| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Vulnerability in the Oracle Business Intelligence Enterprise Edition product of Oracle Fusion Middleware (component: Installation). Supported versions that are affected are 5.5.0.0.0, 12.2.1.3.0 and 12.2.1.4.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Business Intelligence Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Business Intelligence Enterprise Edition accessible data. CVSS 3.1 Base Score 7.5 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N). |
| Vulnerability in the Oracle WebLogic Server component of Oracle Fusion Middleware (subcomponent: Web Services). Supported versions that are affected are 10.3.6.0.0 and 12.1.3.0.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle WebLogic Server. Successful attacks of this vulnerability can result in takeover of Oracle WebLogic Server. CVSS 3.0 Base Score 9.8 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H). |
| <p>A remote code execution vulnerability exists when the Windows Print Spooler service improperly performs privileged file operations. An attacker who successfully exploited this vulnerability could run arbitrary code with SYSTEM privileges. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.</p>
<p>UPDATE July 7, 2021: The security update for Windows Server 2012, Windows Server 2016 and Windows 10, Version 1607 have been released. Please see the Security Updates table for the applicable update for your system. We recommend that you install these updates immediately. If you are unable to install these updates, see the FAQ and Workaround sections in this CVE for information on how to help protect your system from this vulnerability.</p>
<p>In addition to installing the updates, in order to secure your system, you must confirm that the following registry settings are set to 0 (zero) or are not defined (<strong>Note</strong>: These registry keys do not exist by default, and therefore are already at the secure setting.), also that your Group Policy setting are correct (see FAQ):</p>
<ul>
<li>HKEY_LOCAL_MACHINE\SOFTWARE\Policies\Microsoft\Windows NT\Printers\PointAndPrint</li>
<li>NoWarningNoElevationOnInstall = 0 (DWORD) or not defined (default setting)</li>
<li>UpdatePromptSettings = 0 (DWORD) or not defined (default setting)</li>
</ul>
<p><strong>Having NoWarningNoElevationOnInstall set to 1 makes your system vulnerable by design.</strong></p>
<p>UPDATE July 6, 2021: Microsoft has completed the investigation and has released security updates to address this vulnerability. Please see the Security Updates table for the applicable update for your system. We recommend that you install these updates immediately. If you are unable to install these updates, see the FAQ and Workaround sections in this CVE for information on how to help protect your system from this vulnerability. See also <a href="https://support.microsoft.com/topic/31b91c02-05bc-4ada-a7ea-183b129578a7">KB5005010: Restricting installation of new printer drivers after applying the July 6, 2021 updates</a>.</p>
<p>Note that the security updates released on and after July 6, 2021 contain protections for CVE-2021-1675 and the additional remote code execution exploit in the Windows Print Spooler service known as “PrintNightmare”, documented in CVE-2021-34527.</p>
|
| Windows Print Spooler Remote Code Execution Vulnerability |
| Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware (component: Console). Supported versions that are affected are 10.3.6.0.0, 12.1.3.0.0, 12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle WebLogic Server. Successful attacks of this vulnerability can result in takeover of Oracle WebLogic Server. CVSS 3.1 Base Score 9.8 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H). |
| Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware (component: Console). Supported versions that are affected are 10.3.6.0.0, 12.1.3.0.0, 12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle WebLogic Server. Successful attacks of this vulnerability can result in takeover of Oracle WebLogic Server. CVSS 3.1 Base Score 9.8 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H). |
| Vulnerability in the Oracle WebLogic Server product of Oracle Fusion Middleware (component: Console). Supported versions that are affected are 10.3.6.0.0, 12.1.3.0.0, 12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0. Easily exploitable vulnerability allows high privileged attacker with network access via HTTP to compromise Oracle WebLogic Server. Successful attacks of this vulnerability can result in takeover of Oracle WebLogic Server. CVSS 3.1 Base Score 7.2 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H). |
| The identity authentication bypass vulnerability found in some Dahua products during the login process. Attackers can bypass device identity authentication by constructing malicious data packets. |
| The identity authentication bypass vulnerability found in some Dahua products during the login process. Attackers can bypass device identity authentication by constructing malicious data packets. |
| The Artica-Proxy administrative web application will deserialize arbitrary PHP objects supplied by unauthenticated users and subsequently enable code execution as the "www-data" user. |
| A remote code execution issue exists in HPE OneView. |
| Rust is a programming language. The Rust Security Response WG was notified that the Rust standard library prior to version 1.77.2 did not properly escape arguments when invoking batch files (with the `bat` and `cmd` extensions) on Windows using the `Command`. An attacker able to control the arguments passed to the spawned process could execute arbitrary shell commands by bypassing the escaping. The severity of this vulnerability is critical for those who invoke batch files on Windows with untrusted arguments. No other platform or use is affected.
The `Command::arg` and `Command::args` APIs state in their documentation that the arguments will be passed to the spawned process as-is, regardless of the content of the arguments, and will not be evaluated by a shell. This means it should be safe to pass untrusted input as an argument.
On Windows, the implementation of this is more complex than other platforms, because the Windows API only provides a single string containing all the arguments to the spawned process, and it's up to the spawned process to split them. Most programs use the standard C run-time argv, which in practice results in a mostly consistent way arguments are splitted.
One exception though is `cmd.exe` (used among other things to execute batch files), which has its own argument splitting logic. That forces the standard library to implement custom escaping for arguments passed to batch files. Unfortunately it was reported that our escaping logic was not thorough enough, and it was possible to pass malicious arguments that would result in arbitrary shell execution.
Due to the complexity of `cmd.exe`, we didn't identify a solution that would correctly escape arguments in all cases. To maintain our API guarantees, we improved the robustness of the escaping code, and changed the `Command` API to return an `InvalidInput` error when it cannot safely escape an argument. This error will be emitted when spawning the process.
The fix is included in Rust 1.77.2. Note that the new escaping logic for batch files errs on the conservative side, and could reject valid arguments. Those who implement the escaping themselves or only handle trusted inputs on Windows can also use the `CommandExt::raw_arg` method to bypass the standard library's escaping logic. |
| WordPress Core is vulnerable to Stored Cross-Site Scripting via user display names in the Avatar block in various versions up to 6.5.2 due to insufficient output escaping on the display name. This makes it possible for authenticated attackers, with contributor-level access and above, to inject arbitrary web scripts in pages that will execute whenever a user accesses an injected page. In addition, it also makes it possible for unauthenticated attackers to inject arbitrary web scripts in pages that have the comment block present and display the comment author's avatar. |
| A vulnerability classified as critical has been found in jeecg-boot 3.5.0. This affects an unknown part of the file jmreport/qurestSql. The manipulation of the argument apiSelectId leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The associated identifier of this vulnerability is VDB-223299. |
| A heap out-of-bounds write affecting Linux since v2.6.19-rc1 was discovered in net/netfilter/x_tables.c. This allows an attacker to gain privileges or cause a DoS (via heap memory corruption) through user name space |
| GNU Bash through 4.3 bash43-026 does not properly parse function definitions in the values of environment variables, which allows remote attackers to execute arbitrary commands via a crafted environment, as demonstrated by vectors involving the ForceCommand feature in OpenSSH sshd, the mod_cgi and mod_cgid modules in the Apache HTTP Server, scripts executed by unspecified DHCP clients, and other situations in which setting the environment occurs across a privilege boundary from Bash execution. NOTE: this vulnerability exists because of an incomplete fix for CVE-2014-6271, CVE-2014-7169, and CVE-2014-6277. |
| Roundcube Webmail before 1.5.10 and 1.6.x before 1.6.11 allows remote code execution by authenticated users because the _from parameter in a URL is not validated in program/actions/settings/upload.php, leading to PHP Object Deserialization. |
| TP-Link TL-WR940N V2/V4, TL-WR841N V8/V10, and TL-WR740N V1/V2 was discovered to contain a command injection vulnerability via the component /userRpm/WlanNetworkRpm . |
| Kentico 9.0 before 9.0.51 and 10.0 before 10.0.48 allows remote attackers to obtain Global Administrator access by visiting CMSInstall/install.aspx and then navigating to the CMS Administration Dashboard. |
| An issue was discovered in Kentico 12.0.x before 12.0.15, 11.0.x before 11.0.48, 10.0.x before 10.0.52, and 9.x versions. Due to a failure to validate security headers, it was possible for a specially crafted request to the staging service to bypass the initial authentication and proceed to deserialize user-controlled .NET object input. This deserialization then led to unauthenticated remote code execution on the server where the Kentico instance was hosted. |