| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: fprobe events: Fix possible UAF on modules
Commit ac91052f0ae5 ("tracing: tprobe-events: Fix leakage of module
refcount") moved try_module_get() from __find_tracepoint_module_cb()
to find_tracepoint() caller, but that introduced a possible UAF
because the module can be unloaded before try_module_get(). In this
case, the module object should be freed too. Thus, try_module_get()
does not only fail but may access to the freed object.
To avoid that, try_module_get() in __find_tracepoint_module_cb()
again. |
| Inappropriate implementation in Fullscreen in Google Chrome prior to 128.0.6613.84 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Medium) |
| Inappropriate implementation in DevTools in Google Chrome prior to 126.0.6478.182 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: High) |
| Inappropriate implementation in DevTools in Google Chrome prior to 136.0.7103.59 allowed a remote attacker to potentially perform a sandbox escape via a crafted HTML page. (Chromium security severity: Medium) |
| Out of bounds read in V8 in Google Chrome prior to 133.0.6943.141 allowed a remote attacker to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium) |
| Inappropriate implementation in Compositing in Google Chrome prior to 140.0.7339.80 allowed a remote attacker to perform UI spoofing via a crafted HTML page. (Chromium security severity: Low) |
| A use-after-free flaw was found in the Linux Kernel. When a disk is removed, bdi_unregister is called to stop further write-back and waits for associated delayed work to complete. However, wb_inode_writeback_end() may schedule bandwidth estimation work after this has completed, which can result in the timer attempting to access the recently freed bdi_writeback. |
| A NULL pointer dereference flaw was found in vmxnet3_rq_cleanup in drivers/net/vmxnet3/vmxnet3_drv.c in the networking sub-component in vmxnet3 in the Linux Kernel. This issue may allow a local attacker with normal user privilege to cause a denial of service due to a missing sanity check during cleanup. |
| In the Linux kernel, the following vulnerability has been resolved:
dma-buf/dma-resv: check if the new fence is really later
Previously when we added a fence to a dma_resv object we always
assumed the the newer than all the existing fences.
With Jason's work to add an UAPI to explicit export/import that's not
necessary the case any more. So without this check we would allow
userspace to force the kernel into an use after free error.
Since the change is very small and defensive it's probably a good
idea to backport this to stable kernels as well just in case others
are using the dma_resv object in the same way. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: Fix UAF in ieee80211_scan_rx()
ieee80211_scan_rx() tries to access scan_req->flags after a
null check, but a UAF is observed when the scan is completed
and __ieee80211_scan_completed() executes, which then calls
cfg80211_scan_done() leading to the freeing of scan_req.
Since scan_req is rcu_dereference()'d, prevent the racing in
__ieee80211_scan_completed() by ensuring that from mac80211's
POV it is no longer accessed from an RCU read critical section
before we call cfg80211_scan_done(). |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: virtuser: fix potential out-of-bound write
If the caller wrote more characters, count is truncated to the max
available space in "simple_write_to_buffer". Check that the input
size does not exceed the buffer size. Write a zero termination
afterwards. |
| In the Linux kernel, the following vulnerability has been resolved:
spi-rockchip: Fix register out of bounds access
Do not write native chip select stuff for GPIO chip selects.
GPIOs can be numbered much higher than native CS.
Also, it makes no sense. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Increase block_sequence array size
[Why]
It's possible to generate more than 50 steps in hwss_build_fast_sequence,
for example with a 6-pipe asic where all pipes are in one MPC chain. This
overflows the block_sequence buffer and corrupts block_sequence_steps,
causing a crash.
[How]
Expand block_sequence to 100 items. A naive upper bound on the possible
number of steps for a 6-pipe asic, ignoring the potential for steps to be
mutually exclusive, is 91 with current code, therefore 100 is sufficient. |
| In the Linux kernel, the following vulnerability has been resolved:
alloc_tag: allocate percpu counters for module tags dynamically
When a module gets unloaded it checks whether any of its tags are still in
use and if so, we keep the memory containing module's allocation tags
alive until all tags are unused. However percpu counters referenced by
the tags are freed by free_module(). This will lead to UAF if the memory
allocated by a module is accessed after module was unloaded.
To fix this we allocate percpu counters for module allocation tags
dynamically and we keep it alive for tags which are still in use after
module unloading. This also removes the requirement of a larger
PERCPU_MODULE_RESERVE when memory allocation profiling is enabled because
percpu memory for counters does not need to be reserved anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/tegra241-cmdqv: Fix warnings due to dmam_free_coherent()
Two WARNINGs are observed when SMMU driver rolls back upon failure:
arm-smmu-v3.9.auto: Failed to register iommu
arm-smmu-v3.9.auto: probe with driver arm-smmu-v3 failed with error -22
------------[ cut here ]------------
WARNING: CPU: 5 PID: 1 at kernel/dma/mapping.c:74 dmam_free_coherent+0xc0/0xd8
Call trace:
dmam_free_coherent+0xc0/0xd8 (P)
tegra241_vintf_free_lvcmdq+0x74/0x188
tegra241_cmdqv_remove_vintf+0x60/0x148
tegra241_cmdqv_remove+0x48/0xc8
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
------------[ cut here ]------------
128 pages are still in use!
WARNING: CPU: 16 PID: 1 at mm/page_alloc.c:6902 free_contig_range+0x18c/0x1c8
Call trace:
free_contig_range+0x18c/0x1c8 (P)
cma_release+0x154/0x2f0
dma_free_contiguous+0x38/0xa0
dma_direct_free+0x10c/0x248
dma_free_attrs+0x100/0x290
dmam_free_coherent+0x78/0xd8
tegra241_vintf_free_lvcmdq+0x74/0x160
tegra241_cmdqv_remove+0x98/0x198
arm_smmu_impl_remove+0x28/0x60
devm_action_release+0x1c/0x40
This is because the LVCMDQ queue memory are managed by devres, while that
dmam_free_coherent() is called in the context of devm_action_release().
Jason pointed out that "arm_smmu_impl_probe() has mis-ordered the devres
callbacks if ops->device_remove() is going to be manually freeing things
that probe allocated":
https://lore.kernel.org/linux-iommu/[email protected]/
In fact, tegra241_cmdqv_init_structures() only allocates memory resources
which means any failure that it generates would be similar to -ENOMEM, so
there is no point in having that "falling back to standard SMMU" routine,
as the standard SMMU would likely fail to allocate memory too.
Remove the unwind part in tegra241_cmdqv_init_structures(), and return a
proper error code to ask SMMU driver to call tegra241_cmdqv_remove() via
impl_ops->device_remove(). Then, drop tegra241_vintf_free_lvcmdq() since
devres will take care of that. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix reference leak in pci_register_host_bridge()
If device_register() fails, call put_device() to give up the reference to
avoid a memory leak, per the comment at device_register().
Found by code review.
[bhelgaas: squash Dan Carpenter's double free fix from
https://lore.kernel.org/r/[email protected]] |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix alloc->vma_vm_mm null-ptr dereference
Syzbot reported a couple issues introduced by commit 44e602b4e52f
("binder_alloc: add missing mmap_lock calls when using the VMA"), in
which we attempt to acquire the mmap_lock when alloc->vma_vm_mm has not
been initialized yet.
This can happen if a binder_proc receives a transaction without having
previously called mmap() to setup the binder_proc->alloc space in [1].
Also, a similar issue occurs via binder_alloc_print_pages() when we try
to dump the debugfs binder stats file in [2].
Sample of syzbot's crash report:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f]
CPU: 0 PID: 3755 Comm: syz-executor229 Not tainted 6.0.0-rc1-next-20220819-syzkaller #0
syz-executor229[3755] cmdline: ./syz-executor2294415195
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/22/2022
RIP: 0010:__lock_acquire+0xd83/0x56d0 kernel/locking/lockdep.c:4923
[...]
Call Trace:
<TASK>
lock_acquire kernel/locking/lockdep.c:5666 [inline]
lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631
down_read+0x98/0x450 kernel/locking/rwsem.c:1499
mmap_read_lock include/linux/mmap_lock.h:117 [inline]
binder_alloc_new_buf_locked drivers/android/binder_alloc.c:405 [inline]
binder_alloc_new_buf+0xa5/0x19e0 drivers/android/binder_alloc.c:593
binder_transaction+0x242e/0x9a80 drivers/android/binder.c:3199
binder_thread_write+0x664/0x3220 drivers/android/binder.c:3986
binder_ioctl_write_read drivers/android/binder.c:5036 [inline]
binder_ioctl+0x3470/0x6d00 drivers/android/binder.c:5323
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
==================================================================
Fix these issues by setting up alloc->vma_vm_mm pointer during open()
and caching directly from current->mm. This guarantees we have a valid
reference to take the mmap_lock during scenarios described above.
[1] https://syzkaller.appspot.com/bug?extid=f7dc54e5be28950ac459
[2] https://syzkaller.appspot.com/bug?extid=a75ebe0452711c9e56d9 |
| In the Linux kernel, the following vulnerability has been resolved:
net/niu: Niu requires MSIX ENTRY_DATA fields touch before entry reads
Fix niu_try_msix() to not cause a fatal trap on sparc systems.
Set PCI_DEV_FLAGS_MSIX_TOUCH_ENTRY_DATA_FIRST on the struct pci_dev to
work around a bug in the hardware or firmware.
For each vector entry in the msix table, niu chips will cause a fatal
trap if any registers in that entry are read before that entries'
ENTRY_DATA register is written to. Testing indicates writes to other
registers are not sufficient to prevent the fatal trap, however the value
does not appear to matter. This only needs to happen once after power up,
so simply rebooting into a kernel lacking this fix will NOT cause the
trap.
NON-RESUMABLE ERROR: Reporting on cpu 64
NON-RESUMABLE ERROR: TPC [0x00000000005f6900] <msix_prepare_msi_desc+0x90/0xa0>
NON-RESUMABLE ERROR: RAW [4010000000000016:00000e37f93e32ff:0000000202000080:ffffffffffffffff
NON-RESUMABLE ERROR: 0000000800000000:0000000000000000:0000000000000000:0000000000000000]
NON-RESUMABLE ERROR: handle [0x4010000000000016] stick [0x00000e37f93e32ff]
NON-RESUMABLE ERROR: type [precise nonresumable]
NON-RESUMABLE ERROR: attrs [0x02000080] < ASI sp-faulted priv >
NON-RESUMABLE ERROR: raddr [0xffffffffffffffff]
NON-RESUMABLE ERROR: insn effective address [0x000000c50020000c]
NON-RESUMABLE ERROR: size [0x8]
NON-RESUMABLE ERROR: asi [0x00]
CPU: 64 UID: 0 PID: 745 Comm: kworker/64:1 Not tainted 6.11.5 #63
Workqueue: events work_for_cpu_fn
TSTATE: 0000000011001602 TPC: 00000000005f6900 TNPC: 00000000005f6904 Y: 00000000 Not tainted
TPC: <msix_prepare_msi_desc+0x90/0xa0>
g0: 00000000000002e9 g1: 000000000000000c g2: 000000c50020000c g3: 0000000000000100
g4: ffff8000470307c0 g5: ffff800fec5be000 g6: ffff800047a08000 g7: 0000000000000000
o0: ffff800014feb000 o1: ffff800047a0b620 o2: 0000000000000011 o3: ffff800047a0b620
o4: 0000000000000080 o5: 0000000000000011 sp: ffff800047a0ad51 ret_pc: 00000000005f7128
RPC: <__pci_enable_msix_range+0x3cc/0x460>
l0: 000000000000000d l1: 000000000000c01f l2: ffff800014feb0a8 l3: 0000000000000020
l4: 000000000000c000 l5: 0000000000000001 l6: 0000000020000000 l7: ffff800047a0b734
i0: ffff800014feb000 i1: ffff800047a0b730 i2: 0000000000000001 i3: 000000000000000d
i4: 0000000000000000 i5: 0000000000000000 i6: ffff800047a0ae81 i7: 00000000101888b0
I7: <niu_try_msix.constprop.0+0xc0/0x130 [niu]>
Call Trace:
[<00000000101888b0>] niu_try_msix.constprop.0+0xc0/0x130 [niu]
[<000000001018f840>] niu_get_invariants+0x183c/0x207c [niu]
[<00000000101902fc>] niu_pci_init_one+0x27c/0x2fc [niu]
[<00000000005ef3e4>] local_pci_probe+0x28/0x74
[<0000000000469240>] work_for_cpu_fn+0x8/0x1c
[<000000000046b008>] process_scheduled_works+0x144/0x210
[<000000000046b518>] worker_thread+0x13c/0x1c0
[<00000000004710e0>] kthread+0xb8/0xc8
[<00000000004060c8>] ret_from_fork+0x1c/0x2c
[<0000000000000000>] 0x0
Kernel panic - not syncing: Non-resumable error. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: mcq: Add NULL check in ufshcd_mcq_abort()
A race can occur between the MCQ completion path and the abort handler:
once a request completes, __blk_mq_free_request() sets rq->mq_hctx to
NULL, meaning the subsequent ufshcd_mcq_req_to_hwq() call in
ufshcd_mcq_abort() can return a NULL pointer. If this NULL pointer is
dereferenced, the kernel will crash.
Add a NULL check for the returned hwq pointer. If hwq is NULL, log an
error and return FAILED, preventing a potential NULL-pointer
dereference. As suggested by Bart, the ufshcd_cmd_inflight() check is
removed.
This is similar to the fix in commit 74736103fb41 ("scsi: ufs: core: Fix
ufshcd_abort_one racing issue").
This is found by our static analysis tool KNighter. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: bcm: rpi: Prevent out-of-bounds access
The while loop in raspberrypi_discover_clocks() relies on the assumption
that the id of the last clock element is zero. Because this data comes
from the Videocore firmware and it doesn't guarantuee such a behavior
this could lead to out-of-bounds access. So fix this by providing
a sentinel element. |