| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: ufs-qcom: Fix ESI null pointer dereference
ESI/MSI is a performance optimization feature that provides dedicated
interrupts per MCQ hardware queue. This is optional feature and UFS MCQ
should work with and without ESI feature.
Commit e46a28cea29a ("scsi: ufs: qcom: Remove the MSI descriptor abuse")
brings a regression in ESI (Enhanced System Interrupt) configuration that
causes a null pointer dereference when Platform MSI allocation fails.
The issue occurs in when platform_device_msi_init_and_alloc_irqs() in
ufs_qcom_config_esi() fails (returns -EINVAL) but the current code uses
__free() macro for automatic cleanup free MSI resources that were never
successfully allocated.
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
mutex_lock+0xc/0x54 (P)
platform_device_msi_free_irqs_all+0x1c/0x40
ufs_qcom_config_esi+0x1d0/0x220 [ufs_qcom]
ufshcd_config_mcq+0x28/0x104
ufshcd_init+0xa3c/0xf40
ufshcd_pltfrm_init+0x504/0x7d4
ufs_qcom_probe+0x20/0x58 [ufs_qcom]
Fix by restructuring the ESI configuration to try MSI allocation first,
before any other resource allocation and instead use explicit cleanup
instead of __free() macro to avoid cleanup of unallocated resources.
Tested on SM8750 platform with MCQ enabled, both with and without
Platform ESI support. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ivsc: Fix crash at shutdown due to missing mei_cldev_disable() calls
Both the ACE and CSI driver are missing a mei_cldev_disable() call in
their remove() function.
This causes the mei_cl client to stay part of the mei_device->file_list
list even though its memory is freed by mei_cl_bus_dev_release() calling
kfree(cldev->cl).
This leads to a use-after-free when mei_vsc_remove() runs mei_stop()
which first removes all mei bus devices calling mei_ace_remove() and
mei_csi_remove() followed by mei_cl_bus_dev_release() and then calls
mei_cl_all_disconnect() which walks over mei_device->file_list dereferecing
the just freed cldev->cl.
And mei_vsc_remove() it self is run at shutdown because of the
platform_device_unregister(tp->pdev) in vsc_tp_shutdown()
When building a kernel with KASAN this leads to the following KASAN report:
[ 106.634504] ==================================================================
[ 106.634623] BUG: KASAN: slab-use-after-free in mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634683] Read of size 4 at addr ffff88819cb62018 by task systemd-shutdow/1
[ 106.634729]
[ 106.634767] Tainted: [E]=UNSIGNED_MODULE
[ 106.634770] Hardware name: Dell Inc. XPS 16 9640/09CK4V, BIOS 1.12.0 02/10/2025
[ 106.634773] Call Trace:
[ 106.634777] <TASK>
...
[ 106.634871] kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
[ 106.634901] mei_cl_set_disconnected (drivers/misc/mei/client.c:783) mei
[ 106.634921] mei_cl_all_disconnect (drivers/misc/mei/client.c:2165 (discriminator 4)) mei
[ 106.634941] mei_reset (drivers/misc/mei/init.c:163) mei
...
[ 106.635042] mei_stop (drivers/misc/mei/init.c:348) mei
[ 106.635062] mei_vsc_remove (drivers/misc/mei/mei_dev.h:784 drivers/misc/mei/platform-vsc.c:393) mei_vsc
[ 106.635066] platform_remove (drivers/base/platform.c:1424)
Add the missing mei_cldev_disable() calls so that the mei_cl gets removed
from mei_device->file_list before it is freed to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
media: iris: Fix NULL pointer dereference
A warning reported by smatch indicated a possible null pointer
dereference where one of the arguments to API
"iris_hfi_gen2_handle_system_error" could sometimes be null.
To fix this, add a check to validate that the argument passed is not
null before accessing its members. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: check if hubbub is NULL in debugfs/amdgpu_dm_capabilities
HUBBUB structure is not initialized on DCE hardware, so check if it is NULL
to avoid null dereference while accessing amdgpu_dm_capabilities file in
debugfs. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: fix a Null pointer dereference vulnerability
[Why]
A null pointer dereference vulnerability exists in the AMD display driver's
(DC module) cleanup function dc_destruct().
When display control context (dc->ctx) construction fails
(due to memory allocation failure), this pointer remains NULL.
During subsequent error handling when dc_destruct() is called,
there's no NULL check before dereferencing the perf_trace member
(dc->ctx->perf_trace), causing a kernel null pointer dereference crash.
[How]
Check if dc->ctx is non-NULL before dereferencing.
(Updated commit text and removed unnecessary error message)
(cherry picked from commit 9dd8e2ba268c636c240a918e0a31e6feaee19404) |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: KVM: Fix stack protector issue in send_ipi_data()
Function kvm_io_bus_read() is called in function send_ipi_data(), buffer
size of parameter *val should be at least 8 bytes. Since some emulation
functions like loongarch_ipi_readl() and kvm_eiointc_read() will write
the buffer *val with 8 bytes signed extension regardless parameter len.
Otherwise there will be buffer overflow issue when CONFIG_STACKPROTECTOR
is enabled. The bug report is shown as follows:
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: send_ipi_data+0x194/0x1a0 [kvm]
CPU: 11 UID: 107 PID: 2692 Comm: CPU 0/KVM Not tainted 6.17.0-rc1+ #102 PREEMPT(full)
Stack : 9000000005901568 0000000000000000 9000000003af371c 900000013c68c000
900000013c68f850 900000013c68f858 0000000000000000 900000013c68f998
900000013c68f990 900000013c68f990 900000013c68f6c0 fffffffffffdb058
fffffffffffdb0e0 900000013c68f858 911e1d4d39cf0ec2 9000000105657a00
0000000000000001 fffffffffffffffe 0000000000000578 282049464555206e
6f73676e6f6f4c20 0000000000000001 00000000086b4000 0000000000000000
0000000000000000 0000000000000000 9000000005709968 90000000058f9000
900000013c68fa68 900000013c68fab4 90000000029279f0 900000010153f940
900000010001f360 0000000000000000 9000000003af3734 000000004390000c
00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d
...
Call Trace:
[<9000000003af3734>] show_stack+0x5c/0x180
[<9000000003aed168>] dump_stack_lvl+0x6c/0x9c
[<9000000003ad0ab0>] vpanic+0x108/0x2c4
[<9000000003ad0ca8>] panic+0x3c/0x40
[<9000000004eb0a1c>] __stack_chk_fail+0x14/0x18
[<ffff8000023473f8>] send_ipi_data+0x190/0x1a0 [kvm]
[<ffff8000023313e4>] __kvm_io_bus_write+0xa4/0xe8 [kvm]
[<ffff80000233147c>] kvm_io_bus_write+0x54/0x90 [kvm]
[<ffff80000233f9f8>] kvm_emu_iocsr+0x180/0x310 [kvm]
[<ffff80000233fe08>] kvm_handle_gspr+0x280/0x478 [kvm]
[<ffff8000023443e8>] kvm_handle_exit+0xc0/0x130 [kvm] |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/ops-common: ignore migration request to invalid nodes
damon_migrate_pages() tries migration even if the target node is invalid.
If users mistakenly make such invalid requests via
DAMOS_MIGRATE_{HOT,COLD} action, the below kernel BUG can happen.
[ 7831.883495] BUG: unable to handle page fault for address: 0000000000001f48
[ 7831.884160] #PF: supervisor read access in kernel mode
[ 7831.884681] #PF: error_code(0x0000) - not-present page
[ 7831.885203] PGD 0 P4D 0
[ 7831.885468] Oops: Oops: 0000 [#1] SMP PTI
[ 7831.885852] CPU: 31 UID: 0 PID: 94202 Comm: kdamond.0 Not tainted 6.16.0-rc5-mm-new-damon+ #93 PREEMPT(voluntary)
[ 7831.886913] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.el9 04/01/2014
[ 7831.887777] RIP: 0010:__alloc_frozen_pages_noprof (include/linux/mmzone.h:1724 include/linux/mmzone.h:1750 mm/page_alloc.c:4936 mm/page_alloc.c:5137)
[...]
[ 7831.895953] Call Trace:
[ 7831.896195] <TASK>
[ 7831.896397] __folio_alloc_noprof (mm/page_alloc.c:5183 mm/page_alloc.c:5192)
[ 7831.896787] migrate_pages_batch (mm/migrate.c:1189 mm/migrate.c:1851)
[ 7831.897228] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.897735] migrate_pages (mm/migrate.c:2078)
[ 7831.898141] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.898664] damon_migrate_folio_list (mm/damon/ops-common.c:321 mm/damon/ops-common.c:354)
[ 7831.899140] damon_migrate_pages (mm/damon/ops-common.c:405)
[...]
Add a target node validity check in damon_migrate_pages(). The validity
check is stolen from that of do_pages_move(), which is being used for the
move_pages() system call. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/riscv: prevent NULL deref in iova_to_phys
The riscv_iommu_pte_fetch() function returns either NULL for
unmapped/never-mapped iova, or a valid leaf pte pointer that
requires no further validation.
riscv_iommu_iova_to_phys() failed to handle NULL returns.
Prevent null pointer dereference in
riscv_iommu_iova_to_phys(), and remove the pte validation. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Correct tid cleanup when tid setup fails
Currently, if any error occurs during ath12k_dp_rx_peer_tid_setup(),
the tid value is already incremented, even though the corresponding
TID is not actually allocated. Proceed to
ath12k_dp_rx_peer_tid_delete() starting from unallocated tid,
which might leads to freeing unallocated TID and cause potential
crash or out-of-bounds access.
Hence, fix by correctly decrementing tid before cleanup to match only
the successfully allocated TIDs.
Also, remove tid-- from failure case of ath12k_dp_rx_peer_frag_setup(),
as decrementing the tid before cleanup in loop will take care of this.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/migrate: don't overflow max copy size
With non-page aligned copy, we need to use 4 byte aligned pitch, however
the size itself might still be close to our maximum of ~8M, and so the
dimensions of the copy can easily exceed the S16_MAX limit of the copy
command leading to the following assert:
xe 0000:03:00.0: [drm] Assertion `size / pitch <= ((s16)(((u16)~0U) >> 1))` failed!
platform: BATTLEMAGE subplatform: 1
graphics: Xe2_HPG 20.01 step A0
media: Xe2_HPM 13.01 step A1
tile: 0 VRAM 10.0 GiB
GT: 0 type 1
WARNING: CPU: 23 PID: 10605 at drivers/gpu/drm/xe/xe_migrate.c:673 emit_copy+0x4b5/0x4e0 [xe]
To fix this account for the pitch when calculating the number of current
bytes to copy.
(cherry picked from commit 8c2d61e0e916e077fda7e7b8e67f25ffe0f361fc) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/migrate: prevent potential UAF
If we hit the error path, the previous fence (if there is one) has
already been put() prior to this, so doing a fence_wait could lead to
UAF. Tweak the flow to do to the put() until after we do the wait.
(cherry picked from commit 9b7ca35ed28fe5fad86e9d9c24ebd1271e4c9c3e) |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vmscan: fix hwpoisoned large folio handling in shrink_folio_list
In shrink_folio_list(), the hwpoisoned folio may be large folio, which
can't be handled by unmap_poisoned_folio(). For THP, try_to_unmap_one()
must be passed with TTU_SPLIT_HUGE_PMD to split huge PMD first and then
retry. Without TTU_SPLIT_HUGE_PMD, we will trigger null-ptr deref of
pvmw.pte. Even we passed TTU_SPLIT_HUGE_PMD, we will trigger a
WARN_ON_ONCE due to the page isn't in swapcache.
Since UCE is rare in real world, and race with reclaimation is more rare,
just skipping the hwpoisoned large folio is enough. memory_failure() will
handle it if the UCE is triggered again.
This happens when memory reclaim for large folio races with
memory_failure(), and will lead to kernel panic. The race is as
follows:
cpu0 cpu1
shrink_folio_list memory_failure
TestSetPageHWPoison
unmap_poisoned_folio
--> trigger BUG_ON due to
unmap_poisoned_folio couldn't
handle large folio
[[email protected]: add comment to unmap_poisoned_folio()] |
| In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix unbuffered write error handling
If all the subrequests in an unbuffered write stream fail, the subrequest
collector doesn't update the stream->transferred value and it retains its
initial LONG_MAX value. Unfortunately, if all active streams fail, then we
take the smallest value of { LONG_MAX, LONG_MAX, ... } as the value to set
in wreq->transferred - which is then returned from ->write_iter().
LONG_MAX was chosen as the initial value so that all the streams can be
quickly assessed by taking the smallest value of all stream->transferred -
but this only works if we've set any of them.
Fix this by adding a flag to indicate whether the value in
stream->transferred is valid and checking that when we integrate the
values. stream->transferred can then be initialised to zero.
This was found by running the generic/750 xfstest against cifs with
cache=none. It splices data to the target file. Once (if) it has used up
all the available scratch space, the writes start failing with ENOSPC.
This causes ->write_iter() to fail. However, it was returning
wreq->transferred, i.e. LONG_MAX, rather than an error (because it thought
the amount transferred was non-zero) and iter_file_splice_write() would
then try to clean up that amount of pipe bufferage - leading to an oops
when it overran. The kernel log showed:
CIFS: VFS: Send error in write = -28
followed by:
BUG: kernel NULL pointer dereference, address: 0000000000000008
with:
RIP: 0010:iter_file_splice_write+0x3a4/0x520
do_splice+0x197/0x4e0
or:
RIP: 0010:pipe_buf_release (include/linux/pipe_fs_i.h:282)
iter_file_splice_write (fs/splice.c:755)
Also put a warning check into splice to announce if ->write_iter() returned
that it had written more than it was asked to. |
| In the Linux kernel, the following vulnerability has been resolved:
media: mt9m114: Fix deadlock in get_frame_interval/set_frame_interval
Getting / Setting the frame interval using the V4L2 subdev pad ops
get_frame_interval/set_frame_interval causes a deadlock, as the
subdev state is locked in the [1] but also in the driver itself.
In [2] it's described that the caller is responsible to acquire and
release the lock in this case. Therefore, acquiring the lock in the
driver is wrong.
Remove the lock acquisitions/releases from mt9m114_ifp_get_frame_interval()
and mt9m114_ifp_set_frame_interval().
[1] drivers/media/v4l2-core/v4l2-subdev.c - line 1129
[2] Documentation/driver-api/media/v4l2-subdev.rst |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mcde: Fix refcount leak in mcde_dsi_bind
Every iteration of for_each_available_child_of_node() decrements
the reference counter of the previous node. There is no decrement
when break out from the loop and results in refcount leak.
Add missing of_node_put() to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ctnetlink: remove refcounting in expectation dumpers
Same pattern as previous patch: do not keep the expectation object
alive via refcount, only store a cookie value and then use that
as the skip hint for dump resumption.
AFAICS this has the same issue as the one resolved in the conntrack
dumper, when we do
if (!refcount_inc_not_zero(&exp->use))
to increment the refcount, there is a chance that exp == last, which
causes a double-increment of the refcount and subsequent memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: timer: fix ida_free call while not allocated
In the snd_utimer_create() function, if the kasprintf() function return
NULL, snd_utimer_put_id() will be called, finally use ida_free()
to free the unallocated id 0.
the syzkaller reported the following information:
------------[ cut here ]------------
ida_free called for id=0 which is not allocated.
WARNING: CPU: 1 PID: 1286 at lib/idr.c:592 ida_free+0x1fd/0x2f0 lib/idr.c:592
Modules linked in:
CPU: 1 UID: 0 PID: 1286 Comm: syz-executor164 Not tainted 6.15.8 #3 PREEMPT(lazy)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.fc42 04/01/2014
RIP: 0010:ida_free+0x1fd/0x2f0 lib/idr.c:592
Code: f8 fc 41 83 fc 3e 76 69 e8 70 b2 f8 (...)
RSP: 0018:ffffc900007f79c8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: 1ffff920000fef3b RCX: ffffffff872176a5
RDX: ffff88800369d200 RSI: 0000000000000000 RDI: ffff88800369d200
RBP: 0000000000000000 R08: ffffffff87ba60a5 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000002 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f6f1abc1740(0000) GS:ffff8880d76a0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6f1ad7a784 CR3: 000000007a6e2000 CR4: 00000000000006f0
Call Trace:
<TASK>
snd_utimer_put_id sound/core/timer.c:2043 [inline] [snd_timer]
snd_utimer_create+0x59b/0x6a0 sound/core/timer.c:2184 [snd_timer]
snd_utimer_ioctl_create sound/core/timer.c:2202 [inline] [snd_timer]
__snd_timer_user_ioctl.isra.0+0x724/0x1340 sound/core/timer.c:2287 [snd_timer]
snd_timer_user_ioctl+0x75/0xc0 sound/core/timer.c:2298 [snd_timer]
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__x64_sys_ioctl+0x198/0x200 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0x7b/0x160 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x76/0x7e
[...]
The utimer->id should be set properly before the kasprintf() function,
ensures the snd_utimer_put_id() function will free the allocated id. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Optimize module load time by optimizing PLT/GOT counting
When enabling CONFIG_KASAN, CONFIG_PREEMPT_VOLUNTARY_BUILD and
CONFIG_PREEMPT_VOLUNTARY at the same time, there will be soft deadlock,
the relevant logs are as follows:
rcu: INFO: rcu_sched self-detected stall on CPU
...
Call Trace:
[<900000000024f9e4>] show_stack+0x5c/0x180
[<90000000002482f4>] dump_stack_lvl+0x94/0xbc
[<9000000000224544>] rcu_dump_cpu_stacks+0x1fc/0x280
[<900000000037ac80>] rcu_sched_clock_irq+0x720/0xf88
[<9000000000396c34>] update_process_times+0xb4/0x150
[<90000000003b2474>] tick_nohz_handler+0xf4/0x250
[<9000000000397e28>] __hrtimer_run_queues+0x1d0/0x428
[<9000000000399b2c>] hrtimer_interrupt+0x214/0x538
[<9000000000253634>] constant_timer_interrupt+0x64/0x80
[<9000000000349938>] __handle_irq_event_percpu+0x78/0x1a0
[<9000000000349a78>] handle_irq_event_percpu+0x18/0x88
[<9000000000354c00>] handle_percpu_irq+0x90/0xf0
[<9000000000348c74>] handle_irq_desc+0x94/0xb8
[<9000000001012b28>] handle_cpu_irq+0x68/0xa0
[<9000000001def8c0>] handle_loongarch_irq+0x30/0x48
[<9000000001def958>] do_vint+0x80/0xd0
[<9000000000268a0c>] kasan_mem_to_shadow.part.0+0x2c/0x2a0
[<90000000006344f4>] __asan_load8+0x4c/0x120
[<900000000025c0d0>] module_frob_arch_sections+0x5c8/0x6b8
[<90000000003895f0>] load_module+0x9e0/0x2958
[<900000000038b770>] __do_sys_init_module+0x208/0x2d0
[<9000000001df0c34>] do_syscall+0x94/0x190
[<900000000024d6fc>] handle_syscall+0xbc/0x158
After analysis, this is because the slow speed of loading the amdgpu
module leads to the long time occupation of the cpu and then the soft
deadlock.
When loading a module, module_frob_arch_sections() tries to figure out
the number of PLTs/GOTs that will be needed to handle all the RELAs. It
will call the count_max_entries() to find in an out-of-order date which
counting algorithm has O(n^2) complexity.
To make it faster, we sort the relocation list by info and addend. That
way, to check for a duplicate relocation, it just needs to compare with
the previous entry. This reduces the complexity of the algorithm to O(n
log n), as done in commit d4e0340919fb ("arm64/module: Optimize module
load time by optimizing PLT counting"). This gives sinificant reduction
in module load time for modules with large number of relocations.
After applying this patch, the soft deadlock problem has been solved,
and the kernel starts normally without "Call Trace".
Using the default configuration to test some modules, the results are as
follows:
Module Size
ip_tables 36K
fat 143K
radeon 2.5MB
amdgpu 16MB
Without this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 54 1221/84
amdgpu 1411 4525/1098
With this patch:
Module Module load time (ms) Count(PLTs/GOTs)
ip_tables 18 59/6
fat 0 162/14
radeon 22 1221/84
amdgpu 45 4525/1098 |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, fix complex rules rehash error flow
Moving rules from matcher to matcher should not fail.
However, if it does fail due to various reasons, the error flow
should allow the kernel to continue functioning (albeit with broken
steering rules) instead of going into series of soft lock-ups or
some other problematic behaviour.
Similar to the simple rules, complex rules rehash logic suffers
from the same problems. This patch fixes the error flow for moving
complex rules:
- If new rule creation fails before it was even enqeued, do not
poll for completion
- If TIMEOUT happened while moving the rule, no point trying
to poll for completions for other rules. Something is broken,
completion won't come, just abort the rehash sequence.
- If some other completion with error received, don't give up.
Continue handling rest of the rules to minimize the damage.
- Make sure that the first error code that was received will
be actually returned to the caller instead of replacing it
with the generic error code.
All the aforementioned issues stem from the same bad error flow,
so no point fixing them one by one and leaving partially broken
code - fixing them in one patch. |
| In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix lockdep warning during rmmod
The commit under the Fixes tag added a netdev_assert_locked() in
bnxt_free_ntp_fltrs(). The lock should be held during normal run-time
but the assert will be triggered (see below) during bnxt_remove_one()
which should not need the lock. The netdev is already unregistered by
then. Fix it by calling netdev_assert_locked_or_invisible() which will
not assert if the netdev is unregistered.
WARNING: CPU: 5 PID: 2241 at ./include/net/netdev_lock.h:17 bnxt_free_ntp_fltrs+0xf8/0x100 [bnxt_en]
Modules linked in: rpcrdma rdma_cm iw_cm ib_cm configfs ib_core bnxt_en(-) bridge stp llc x86_pkg_temp_thermal xfs tg3 [last unloaded: bnxt_re]
CPU: 5 UID: 0 PID: 2241 Comm: rmmod Tainted: G S W 6.16.0 #2 PREEMPT(voluntary)
Tainted: [S]=CPU_OUT_OF_SPEC, [W]=WARN
Hardware name: Dell Inc. PowerEdge R730/072T6D, BIOS 2.4.3 01/17/2017
RIP: 0010:bnxt_free_ntp_fltrs+0xf8/0x100 [bnxt_en]
Code: 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 48 8b 47 60 be ff ff ff ff 48 8d b8 28 0c 00 00 e8 d0 cf 41 c3 85 c0 0f 85 2e ff ff ff <0f> 0b e9 27 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffa92082387da0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff9e5b593d8000 RCX: 0000000000000001
RDX: 0000000000000001 RSI: ffffffff83dc9a70 RDI: ffffffff83e1a1cf
RBP: ffff9e5b593d8c80 R08: 0000000000000000 R09: ffffffff8373a2b3
R10: 000000008100009f R11: 0000000000000001 R12: 0000000000000001
R13: ffffffffc01c4478 R14: dead000000000122 R15: dead000000000100
FS: 00007f3a8a52c740(0000) GS:ffff9e631ad1c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055bb289419c8 CR3: 000000011274e001 CR4: 00000000003706f0
Call Trace:
<TASK>
bnxt_remove_one+0x57/0x180 [bnxt_en]
pci_device_remove+0x39/0xc0
device_release_driver_internal+0xa5/0x130
driver_detach+0x42/0x90
bus_remove_driver+0x61/0xc0
pci_unregister_driver+0x38/0x90
bnxt_exit+0xc/0x7d0 [bnxt_en] |