Filtered by vendor Linux
Subscriptions
Total
16541 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2023-54100 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: scsi: qedi: Fix use after free bug in qedi_remove() In qedi_probe() we call __qedi_probe() which initializes &qedi->recovery_work with qedi_recovery_handler() and &qedi->board_disable_work with qedi_board_disable_work(). When qedi_schedule_recovery_handler() is called, schedule_delayed_work() will finally start the work. In qedi_remove(), which is called to remove the driver, the following sequence may be observed: Fix this by finishing the work before cleanup in qedi_remove(). CPU0 CPU1 |qedi_recovery_handler qedi_remove | __qedi_remove | iscsi_host_free | scsi_host_put | //free shost | |iscsi_host_for_each_session |//use qedi->shost Cancel recovery_work and board_disable_work in __qedi_remove(). | ||||
| CVE-2023-54102 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Prevent lpfc_debugfs_lockstat_write() buffer overflow A static code analysis tool flagged the possibility of buffer overflow when using copy_from_user() for a debugfs entry. Currently, it is possible that copy_from_user() copies more bytes than what would fit in the mybuf char array. Add a min() restriction check between sizeof(mybuf) - 1 and nbytes passed from the userspace buffer to protect against buffer overflow. | ||||
| CVE-2023-54103 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: mtk-jpeg: Fix use after free bug due to uncanceled work In mtk_jpeg_probe, &jpeg->job_timeout_work is bound with mtk_jpeg_job_timeout_work. Then mtk_jpeg_dec_device_run and mtk_jpeg_enc_device_run may be called to start the work. If we remove the module which will call mtk_jpeg_remove to make cleanup, there may be a unfinished work. The possible sequence is as follows, which will cause a typical UAF bug. Fix it by canceling the work before cleanup in the mtk_jpeg_remove CPU0 CPU1 |mtk_jpeg_job_timeout_work mtk_jpeg_remove | v4l2_m2m_release | kfree(m2m_dev); | | | v4l2_m2m_get_curr_priv | m2m_dev->curr_ctx //use | ||||
| CVE-2023-54105 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: can: isotp: check CAN address family in isotp_bind() Add missing check to block non-AF_CAN binds. Syzbot created some code which matched the right sockaddr struct size but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family field: bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10) ^^^^ This has no funtional impact but the userspace should be notified about the wrong address family field content. | ||||
| CVE-2023-54106 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net/mlx5: fix potential memory leak in mlx5e_init_rep_rx The memory pointed to by the priv->rx_res pointer is not freed in the error path of mlx5e_init_rep_rx, which can lead to a memory leak. Fix by freeing the memory in the error path, thereby making the error path identical to mlx5e_cleanup_rep_rx(). | ||||
| CVE-2023-54107 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: dropping parent refcount after pd_free_fn() is done Some cgroup policies will access parent pd through child pd even after pd_offline_fn() is done. If pd_free_fn() for parent is called before child, then UAF can be triggered. Hence it's better to guarantee the order of pd_free_fn(). Currently refcount of parent blkg is dropped in __blkg_release(), which is before pd_free_fn() is called in blkg_free_work_fn() while blkg_free_work_fn() is called asynchronously. This patch make sure pd_free_fn() called from removing cgroup is ordered by delaying dropping parent refcount after calling pd_free_fn() for child. BTW, pd_free_fn() will also be called from blkcg_deactivate_policy() from deleting device, and following patches will guarantee the order. | ||||
| CVE-2023-54108 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests The following message and call trace was seen with debug kernels: DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as single] WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017 check_unmap+0xf42/0x1990 Call Trace: debug_dma_unmap_page+0xc9/0x100 qla_nvme_ls_unmap+0x141/0x210 [qla2xxx] Remove DMA mapping from the driver altogether, as it is already done by FC layer. This prevents the warning. | ||||
| CVE-2023-54110 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: usb: rndis_host: Secure rndis_query check against int overflow Variables off and len typed as uint32 in rndis_query function are controlled by incoming RNDIS response message thus their value may be manipulated. Setting off to a unexpectetly large value will cause the sum with len and 8 to overflow and pass the implemented validation step. Consequently the response pointer will be referring to a location past the expected buffer boundaries allowing information leakage e.g. via RNDIS_OID_802_3_PERMANENT_ADDRESS OID. | ||||
| CVE-2023-54112 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: kcm: Fix memory leak in error path of kcm_sendmsg() syzbot reported a memory leak like below: BUG: memory leak unreferenced object 0xffff88810b088c00 (size 240): comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s) hex dump (first 32 bytes): 00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634 [<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline] [<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815 [<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline] [<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748 [<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494 [<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548 [<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577 [<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 [<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append newly allocated skbs to 'head'. If some bytes are copied, an error occurred, and jumped to out_error label, 'last_skb' is left unmodified. A later kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the 'head' frag_list and causing the leak. This patch fixes this issue by properly updating the last allocated skb in 'last_skb'. | ||||
| CVE-2023-54115 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: pcmcia: rsrc_nonstatic: Fix memory leak in nonstatic_release_resource_db() When nonstatic_release_resource_db() frees all resources associated with an PCMCIA socket, it forgets to free socket_data too, causing a memory leak observable with kmemleak: unreferenced object 0xc28d1000 (size 64): comm "systemd-udevd", pid 297, jiffies 4294898478 (age 194.484s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 f0 85 0e c3 00 00 00 00 ................ 00 00 00 00 0c 10 8d c2 00 00 00 00 00 00 00 00 ................ backtrace: [<ffda4245>] __kmem_cache_alloc_node+0x2d7/0x4a0 [<7e51f0c8>] kmalloc_trace+0x31/0xa4 [<d52b4ca0>] nonstatic_init+0x24/0x1a4 [pcmcia_rsrc] [<a2f13e08>] pcmcia_register_socket+0x200/0x35c [pcmcia_core] [<a728be1b>] yenta_probe+0x4d8/0xa70 [yenta_socket] [<c48fac39>] pci_device_probe+0x99/0x194 [<84b7c690>] really_probe+0x181/0x45c [<8060fe6e>] __driver_probe_device+0x75/0x1f4 [<b9b76f43>] driver_probe_device+0x28/0xac [<648b766f>] __driver_attach+0xeb/0x1e4 [<6e9659eb>] bus_for_each_dev+0x61/0xb4 [<25a669f3>] driver_attach+0x1e/0x28 [<d8671d6b>] bus_add_driver+0x102/0x20c [<df0d323c>] driver_register+0x5b/0x120 [<942cd8a4>] __pci_register_driver+0x44/0x4c [<e536027e>] __UNIQUE_ID___addressable_cleanup_module188+0x1c/0xfffff000 [iTCO_vendor_support] Fix this by freeing socket_data too. Tested on a Acer Travelmate 4002WLMi by manually binding/unbinding the yenta_cardbus driver (yenta_socket). | ||||
| CVE-2023-54117 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: s390/dcssblk: fix kernel crash with list_add corruption Commit fb08a1908cb1 ("dax: simplify the dax_device <-> gendisk association") introduced new logic for gendisk association, requiring drivers to explicitly call dax_add_host() and dax_remove_host(). For dcssblk driver, some dax_remove_host() calls were missing, e.g. in device remove path. The commit also broke error handling for out_dax case in device add path, resulting in an extra put_device() w/o the previous get_device() in that case. This lead to stale xarray entries after device add / remove cycles. In the case when a previously used struct gendisk pointer (xarray index) would be used again, because blk_alloc_disk() happened to return such a pointer, the xa_insert() in dax_add_host() would fail and go to out_dax, doing the extra put_device() in the error path. In combination with an already flawed error handling in dcssblk (device_register() cleanup), which needs to be addressed in a separate patch, this resulted in a missing device_del() / klist_del(), and eventually in the kernel crash with list_add corruption on a subsequent device_add() / klist_add(). Fix this by adding the missing dax_remove_host() calls, and also move the put_device() in the error path to restore the previous logic. | ||||
| CVE-2023-54119 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: inotify: Avoid reporting event with invalid wd When inotify_freeing_mark() races with inotify_handle_inode_event() it can happen that inotify_handle_inode_event() sees that i_mark->wd got already reset to -1 and reports this value to userspace which can confuse the inotify listener. Avoid the problem by validating that wd is sensible (and pretend the mark got removed before the event got generated otherwise). | ||||
| CVE-2023-54120 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix race condition in hidp_session_thread There is a potential race condition in hidp_session_thread that may lead to use-after-free. For instance, the timer is active while hidp_del_timer is called in hidp_session_thread(). After hidp_session_put, then 'session' will be freed, causing kernel panic when hidp_idle_timeout is running. The solution is to use del_timer_sync instead of del_timer. Here is the call trace: ? hidp_session_probe+0x780/0x780 call_timer_fn+0x2d/0x1e0 __run_timers.part.0+0x569/0x940 hidp_session_probe+0x780/0x780 call_timer_fn+0x1e0/0x1e0 ktime_get+0x5c/0xf0 lapic_next_deadline+0x2c/0x40 clockevents_program_event+0x205/0x320 run_timer_softirq+0xa9/0x1b0 __do_softirq+0x1b9/0x641 __irq_exit_rcu+0xdc/0x190 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0xa1/0xc0 | ||||
| CVE-2023-54121 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix incorrect splitting in btrfs_drop_extent_map_range In production we were seeing a variety of WARN_ON()'s in the extent_map code, specifically in btrfs_drop_extent_map_range() when we have to call add_extent_mapping() for our second split. Consider the following extent map layout PINNED [0 16K) [32K, 48K) and then we call btrfs_drop_extent_map_range for [0, 36K), with skip_pinned == true. The initial loop will have start = 0 end = 36K len = 36K we will find the [0, 16k) extent, but since we are pinned we will skip it, which has this code start = em_end; if (end != (u64)-1) len = start + len - em_end; em_end here is 16K, so now the values are start = 16K len = 16K + 36K - 16K = 36K len should instead be 20K. This is a problem when we find the next extent at [32K, 48K), we need to split this extent to leave [36K, 48k), however the code for the split looks like this split->start = start + len; split->len = em_end - (start + len); In this case we have em_end = 48K split->start = 16K + 36K // this should be 16K + 20K split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K and now we have an invalid extent_map in the tree that potentially overlaps other entries in the extent map. Even in the non-overlapping case we will have split->start set improperly, which will cause problems with any block related calculations. We don't actually need len in this loop, we can simply use end as our end point, and only adjust start up when we find a pinned extent we need to skip. Adjust the logic to do this, which keeps us from inserting an invalid extent map. We only skip_pinned in the relocation case, so this is relatively rare, except in the case where you are running relocation a lot, which can happen with auto relocation on. | ||||
| CVE-2023-54123 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix memleak for 'conf->bio_split' In the error path of raid10_run(), 'conf' need be freed, however, 'conf->bio_split' is missed and memory will be leaked. Since there are 3 places to free 'conf', factor out a helper to fix the problem. | ||||
| CVE-2023-54126 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: crypto: safexcel - Cleanup ring IRQ workqueues on load failure A failure loading the safexcel driver results in the following warning on boot, because the IRQ affinity has not been correctly cleaned up. Ensure we clean up the affinity and workqueues on a failure to load the driver. crypto-safexcel: probe of f2800000.crypto failed with error -2 ------------[ cut here ]------------ WARNING: CPU: 1 PID: 232 at kernel/irq/manage.c:1913 free_irq+0x300/0x340 Modules linked in: hwmon mdio_i2c crypto_safexcel(+) md5 sha256_generic libsha256 authenc libdes omap_rng rng_core nft_masq nft_nat nft_chain_nat nf_nat nft_ct nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 nf_tables libcrc32c nfnetlink fuse autofs4 CPU: 1 PID: 232 Comm: systemd-udevd Tainted: G W 6.1.6-00002-g9d4898824677 #3 Hardware name: MikroTik RB5009 (DT) pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : free_irq+0x300/0x340 lr : free_irq+0x2e0/0x340 sp : ffff800008fa3890 x29: ffff800008fa3890 x28: 0000000000000000 x27: 0000000000000000 x26: ffff8000008e6dc0 x25: ffff000009034cac x24: ffff000009034d50 x23: 0000000000000000 x22: 000000000000004a x21: ffff0000093e0d80 x20: ffff000009034c00 x19: ffff00000615fc00 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 000075f5c1584c5e x14: 0000000000000017 x13: 0000000000000000 x12: 0000000000000040 x11: ffff000000579b60 x10: ffff000000579b62 x9 : ffff800008bbe370 x8 : ffff000000579dd0 x7 : 0000000000000000 x6 : ffff000000579e18 x5 : ffff000000579da8 x4 : ffff800008ca0000 x3 : ffff800008ca0188 x2 : 0000000013033204 x1 : ffff000009034c00 x0 : ffff8000087eadf0 Call trace: free_irq+0x300/0x340 devm_irq_release+0x14/0x20 devres_release_all+0xa0/0x100 device_unbind_cleanup+0x14/0x60 really_probe+0x198/0x2d4 __driver_probe_device+0x74/0xdc driver_probe_device+0x3c/0x110 __driver_attach+0x8c/0x190 bus_for_each_dev+0x6c/0xc0 driver_attach+0x20/0x30 bus_add_driver+0x148/0x1fc driver_register+0x74/0x120 __platform_driver_register+0x24/0x30 safexcel_init+0x48/0x1000 [crypto_safexcel] do_one_initcall+0x4c/0x1b0 do_init_module+0x44/0x1cc load_module+0x1724/0x1be4 __do_sys_finit_module+0xbc/0x110 __arm64_sys_finit_module+0x1c/0x24 invoke_syscall+0x44/0x110 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x20/0x80 el0_svc+0x14/0x4c el0t_64_sync_handler+0xb0/0xb4 el0t_64_sync+0x148/0x14c ---[ end trace 0000000000000000 ]--- | ||||
| CVE-2023-54129 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: octeontx2-af: Add validation for lmac type Upon physical link change, firmware reports to the kernel about the change along with the details like speed, lmac_type_id, etc. Kernel derives lmac_type based on lmac_type_id received from firmware. In a few scenarios, firmware returns an invalid lmac_type_id, which is resulting in below kernel panic. This patch adds the missing validation of the lmac_type_id field. Internal error: Oops: 96000005 [#1] PREEMPT SMP [ 35.321595] Modules linked in: [ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted 5.4.210-g2e3169d8e1bc-dirty #17 [ 35.337014] Hardware name: Marvell CN103XX board (DT) [ 35.344297] Workqueue: events work_for_cpu_fn [ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO) [ 35.360267] pc : strncpy+0x10/0x30 [ 35.366595] lr : cgx_link_change_handler+0x90/0x180 | ||||
| CVE-2023-54130 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed a build warning by turning a comment into a WARN_ON(), but it turns out that syzbot then complains because it can trigger said warning with a corrupted hfs image. The warning actually does warn about a bad situation, but we are much better off just handling it as the error it is. So rather than warn about us doing bad things, stop doing the bad things and return -EIO. While at it, also fix a memory leak that was introduced by an earlier fix for a similar syzbot warning situation, and add a check for one case that historically wasn't handled at all (ie neither comment nor subsequent WARN_ON). | ||||
| CVE-2023-54131 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: Fix memory leak when handling surveys When removing a rt2x00 device, its associated channel surveys are not freed, causing a memory leak observable with kmemleak: unreferenced object 0xffff9620f0881a00 (size 512): comm "systemd-udevd", pid 2290, jiffies 4294906974 (age 33.768s) hex dump (first 32 bytes): 70 44 12 00 00 00 00 00 92 8a 00 00 00 00 00 00 pD.............. 00 00 00 00 00 00 00 00 ab 87 01 00 00 00 00 00 ................ backtrace: [<ffffffffb0ed858b>] __kmalloc+0x4b/0x130 [<ffffffffc1b0f29b>] rt2800_probe_hw+0xc2b/0x1380 [rt2800lib] [<ffffffffc1a9496e>] rt2800usb_probe_hw+0xe/0x60 [rt2800usb] [<ffffffffc1ae491a>] rt2x00lib_probe_dev+0x21a/0x7d0 [rt2x00lib] [<ffffffffc1b3b83e>] rt2x00usb_probe+0x1be/0x980 [rt2x00usb] [<ffffffffc05981e2>] usb_probe_interface+0xe2/0x310 [usbcore] [<ffffffffb13be2d5>] really_probe+0x1a5/0x410 [<ffffffffb13be5c8>] __driver_probe_device+0x78/0x180 [<ffffffffb13be6fe>] driver_probe_device+0x1e/0x90 [<ffffffffb13be972>] __driver_attach+0xd2/0x1c0 [<ffffffffb13bbc57>] bus_for_each_dev+0x77/0xd0 [<ffffffffb13bd2a2>] bus_add_driver+0x112/0x210 [<ffffffffb13bfc6c>] driver_register+0x5c/0x120 [<ffffffffc0596ae8>] usb_register_driver+0x88/0x150 [usbcore] [<ffffffffb0c011c4>] do_one_initcall+0x44/0x220 [<ffffffffb0d6134c>] do_init_module+0x4c/0x220 Fix this by freeing the channel surveys on device removal. Tested with a RT3070 based USB wireless adapter. | ||||
| CVE-2023-54132 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: erofs: stop parsing non-compact HEAD index if clusterofs is invalid Syzbot generated a crafted image [1] with a non-compact HEAD index of clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1, which causes the following unexpected behavior as below: BUG: unable to handle page fault for address: fffff52101a3fff9 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 23ffed067 P4D 23ffed067 PUD 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023 Workqueue: erofs_worker z_erofs_decompressqueue_work RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40 ... Call Trace: <TASK> z_erofs_decompressqueue_work+0x99/0xe0 process_one_work+0x8f6/0x1170 worker_thread+0xa63/0x1210 kthread+0x270/0x300 ret_from_fork+0x1f/0x30 Note that normal images or images using compact indexes are not impacted. Let's fix this now. [1] https://lore.kernel.org/r/[email protected] | ||||