0x29a/0x420
[420160.782896] xsk_bind+0x152/0x490
[420160.788943] __sys_bind+0xd0/0x100
[420160.795097] ? exit_to_user_mode_prepare+0x20/0x120
[420160.802801] __x64_sys_bind+0x16/0x20
[420160.809298] do_syscall_64+0x38/0x90
[420160.815741] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[420160.823731] RIP: 0033:0x7fa86a0dd2fb
[420160.830264] Code: c3 66 0f 1f 44 00 00 48 8b 15 69 8b 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bc 0f 1f 44 00 00 f3 0f 1e fa b8 31 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 3d 8b 0c 00 f7 d8 64 89 01 48
[420160.855410] RSP: 002b:00007ffc1146f618 EFLAGS: 00000246 ORIG_RAX: 0000000000000031
[420160.866366] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fa86a0dd2fb
[420160.876957] RDX: 0000000000000010 RSI: 00007ffc1146f680 RDI: 0000000000000003
[420160.887604] RBP: 000055d7113a0520 R08: 00007fa868fb8000 R09: 0000000080000000
[420160.898293] R10: 0000000000008001 R11: 0000000000000246 R12: 000055d7113a04e0
[420160.909038] R13: 000055d7113a0320 R14: 000000000000000a R15: 0000000000000000
[420160.919817] </TASK>
[420160.925659] Modules linked in: ice(OE) af_packet binfmt_misc
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: policy: fix metadata dst->dev xmit null pointer dereference
When we try to transmit an skb with metadata_dst attached (i.e. dst->dev
== NULL) through xfrm interface we can hit a null pointer dereference[1]
in xfrmi_xmit2() -> xfrm_lookup_with_ifid() due to the check for a
loopback skb device when there's no policy which dereferences dst->dev
unconditionally. Not having dst->dev can be interepreted as it not being
a loopback device, so just add a check for a null dst_orig->dev.
With this fix xfrm interface's Tx error counters go up as usual.
[1] net-next calltrace captured via netconsole:
BUG: kernel NULL pointer dereference, address: 00000000000000c0
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 7231 Comm: ping Kdump: loaded Not tainted 5.19.0+ #24
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:xfrm_lookup_with_ifid+0x5eb/0xa60
Code: 8d 74 24 38 e8 26 a4 37 00 48 89 c1 e9 12 fc ff ff 49 63 ed 41 83 fd be 0f 85 be 01 00 00 41 be ff ff ff ff 45 31 ed 48 8b 03 <f6> 80 c0 00 00 00 08 75 0f 41 80 bc 24 19 0d 00 00 01 0f 84 1e 02
RSP: 0018:ffffb0db82c679f0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffffd0db7fcad430 RCX: ffffb0db82c67a10
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffb0db82c67a80
RBP: ffffb0db82c67a80 R08: ffffb0db82c67a14 R09: 0000000000000000
R10: 0000000000000000 R11: ffff8fa449667dc8 R12: ffffffff966db880
R13: 0000000000000000 R14: 00000000ffffffff R15: 0000000000000000
FS: 00007ff35c83f000(0000) GS:ffff8fa478480000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000c0 CR3: 000000001ebb7000 CR4: 0000000000350ee0
Call Trace:
<TASK>
xfrmi_xmit+0xde/0x460
? tcf_bpf_act+0x13d/0x2a0
dev_hard_start_xmit+0x72/0x1e0
__dev_queue_xmit+0x251/0xd30
ip_finish_output2+0x140/0x550
ip_push_pending_frames+0x56/0x80
raw_sendmsg+0x663/0x10a0
? try_charge_memcg+0x3fd/0x7a0
? __mod_memcg_lruvec_state+0x93/0x110
? sock_sendmsg+0x30/0x40
sock_sendmsg+0x30/0x40
__sys_sendto+0xeb/0x130
? handle_mm_fault+0xae/0x280
? do_user_addr_fault+0x1e7/0x680
? kvm_read_and_reset_apf_flags+0x3b/0x50
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x34/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7ff35cac1366
Code: eb 0b 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 41 89 ca 64 8b 04 25 18 00 00 00 85 c0 75 11 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 72 c3 90 55 48 83 ec 30 44 89 4c 24 2c 4c 89
RSP: 002b:00007fff738e4028 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007fff738e57b0 RCX: 00007ff35cac1366
RDX: 0000000000000040 RSI: 0000557164e4b450 RDI: 0000000000000003
RBP: 0000557164e4b450 R08: 00007fff738e7a2c R09: 0000000000000010
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000040
R13: 00007fff738e5770 R14: 00007fff738e4030 R15: 0000001d00000001
</TASK>
Modules linked in: netconsole veth br_netfilter bridge bonding virtio_net [last unloaded: netconsole]
CR2: 00000000000000c0 |
| A flaw was found in the Linux kernel's TUN/TAP functionality. This issue could allow a local user to bypass network filters and gain unauthorized access to some resources. The original patches fixing CVE-2023-1076 are incorrect or incomplete. The problem is that the following upstream commits - a096ccca6e50 ("tun: tun_chr_open(): correctly initialize socket uid"), - 66b2c338adce ("tap: tap_open(): correctly initialize socket uid"), pass "inode->i_uid" to sock_init_data_uid() as the last parameter and that turns out to not be accurate. |
| A flaw was found in the exFAT driver of the Linux kernel. The vulnerability exists in the implementation of the file name reconstruction function, which is responsible for reading file name entries from a directory index and merging file name parts belonging to one file into a single long file name. Since the file name characters are copied into a stack variable, a local privileged attacker could use this flaw to overflow the kernel stack. |
| A flaw was found in the Linux kernel’s IP framework for transforming packets (XFRM subsystem). This issue may allow a malicious user with CAP_NET_ADMIN privileges to cause a 4 byte out-of-bounds read of XFRMA_MTIMER_THRESH when parsing netlink attributes, leading to potential leakage of sensitive heap data to userspace. |
| A possible unauthorized memory access flaw was found in the Linux kernel's cpu_entry_area mapping of X86 CPU data to memory, where a user may guess the location of exception stacks or other important data. Based on the previous CVE-2023-0597, the 'Randomize per-cpu entry area' feature was implemented in /arch/x86/mm/cpu_entry_area.c, which works through the init_cea_offsets() function when KASLR is enabled. However, despite this feature, there is still a risk of per-cpu entry area leaks. This issue could allow a local user to gain access to some important data with memory in an expected location and potentially escalate their privileges on the system. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86: x86-android-tablets: Fix broken touchscreen on Chuwi Hi8 with Windows BIOS
The x86-android-tablets handling for the Chuwi Hi8 is only necessary with
the Android BIOS and it is causing problems with the Windows BIOS version.
Specifically when trying to register the already present touchscreen
x86_acpi_irq_helper_get() calls acpi_unregister_gsi(), this breaks
the working of the touchscreen and also leads to an oops:
[ 14.248946] ------------[ cut here ]------------
[ 14.248954] remove_proc_entry: removing non-empty directory 'irq/75', leaking at least 'MSSL0001:00'
[ 14.248983] WARNING: CPU: 3 PID: 440 at fs/proc/generic.c:718 remove_proc_entry
...
[ 14.249293] unregister_irq_proc+0xe0/0x100
[ 14.249305] free_desc+0x29/0x70
[ 14.249312] irq_free_descs+0x4b/0x80
[ 14.249320] mp_unmap_irq+0x5c/0x60
[ 14.249329] acpi_unregister_gsi_ioapic+0x2a/0x40
[ 14.249338] x86_acpi_irq_helper_get+0x4b/0x190 [x86_android_tablets]
[ 14.249355] x86_android_tablet_init+0x178/0xe34 [x86_android_tablets]
Add an init callback for the Chuwi Hi8, which detects when the Windows BIOS
is in use and exits with -ENODEV in that case, fixing this. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: nintendo: fix rumble worker null pointer deref
We can dereference a null pointer trying to queue work to a destroyed
workqueue.
If the device is disconnected, nintendo_hid_remove is called, in which
the rumble_queue is destroyed. Avoid using that queue to defer rumble
work once the controller state is set to JOYCON_CTLR_STATE_REMOVED.
This eliminates the null pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
skmsg: Fix wrong last sg check in sk_msg_recvmsg()
Fix one kernel NULL pointer dereference as below:
[ 224.462334] Call Trace:
[ 224.462394] __tcp_bpf_recvmsg+0xd3/0x380
[ 224.462441] ? sock_has_perm+0x78/0xa0
[ 224.462463] tcp_bpf_recvmsg+0x12e/0x220
[ 224.462494] inet_recvmsg+0x5b/0xd0
[ 224.462534] __sys_recvfrom+0xc8/0x130
[ 224.462574] ? syscall_trace_enter+0x1df/0x2e0
[ 224.462606] ? __do_page_fault+0x2de/0x500
[ 224.462635] __x64_sys_recvfrom+0x24/0x30
[ 224.462660] do_syscall_64+0x5d/0x1d0
[ 224.462709] entry_SYSCALL_64_after_hwframe+0x65/0xca
In commit 9974d37ea75f ("skmsg: Fix invalid last sg check in
sk_msg_recvmsg()"), we change last sg check to sg_is_last(),
but in sockmap redirection case (without stream_parser/stream_verdict/
skb_verdict), we did not mark the end of the scatterlist. Check the
sk_msg_alloc, sk_msg_page_add, and bpf_msg_push_data functions, they all
do not mark the end of sg. They are expected to use sg.end for end
judgment. So the judgment of '(i != msg_rx->sg.end)' is added back here. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix corrupted packets for XDP_SHARED_UMEM
Fix an issue in XDP_SHARED_UMEM mode together with aligned mode where
packets are corrupted for the second and any further sockets bound to
the same umem. In other words, this does not affect the first socket
bound to the umem. The culprit for this bug is that the initialization
of the DMA addresses for the pre-populated xsk buffer pool entries was
not performed for any socket but the first one bound to the umem. Only
the linear array of DMA addresses was populated. Fix this by populating
the DMA addresses in the xsk buffer pool for every socket bound to the
same umem. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Fix a potential gpu_metrics_table memory leak
Memory is allocated for gpu_metrics_table in
smu_v13_0_4_init_smc_tables(), but not freed in
smu_v13_0_4_fini_smc_tables(). This may cause memory leaks, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: clear optc underflow before turn off odm clock
[Why]
After ODM clock off, optc underflow bit will be kept there always and clear not work.
We need to clear that before clock off.
[How]
Clear that if have when clock off. |
| In the Linux kernel, the following vulnerability has been resolved:
ieee802154/adf7242: defer destroy_workqueue call
There is a possible race condition (use-after-free) like below
(FREE) | (USE)
adf7242_remove | adf7242_channel
cancel_delayed_work_sync |
destroy_workqueue (1) | adf7242_cmd_rx
| mod_delayed_work (2)
|
The root cause for this race is that the upper layer (ieee802154) is
unaware of this detaching event and the function adf7242_channel can
be called without any checks.
To fix this, we can add a flag write at the beginning of adf7242_remove
and add flag check in adf7242_channel. Or we can just defer the
destructive operation like other commit 3e0588c291d6 ("hamradio: defer
ax25 kfree after unregister_netdev") which let the
ieee802154_unregister_hw() to handle the synchronization. This patch
takes the second option.
runs") |
| In the Linux kernel, the following vulnerability has been resolved:
drivers:md:fix a potential use-after-free bug
In line 2884, "raid5_release_stripe(sh);" drops the reference to sh and
may cause sh to be released. However, sh is subsequently used in lines
2886 "if (sh->batch_head && sh != sh->batch_head)". This may result in an
use-after-free bug.
It can be fixed by moving "raid5_release_stripe(sh);" to the bottom of
the function. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: Fix refcount leak bug in ucc_uart.c
In soc_info(), of_find_node_by_type() will return a node pointer
with refcount incremented. We should use of_node_put() when it is
not used anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Fix possible memory leak when failing to issue CMF WQE
There is no corresponding free routine if lpfc_sli4_issue_wqe fails to
issue the CMF WQE in lpfc_issue_cmf_sync_wqe.
If ret_val is non-zero, then free the iocbq request structure. |
| In the Linux kernel, the following vulnerability has been resolved:
habanalabs/gaudi: fix shift out of bounds
When validating NIC queues, queue offset calculation must be
performed only for NIC queues. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl: Fix a memory leak in an error handling path
A bitmap_zalloc() must be balanced by a corresponding bitmap_free() in the
error handling path of afu_allocate_irqs(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: genl: fix error path memory leak in policy dumping
If construction of the array of policies fails when recording
non-first policy we need to unwind.
netlink_policy_dump_add_policy() itself also needs fixing as
it currently gives up on error without recording the allocated
pointer in the pstate pointer. |