| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Reset t_task_cdb pointer in error case
If allocation of cmd->t_task_cdb fails, it remains NULL but is later
dereferenced in the 'err' path.
In case of error, reset NULL t_task_cdb value to point at the default
fixed-size buffer.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix nfsd_file reference leak in nfsd4_add_rdaccess_to_wrdeleg()
nfsd4_add_rdaccess_to_wrdeleg() unconditionally overwrites
fp->fi_fds[O_RDONLY] with a newly acquired nfsd_file. However, if
the client already has a SHARE_ACCESS_READ open from a previous OPEN
operation, this action overwrites the existing pointer without
releasing its reference, orphaning the previous reference.
Additionally, the function originally stored the same nfsd_file
pointer in both fp->fi_fds[O_RDONLY] and fp->fi_rdeleg_file with
only a single reference. When put_deleg_file() runs, it clears
fi_rdeleg_file and calls nfs4_file_put_access() to release the file.
However, nfs4_file_put_access() only releases fi_fds[O_RDONLY] when
the fi_access[O_RDONLY] counter drops to zero. If another READ open
exists on the file, the counter remains elevated and the nfsd_file
reference from the delegation is never released. This potentially
causes open conflicts on that file.
Then, on server shutdown, these leaks cause __nfsd_file_cache_purge()
to encounter files with an elevated reference count that cannot be
cleaned up, ultimately triggering a BUG() in kmem_cache_destroy()
because there are still nfsd_file objects allocated in that cache. |
| In the Linux kernel, the following vulnerability has been resolved:
ip6_gre: make ip6gre_header() robust
Over the years, syzbot found many ways to crash the kernel
in ip6gre_header() [1].
This involves team or bonding drivers ability to dynamically
change their dev->needed_headroom and/or dev->hard_header_len
In this particular crash mld_newpack() allocated an skb
with a too small reserve/headroom, and by the time mld_sendpack()
was called, syzbot managed to attach an ip6gre device.
[1]
skbuff: skb_under_panic: text:ffffffff8a1d69a8 len:136 put:40 head:ffff888059bc7000 data:ffff888059bc6fe8 tail:0x70 end:0x6c0 dev:team0
------------[ cut here ]------------
kernel BUG at net/core/skbuff.c:213 !
<TASK>
skb_under_panic net/core/skbuff.c:223 [inline]
skb_push+0xc3/0xe0 net/core/skbuff.c:2641
ip6gre_header+0xc8/0x790 net/ipv6/ip6_gre.c:1371
dev_hard_header include/linux/netdevice.h:3436 [inline]
neigh_connected_output+0x286/0x460 net/core/neighbour.c:1618
neigh_output include/net/neighbour.h:556 [inline]
ip6_finish_output2+0xfb3/0x1480 net/ipv6/ip6_output.c:136
__ip6_finish_output net/ipv6/ip6_output.c:-1 [inline]
ip6_finish_output+0x234/0x7d0 net/ipv6/ip6_output.c:220
NF_HOOK_COND include/linux/netfilter.h:307 [inline]
ip6_output+0x340/0x550 net/ipv6/ip6_output.c:247
NF_HOOK+0x9e/0x380 include/linux/netfilter.h:318
mld_sendpack+0x8d4/0xe60 net/ipv6/mcast.c:1855
mld_send_cr net/ipv6/mcast.c:2154 [inline]
mld_ifc_work+0x83e/0xd60 net/ipv6/mcast.c:2693 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: 8192cu: fix tid out of range in rtl92cu_tx_fill_desc()
TID getting from ieee80211_get_tid() might be out of range of array size
of sta_entry->tids[], so check TID is less than MAX_TID_COUNT. Othwerwise,
UBSAN warn:
UBSAN: array-index-out-of-bounds in drivers/net/wireless/realtek/rtlwifi/rtl8192cu/trx.c:514:30
index 10 is out of range for type 'rtl_tid_data [9]' |
| In the Linux kernel, the following vulnerability has been resolved:
hwmon: (ibmpex) fix use-after-free in high/low store
The ibmpex_high_low_store() function retrieves driver data using
dev_get_drvdata() and uses it without validation. This creates a race
condition where the sysfs callback can be invoked after the data
structure is freed, leading to use-after-free.
Fix by adding a NULL check after dev_get_drvdata(), and reordering
operations in the deletion path to prevent TOCTOU. |
| In the Linux kernel, the following vulnerability has been resolved:
iomap: adjust read range correctly for non-block-aligned positions
iomap_adjust_read_range() assumes that the position and length passed in
are block-aligned. This is not always the case however, as shown in the
syzbot generated case for erofs. This causes too many bytes to be
skipped for uptodate blocks, which results in returning the incorrect
position and length to read in. If all the blocks are uptodate, this
underflows length and returns a position beyond the folio.
Fix the calculation to also take into account the block offset when
calculating how many bytes can be skipped for uptodate blocks. |
| In the Linux kernel, the following vulnerability has been resolved:
ethtool: Avoid overflowing userspace buffer on stats query
The ethtool -S command operates across three ioctl calls:
ETHTOOL_GSSET_INFO for the size, ETHTOOL_GSTRINGS for the names, and
ETHTOOL_GSTATS for the values.
If the number of stats changes between these calls (e.g., due to device
reconfiguration), userspace's buffer allocation will be incorrect,
potentially leading to buffer overflow.
Drivers are generally expected to maintain stable stat counts, but some
drivers (e.g., mlx5, bnx2x, bna, ksz884x) use dynamic counters, making
this scenario possible.
Some drivers try to handle this internally:
- bnad_get_ethtool_stats() returns early in case stats.n_stats is not
equal to the driver's stats count.
- micrel/ksz884x also makes sure not to write anything beyond
stats.n_stats and overflow the buffer.
However, both use stats.n_stats which is already assigned with the value
returned from get_sset_count(), hence won't solve the issue described
here.
Change ethtool_get_strings(), ethtool_get_stats(),
ethtool_get_phy_stats() to not return anything in case of a mismatch
between userspace's size and get_sset_size(), to prevent buffer
overflow.
The returned n_stats value will be equal to zero, to reflect that
nothing has been returned.
This could result in one of two cases when using upstream ethtool,
depending on when the size change is detected:
1. When detected in ethtool_get_strings():
# ethtool -S eth2
no stats available
2. When detected in get stats, all stats will be reported as zero.
Both cases are presumably transient, and a subsequent ethtool call
should succeed.
Other than the overflow avoidance, these two cases are very evident (no
output/cleared stats), which is arguably better than presenting
incorrect/shifted stats.
I also considered returning an error instead of a "silent" response, but
that seems more destructive towards userspace apps.
Notes:
- This patch does not claim to fix the inherent race, it only makes sure
that we do not overflow the userspace buffer, and makes for a more
predictable behavior.
- RTNL lock is held during each ioctl, the race window exists between
the separate ioctl calls when the lock is released.
- Userspace ethtool always fills stats.n_stats, but it is likely that
these stats ioctls are implemented in other userspace applications
which might not fill it. The added code checks that it's not zero,
to prevent any regressions. |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Add sanity check for stop streaming
Add sanity check in iris_vb2_stop_streaming. If inst->state is
already IRIS_INST_ERROR, we should skip the stream_off operation
because it would still send packets to the firmware.
In iris_kill_session, inst->state is set to IRIS_INST_ERROR and
session_close is executed, which will kfree(inst_hfi_gen2->packet).
If stop_streaming is called afterward, it will cause a crash.
[bod: remove qcom from patch title] |
| In the Linux kernel, the following vulnerability has been resolved:
caif: fix integer underflow in cffrml_receive()
The cffrml_receive() function extracts a length field from the packet
header and, when FCS is disabled, subtracts 2 from this length without
validating that len >= 2.
If an attacker sends a malicious packet with a length field of 0 or 1
to an interface with FCS disabled, the subtraction causes an integer
underflow.
This can lead to memory exhaustion and kernel instability, potential
information disclosure if padding contains uninitialized kernel memory.
Fix this by validating that len >= 2 before performing the subtraction. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: dtv5100: fix out-of-bounds in dtv5100_i2c_msg()
rlen value is a user-controlled value, but dtv5100_i2c_msg() does not
check the size of the rlen value. Therefore, if it is set to a value
larger than sizeof(st->data), an out-of-bounds vuln occurs for st->data.
Therefore, we need to add proper range checking to prevent this vuln. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/cm: Fix leaking the multicast GID table reference
If the CM ID is destroyed while the CM event for multicast creating is
still queued the cancel_work_sync() will prevent the work from running
which also prevents destroying the ah_attr. This leaks a refcount and
triggers a WARN:
GID entry ref leak for dev syz1 index 2 ref=573
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 release_gid_table drivers/infiniband/core/cache.c:806 [inline]
WARNING: CPU: 1 PID: 655 at drivers/infiniband/core/cache.c:809 gid_table_release_one+0x284/0x3cc drivers/infiniband/core/cache.c:886
Destroy the ah_attr after canceling the work, it is safe to call this
twice. |
| In the Linux kernel, the following vulnerability has been resolved:
Input: lkkbd - disable pending work before freeing device
lkkbd_interrupt() schedules lk->tq via schedule_work(), and the work
handler lkkbd_reinit() dereferences the lkkbd structure and its
serio/input_dev fields.
lkkbd_disconnect() and error paths in lkkbd_connect() free the lkkbd
structure without preventing the reinit work from being queued again
until serio_close() returns. This can allow the work handler to run
after the structure has been freed, leading to a potential use-after-free.
Use disable_work_sync() instead of cancel_work_sync() to ensure the
reinit work cannot be re-queued, and call it both in lkkbd_disconnect()
and in lkkbd_connect() error paths after serio_open(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ttm: Avoid NULL pointer deref for evicted BOs
It is possible for a BO to exist that is not currently associated with a
resource, e.g. because it has been evicted.
When devcoredump tries to read the contents of all BOs for dumping, we need
to expect this as well -- in this case, ENODATA is recorded instead of the
buffer contents. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s/slb: Fix SLB multihit issue during SLB preload
On systems using the hash MMU, there is a software SLB preload cache that
mirrors the entries loaded into the hardware SLB buffer. This preload
cache is subject to periodic eviction — typically after every 256 context
switches — to remove old entry.
To optimize performance, the kernel skips switch_mmu_context() in
switch_mm_irqs_off() when the prev and next mm_struct are the same.
However, on hash MMU systems, this can lead to inconsistencies between
the hardware SLB and the software preload cache.
If an SLB entry for a process is evicted from the software cache on one
CPU, and the same process later runs on another CPU without executing
switch_mmu_context(), the hardware SLB may retain stale entries. If the
kernel then attempts to reload that entry, it can trigger an SLB
multi-hit error.
The following timeline shows how stale SLB entries are created and can
cause a multi-hit error when a process moves between CPUs without a
MMU context switch.
CPU 0 CPU 1
----- -----
Process P
exec swapper/1
load_elf_binary
begin_new_exc
activate_mm
switch_mm_irqs_off
switch_mmu_context
switch_slb
/*
* This invalidates all
* the entries in the HW
* and setup the new HW
* SLB entries as per the
* preload cache.
*/
context_switch
sched_migrate_task migrates process P to cpu-1
Process swapper/0 context switch (to process P)
(uses mm_struct of Process P) switch_mm_irqs_off()
switch_slb
load_slb++
/*
* load_slb becomes 0 here
* and we evict an entry from
* the preload cache with
* preload_age(). We still
* keep HW SLB and preload
* cache in sync, that is
* because all HW SLB entries
* anyways gets evicted in
* switch_slb during SLBIA.
* We then only add those
* entries back in HW SLB,
* which are currently
* present in preload_cache
* (after eviction).
*/
load_elf_binary continues...
setup_new_exec()
slb_setup_new_exec()
sched_switch event
sched_migrate_task migrates
process P to cpu-0
context_switch from swapper/0 to Process P
switch_mm_irqs_off()
/*
* Since both prev and next mm struct are same we don't call
* switch_mmu_context(). This will cause the HW SLB and SW preload
* cache to go out of sync in preload_new_slb_context. Because there
* was an SLB entry which was evicted from both HW and preload cache
* on cpu-1. Now later in preload_new_slb_context(), when we will try
* to add the same preload entry again, we will add this to the SW
* preload cache and then will add it to the HW SLB. Since on cpu-0
* this entry was never invalidated, hence adding this entry to the HW
* SLB will cause a SLB multi-hit error.
*/
load_elf_binary cont
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: fix use-after-free on probe deferral
The driver is dropping the references taken to the larb devices during
probe after successful lookup as well as on errors. This can
potentially lead to a use-after-free in case a larb device has not yet
been bound to its driver so that the iommu driver probe defers.
Fix this by keeping the references as expected while the iommu driver is
bound. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix potential UAF in xe_oa_add_config_ioctl()
In xe_oa_add_config_ioctl(), we accessed oa_config->id after dropping
metrics_lock. Since this lock protects the lifetime of oa_config, an
attacker could guess the id and call xe_oa_remove_config_ioctl() with
perfect timing, freeing oa_config before we dereference it, leading to
a potential use-after-free.
Fix this by caching the id in a local variable while holding the lock.
v2: (Matt A)
- Dropped mutex_unlock(&oa->metrics_lock) ordering change from
xe_oa_remove_config_ioctl()
(cherry picked from commit 28aeaed130e8e587fd1b73b6d66ca41ccc5a1a31) |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix invalid array index in rose_kill_by_device()
rose_kill_by_device() collects sockets into a local array[] and then
iterates over them to disconnect sockets bound to a device being brought
down.
The loop mistakenly indexes array[cnt] instead of array[i]. For cnt <
ARRAY_SIZE(array), this reads an uninitialized entry; for cnt ==
ARRAY_SIZE(array), it is an out-of-bounds read. Either case can lead to
an invalid socket pointer dereference and also leaks references taken
via sock_hold().
Fix the index to use i. |
| In the Linux kernel, the following vulnerability has been resolved:
tpm2-sessions: Fix out of range indexing in name_size
'name_size' does not have any range checks, and it just directly indexes
with TPM_ALG_ID, which could lead into memory corruption at worst.
Address the issue by only processing known values and returning -EINVAL for
unrecognized values.
Make also 'tpm_buf_append_name' and 'tpm_buf_fill_hmac_session' fallible so
that errors are detected before causing any spurious TPM traffic.
End also the authorization session on failure in both of the functions, as
the session state would be then by definition corrupted. |
| In the Linux kernel, the following vulnerability has been resolved:
team: fix check for port enabled in team_queue_override_port_prio_changed()
There has been a syzkaller bug reported recently with the following
trace:
list_del corruption, ffff888058bea080->prev is LIST_POISON2 (dead000000000122)
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:59!
Oops: invalid opcode: 0000 [#1] SMP KASAN NOPTI
CPU: 3 UID: 0 PID: 21246 Comm: syz.0.2928 Not tainted syzkaller #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x13e/0x200 lib/list_debug.c:59
Code: 48 c7 c7 e0 71 f0 8b e8 30 08 ef fc 90 0f 0b 48 89 ef e8 a5 02 55 fd 48 89 ea 48 89 de 48 c7 c7 40 72 f0 8b e8 13 08 ef fc 90 <0f> 0b 48 89 ef e8 88 02 55 fd 48 89 ea 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc9000d49f370 EFLAGS: 00010286
RAX: 000000000000004e RBX: ffff888058bea080 RCX: ffffc9002817d000
RDX: 0000000000000000 RSI: ffffffff819becc6 RDI: 0000000000000005
RBP: dead000000000122 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000080000000 R11: 0000000000000001 R12: ffff888039e9c230
R13: ffff888058bea088 R14: ffff888058bea080 R15: ffff888055461480
FS: 00007fbbcfe6f6c0(0000) GS:ffff8880d6d0a000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000110c3afcb0 CR3: 00000000382c7000 CR4: 0000000000352ef0
Call Trace:
<TASK>
__list_del_entry_valid include/linux/list.h:132 [inline]
__list_del_entry include/linux/list.h:223 [inline]
list_del_rcu include/linux/rculist.h:178 [inline]
__team_queue_override_port_del drivers/net/team/team_core.c:826 [inline]
__team_queue_override_port_del drivers/net/team/team_core.c:821 [inline]
team_queue_override_port_prio_changed drivers/net/team/team_core.c:883 [inline]
team_priority_option_set+0x171/0x2f0 drivers/net/team/team_core.c:1534
team_option_set drivers/net/team/team_core.c:376 [inline]
team_nl_options_set_doit+0x8ae/0xe60 drivers/net/team/team_core.c:2653
genl_family_rcv_msg_doit+0x209/0x2f0 net/netlink/genetlink.c:1115
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0x55c/0x800 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x158/0x420 net/netlink/af_netlink.c:2552
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1320 [inline]
netlink_unicast+0x5aa/0x870 net/netlink/af_netlink.c:1346
netlink_sendmsg+0x8c8/0xdd0 net/netlink/af_netlink.c:1896
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg net/socket.c:742 [inline]
____sys_sendmsg+0xa98/0xc70 net/socket.c:2630
___sys_sendmsg+0x134/0x1d0 net/socket.c:2684
__sys_sendmsg+0x16d/0x220 net/socket.c:2716
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0xfa0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The problem is in this flow:
1) Port is enabled, queue_id != 0, in qom_list
2) Port gets disabled
-> team_port_disable()
-> team_queue_override_port_del()
-> del (removed from list)
3) Port is disabled, queue_id != 0, not in any list
4) Priority changes
-> team_queue_override_port_prio_changed()
-> checks: port disabled && queue_id != 0
-> calls del - hits the BUG as it is removed already
To fix this, change the check in team_queue_override_port_prio_changed()
so it returns early if port is not enabled. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: xattr: fix null pointer deref in ext4_raw_inode()
If ext4_get_inode_loc() fails (e.g. if it returns -EFSCORRUPTED),
iloc.bh will remain set to NULL. Since ext4_xattr_inode_dec_ref_all()
lacks error checking, this will lead to a null pointer dereference
in ext4_raw_inode(), called right after ext4_get_inode_loc().
Found by Linux Verification Center (linuxtesting.org) with SVACE. |