| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| There is an infoleak vulnerability in the Linux kernel's net/bluetooth/l2cap_core.c's l2cap_parse_conf_req function which can be used to leak kernel pointers remotely.
We recommend upgrading past commit https://github.com/torvalds/linux/commit/b1a2cd50c0357f243b7435a732b4e62ba3157a2e https://www.google.com/url
|
| There are use-after-free vulnerabilities in the Linux kernel's net/bluetooth/l2cap_core.c's l2cap_connect and l2cap_le_connect_req functions which may allow code execution and leaking kernel memory (respectively) remotely via Bluetooth. A remote attacker could execute code leaking kernel memory via Bluetooth if within proximity of the victim.
We recommend upgrading past commit https://www.google.com/url https://github.com/torvalds/linux/commit/711f8c3fb3db61897080468586b970c87c61d9e4 https://www.google.com/url
|
| url.c in GNU Wget through 1.24.5 mishandles semicolons in the userinfo subcomponent of a URI, and thus there may be insecure behavior in which data that was supposed to be in the userinfo subcomponent is misinterpreted to be part of the host subcomponent. |
| Use-after-free vulnerability in the mif_process_cmpt function in libjasper/mif/mif_cod.c in the JasPer JPEG-2000 library before 1.900.2 allows remote attackers to cause a denial of service (crash) via a crafted JPEG 2000 image file. |
| The bio_map_user_iov and bio_unmap_user functions in block/bio.c in the Linux kernel before 4.13.8 do unbalanced refcounting when a SCSI I/O vector has small consecutive buffers belonging to the same page. The bio_add_pc_page function merges them into one, but the page reference is never dropped. This causes a memory leak and possible system lockup (exploitable against the host OS by a guest OS user, if a SCSI disk is passed through to a virtual machine) due to an out-of-memory condition. |
| The assoc_array_insert_into_terminal_node function in lib/assoc_array.c in the Linux kernel before 4.13.11 mishandles node splitting, which allows local users to cause a denial of service (NULL pointer dereference and panic) via a crafted application, as demonstrated by the keyring key type, and key addition and link creation operations. |
| ntpq in NTP 4.2.x before 4.2.8p4, and 4.3.x before 4.3.77 allows remote attackers to cause a denial of service (crash) via crafted mode 6 response packets. |
| crypto/mcryptd.c in the Linux kernel before 4.8.15 allows local users to cause a denial of service (NULL pointer dereference and system crash) by using an AF_ALG socket with an incompatible algorithm, as demonstrated by mcryptd(md5). |
| An issue was discovered in the IPv6 protocol specification, related to ICMP Packet Too Big (PTB) messages. (The scope of this CVE is all affected IPv6 implementations from all vendors.) The security implications of IP fragmentation have been discussed at length in [RFC6274] and [RFC7739]. An attacker can leverage the generation of IPv6 atomic fragments to trigger the use of fragmentation in an arbitrary IPv6 flow (in scenarios in which actual fragmentation of packets is not needed) and can subsequently perform any type of fragmentation-based attack against legacy IPv6 nodes that do not implement [RFC6946]. That is, employing fragmentation where not actually needed allows for fragmentation-based attack vectors to be employed, unnecessarily. We note that, unfortunately, even nodes that already implement [RFC6946] can be subject to DoS attacks as a result of the generation of IPv6 atomic fragments. Let us assume that Host A is communicating with Host B and that, as a result of the widespread dropping of IPv6 packets that contain extension headers (including fragmentation) [RFC7872], some intermediate node filters fragments between Host B and Host A. If an attacker sends a forged ICMPv6 PTB error message to Host B, reporting an MTU smaller than 1280, this will trigger the generation of IPv6 atomic fragments from that moment on (as required by [RFC2460]). When Host B starts sending IPv6 atomic fragments (in response to the received ICMPv6 PTB error message), these packets will be dropped, since we previously noted that IPv6 packets with extension headers were being dropped between Host B and Host A. Thus, this situation will result in a DoS scenario. Another possible scenario is that in which two BGP peers are employing IPv6 transport and they implement Access Control Lists (ACLs) to drop IPv6 fragments (to avoid control-plane attacks). If the aforementioned BGP peers drop IPv6 fragments but still honor received ICMPv6 PTB error messages, an attacker could easily attack the corresponding peering session by simply sending an ICMPv6 PTB message with a reported MTU smaller than 1280 bytes. Once the attack packet has been sent, the aforementioned routers will themselves be the ones dropping their own traffic. |
| Stack buffer overflow in GfxState.cc in pdftocairo in Poppler before 0.56 allows remote attackers to cause a denial of service (application crash) via a crafted PDF document. |
| Vulnerability in the MySQL Server component of Oracle MySQL (subcomponent: Client mysqldump). Supported versions that are affected are 5.5.56 and earlier, 5.6.36 and earlier and 5.7.18 and earlier. Easily exploitable vulnerability allows low privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of MySQL Server accessible data. CVSS 3.0 Base Score 4.3 (Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:N). |
| The Type_MLU_Read function in cmstypes.c in Little CMS (aka lcms2) allows remote attackers to obtain sensitive information or cause a denial of service via an image with a crafted ICC profile, which triggers an out-of-bounds heap read. |
| spice versions though 0.13 are vulnerable to out-of-bounds memory access when processing specially crafted messages from authenticated attacker to the spice server resulting into crash and/or server memory leak. |
| Race condition in the L2TPv3 IP Encapsulation feature in the Linux kernel before 4.8.14 allows local users to gain privileges or cause a denial of service (use-after-free) by making multiple bind system calls without properly ascertaining whether a socket has the SOCK_ZAPPED status, related to net/l2tp/l2tp_ip.c and net/l2tp/l2tp_ip6.c. |
| The Xvnc server in TigerVNC allows remote attackers to cause a denial of service (invalid memory access and crash) by terminating a TLS handshake early. |
| The ext4_fill_super function in fs/ext4/super.c in the Linux kernel through 4.9.8 does not properly validate meta block groups, which allows physically proximate attackers to cause a denial of service (out-of-bounds read and system crash) via a crafted ext4 image. |
| The jpc_tsfb_synthesize function in jpc_tsfb.c in JasPer before 1.900.9 allows remote attackers to cause a denial of service (NULL pointer dereference) via vectors involving an empty sequence. |
| Integer overflow in the jpc_dec_tiledecode function in jpc_dec.c in JasPer before 1.900.12 allows remote attackers to have unspecified impact via a crafted image file, which triggers a heap-based buffer overflow. |
| Integer overflow in the jpc_pi_nextcprl function in jpc_t2cod.c in JasPer before 1.900.20 allows remote attackers to have unspecified impact via a crafted file, which triggers use of an uninitialized value. |
| An unintended cleartext issue exists in Go before 1.8.4 and 1.9.x before 1.9.1. RFC 4954 requires that, during SMTP, the PLAIN auth scheme must only be used on network connections secured with TLS. The original implementation of smtp.PlainAuth in Go 1.0 enforced this requirement, and it was documented to do so. In 2013, upstream issue #5184, this was changed so that the server may decide whether PLAIN is acceptable. The result is that if you set up a man-in-the-middle SMTP server that doesn't advertise STARTTLS and does advertise that PLAIN auth is OK, the smtp.PlainAuth implementation sends the username and password. |