| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix htt pktlog locking
The ath11k active pdevs are protected by RCU but the htt pktlog handling
code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix dfs radar event locking
The ath11k active pdevs are protected by RCU but the DFS radar event
handling code calling ath11k_mac_get_ar_by_pdev_id() was not marked as a
read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
i915/perf: Fix NULL deref bugs with drm_dbg() calls
When i915 perf interface is not available dereferencing it will lead to
NULL dereferences.
As returning -ENOTSUPP is pretty clear return when perf interface is not
available.
[tursulin: added stable tag]
(cherry picked from commit 36f27350ff745bd228ab04d7845dfbffc177a889) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix gtk offload status event locking
The ath11k active pdevs are protected by RCU but the gtk offload status
event handling code calling ath11k_mac_get_arvif_by_vdev_id() was not
marked as a read-side critical section.
Mark the code in question as an RCU read-side critical section to avoid
any potential use-after-free issues.
Compile tested only. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/psi: Fix use-after-free in ep_remove_wait_queue()
If a non-root cgroup gets removed when there is a thread that registered
trigger and is polling on a pressure file within the cgroup, the polling
waitqueue gets freed in the following path:
do_rmdir
cgroup_rmdir
kernfs_drain_open_files
cgroup_file_release
cgroup_pressure_release
psi_trigger_destroy
However, the polling thread still has a reference to the pressure file and
will access the freed waitqueue when the file is closed or upon exit:
fput
ep_eventpoll_release
ep_free
ep_remove_wait_queue
remove_wait_queue
This results in use-after-free as pasted below.
The fundamental problem here is that cgroup_file_release() (and
consequently waitqueue's lifetime) is not tied to the file's real lifetime.
Using wake_up_pollfree() here might be less than ideal, but it is in line
with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()")
since the waitqueue's lifetime is not tied to file's one and can be
considered as another special case. While this would be fixable by somehow
making cgroup_file_release() be tied to the fput(), it would require
sizable refactoring at cgroups or higher layer which might be more
justifiable if we identify more cases like this.
BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0
Write of size 4 at addr ffff88810e625328 by task a.out/4404
CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38
Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017
Call Trace:
<TASK>
dump_stack_lvl+0x73/0xa0
print_report+0x16c/0x4e0
kasan_report+0xc3/0xf0
kasan_check_range+0x2d2/0x310
_raw_spin_lock_irqsave+0x60/0xc0
remove_wait_queue+0x1a/0xa0
ep_free+0x12c/0x170
ep_eventpoll_release+0x26/0x30
__fput+0x202/0x400
task_work_run+0x11d/0x170
do_exit+0x495/0x1130
do_group_exit+0x100/0x100
get_signal+0xd67/0xde0
arch_do_signal_or_restart+0x2a/0x2b0
exit_to_user_mode_prepare+0x94/0x100
syscall_exit_to_user_mode+0x20/0x40
do_syscall_64+0x52/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Allocated by task 4404:
kasan_set_track+0x3d/0x60
__kasan_kmalloc+0x85/0x90
psi_trigger_create+0x113/0x3e0
pressure_write+0x146/0x2e0
cgroup_file_write+0x11c/0x250
kernfs_fop_write_iter+0x186/0x220
vfs_write+0x3d8/0x5c0
ksys_write+0x90/0x110
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Freed by task 4407:
kasan_set_track+0x3d/0x60
kasan_save_free_info+0x27/0x40
____kasan_slab_free+0x11d/0x170
slab_free_freelist_hook+0x87/0x150
__kmem_cache_free+0xcb/0x180
psi_trigger_destroy+0x2e8/0x310
cgroup_file_release+0x4f/0xb0
kernfs_drain_open_files+0x165/0x1f0
kernfs_drain+0x162/0x1a0
__kernfs_remove+0x1fb/0x310
kernfs_remove_by_name_ns+0x95/0xe0
cgroup_addrm_files+0x67f/0x700
cgroup_destroy_locked+0x283/0x3c0
cgroup_rmdir+0x29/0x100
kernfs_iop_rmdir+0xd1/0x140
vfs_rmdir+0xfe/0x240
do_rmdir+0x13d/0x280
__x64_sys_rmdir+0x2c/0x30
do_syscall_64+0x43/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
calipso: fix memory leak in netlbl_calipso_add_pass()
If IPv6 support is disabled at boot (ipv6.disable=1),
the calipso_init() -> netlbl_calipso_ops_register() function isn't called,
and the netlbl_calipso_ops_get() function always returns NULL.
In this case, the netlbl_calipso_add_pass() function allocates memory
for the doi_def variable but doesn't free it with the calipso_doi_free().
BUG: memory leak
unreferenced object 0xffff888011d68180 (size 64):
comm "syz-executor.1", pid 10746, jiffies 4295410986 (age 17.928s)
hex dump (first 32 bytes):
00 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<...>] kmalloc include/linux/slab.h:552 [inline]
[<...>] netlbl_calipso_add_pass net/netlabel/netlabel_calipso.c:76 [inline]
[<...>] netlbl_calipso_add+0x22e/0x4f0 net/netlabel/netlabel_calipso.c:111
[<...>] genl_family_rcv_msg_doit+0x22f/0x330 net/netlink/genetlink.c:739
[<...>] genl_family_rcv_msg net/netlink/genetlink.c:783 [inline]
[<...>] genl_rcv_msg+0x341/0x5a0 net/netlink/genetlink.c:800
[<...>] netlink_rcv_skb+0x14d/0x440 net/netlink/af_netlink.c:2515
[<...>] genl_rcv+0x29/0x40 net/netlink/genetlink.c:811
[<...>] netlink_unicast_kernel net/netlink/af_netlink.c:1313 [inline]
[<...>] netlink_unicast+0x54b/0x800 net/netlink/af_netlink.c:1339
[<...>] netlink_sendmsg+0x90a/0xdf0 net/netlink/af_netlink.c:1934
[<...>] sock_sendmsg_nosec net/socket.c:651 [inline]
[<...>] sock_sendmsg+0x157/0x190 net/socket.c:671
[<...>] ____sys_sendmsg+0x712/0x870 net/socket.c:2342
[<...>] ___sys_sendmsg+0xf8/0x170 net/socket.c:2396
[<...>] __sys_sendmsg+0xea/0x1b0 net/socket.c:2429
[<...>] do_syscall_64+0x30/0x40 arch/x86/entry/common.c:46
[<...>] entry_SYSCALL_64_after_hwframe+0x61/0xc6
Found by InfoTeCS on behalf of Linux Verification Center
(linuxtesting.org) with Syzkaller
[PM: merged via the LSM tree at Jakub Kicinski request] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_powercap_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check to scom_debug_init_one()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure.
Add a null pointer check, and release 'ent' to avoid memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/powernv: Add a null pointer check in opal_event_init()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
| In the Linux kernel, the following vulnerability has been resolved:
of: Fix double free in of_parse_phandle_with_args_map
In of_parse_phandle_with_args_map() the inner loop that
iterates through the map entries calls of_node_put(new)
to free the reference acquired by the previous iteration
of the inner loop. This assumes that the value of "new" is
NULL on the first iteration of the inner loop.
Make sure that this is true in all iterations of the outer
loop by setting "new" to NULL after its value is assigned to "cur".
Extend the unittest to detect the double free and add an additional
test case that actually triggers this path. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/imc-pmu: Add a null pointer check in update_events_in_group()
kasprintf() returns a pointer to dynamically allocated memory
which can be NULL upon failure. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add clamp() in scarlett2_mixer_ctl_put()
Ensure the value passed to scarlett2_mixer_ctl_put() is between 0 and
SCARLETT2_MIXER_MAX_VALUE so we don't attempt to access outside
scarlett2_mixer_values[]. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: fix a potential double-free in fs_any_create_groups
When kcalloc() for ft->g succeeds but kvzalloc() for in fails,
fs_any_create_groups() will free ft->g. However, its caller
fs_any_create_table() will free ft->g again through calling
mlx5e_destroy_flow_table(), which will lead to a double-free.
Fix this by setting ft->g to NULL in fs_any_create_groups(). |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: amd: Fix memory leak in amd_sof_acp_probe()
Driver uses kasprintf() to initialize fw_{code,data}_bin members of
struct acp_dev_data, but kfree() is never called to deallocate the
memory, which results in a memory leak.
Fix the issue by switching to devm_kasprintf(). Additionally, ensure the
allocation was successful by checking the pointer validity. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: fix a memleak in vmw_gmrid_man_get_node
When ida_alloc_max fails, resources allocated before should be freed,
including *res allocated by kmalloc and ttm_resource_init. |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix a memleak in gss_import_v2_context
The ctx->mech_used.data allocated by kmemdup is not freed in neither
gss_import_v2_context nor it only caller gss_krb5_import_sec_context,
which frees ctx on error.
Thus, this patch reform the last call of gss_import_v2_context to the
gss_krb5_import_ctx_v2, preventing the memleak while keepping the return
formation. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/tegra: dsi: Add missing check for of_find_device_by_node
Add check for the return value of of_find_device_by_node() and return
the error if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vkms: Avoid reading beyond LUT array
When the floor LUT index (drm_fixp2int(lut_index) is the last
index of the array the ceil LUT index will point to an entry
beyond the array. Make sure we guard against it and use the
value of the floor LUT index.
v3:
- Drop bits from commit description that didn't contribute
anything of value |
| In the Linux kernel, the following vulnerability has been resolved:
iio: core: fix memleak in iio_device_register_sysfs
When iio_device_register_sysfs_group() fails, we should
free iio_dev_opaque->chan_attr_group.attrs to prevent
potential memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: Fix UAF in j1939_sk_match_filter during setsockopt(SO_J1939_FILTER)
Lock jsk->sk to prevent UAF when setsockopt(..., SO_J1939_FILTER, ...)
modifies jsk->filters while receiving packets.
Following trace was seen on affected system:
==================================================================
BUG: KASAN: slab-use-after-free in j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
Read of size 4 at addr ffff888012144014 by task j1939/350
CPU: 0 PID: 350 Comm: j1939 Tainted: G W OE 6.5.0-rc5 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
print_report+0xd3/0x620
? kasan_complete_mode_report_info+0x7d/0x200
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
kasan_report+0xc2/0x100
? j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
__asan_load4+0x84/0xb0
j1939_sk_recv_match_one+0x1af/0x2d0 [can_j1939]
j1939_sk_recv+0x20b/0x320 [can_j1939]
? __kasan_check_write+0x18/0x20
? __pfx_j1939_sk_recv+0x10/0x10 [can_j1939]
? j1939_simple_recv+0x69/0x280 [can_j1939]
? j1939_ac_recv+0x5e/0x310 [can_j1939]
j1939_can_recv+0x43f/0x580 [can_j1939]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
? raw_rcv+0x42/0x3c0 [can_raw]
? __pfx_j1939_can_recv+0x10/0x10 [can_j1939]
can_rcv_filter+0x11f/0x350 [can]
can_receive+0x12f/0x190 [can]
? __pfx_can_rcv+0x10/0x10 [can]
can_rcv+0xdd/0x130 [can]
? __pfx_can_rcv+0x10/0x10 [can]
__netif_receive_skb_one_core+0x13d/0x150
? __pfx___netif_receive_skb_one_core+0x10/0x10
? __kasan_check_write+0x18/0x20
? _raw_spin_lock_irq+0x8c/0xe0
__netif_receive_skb+0x23/0xb0
process_backlog+0x107/0x260
__napi_poll+0x69/0x310
net_rx_action+0x2a1/0x580
? __pfx_net_rx_action+0x10/0x10
? __pfx__raw_spin_lock+0x10/0x10
? handle_irq_event+0x7d/0xa0
__do_softirq+0xf3/0x3f8
do_softirq+0x53/0x80
</IRQ>
<TASK>
__local_bh_enable_ip+0x6e/0x70
netif_rx+0x16b/0x180
can_send+0x32b/0x520 [can]
? __pfx_can_send+0x10/0x10 [can]
? __check_object_size+0x299/0x410
raw_sendmsg+0x572/0x6d0 [can_raw]
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
? apparmor_socket_sendmsg+0x2f/0x40
? __pfx_raw_sendmsg+0x10/0x10 [can_raw]
sock_sendmsg+0xef/0x100
sock_write_iter+0x162/0x220
? __pfx_sock_write_iter+0x10/0x10
? __rtnl_unlock+0x47/0x80
? security_file_permission+0x54/0x320
vfs_write+0x6ba/0x750
? __pfx_vfs_write+0x10/0x10
? __fget_light+0x1ca/0x1f0
? __rcu_read_unlock+0x5b/0x280
ksys_write+0x143/0x170
? __pfx_ksys_write+0x10/0x10
? __kasan_check_read+0x15/0x20
? fpregs_assert_state_consistent+0x62/0x70
__x64_sys_write+0x47/0x60
do_syscall_64+0x60/0x90
? do_syscall_64+0x6d/0x90
? irqentry_exit+0x3f/0x50
? exc_page_fault+0x79/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Allocated by task 348:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x1f/0x30
__kasan_kmalloc+0xb5/0xc0
__kmalloc_node_track_caller+0x67/0x160
j1939_sk_setsockopt+0x284/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
Freed by task 349:
kasan_save_stack+0x2a/0x50
kasan_set_track+0x29/0x40
kasan_save_free_info+0x2f/0x50
__kasan_slab_free+0x12e/0x1c0
__kmem_cache_free+0x1b9/0x380
kfree+0x7a/0x120
j1939_sk_setsockopt+0x3b2/0x450 [can_j1939]
__sys_setsockopt+0x15c/0x2f0
__x64_sys_setsockopt+0x6b/0x80
do_syscall_64+0x60/0x90
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |