| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/swap: fix race when skipping swapcache
When skipping swapcache for SWP_SYNCHRONOUS_IO, if two or more threads
swapin the same entry at the same time, they get different pages (A, B).
Before one thread (T0) finishes the swapin and installs page (A) to the
PTE, another thread (T1) could finish swapin of page (B), swap_free the
entry, then swap out the possibly modified page reusing the same entry.
It breaks the pte_same check in (T0) because PTE value is unchanged,
causing ABA problem. Thread (T0) will install a stalled page (A) into the
PTE and cause data corruption.
One possible callstack is like this:
CPU0 CPU1
---- ----
do_swap_page() do_swap_page() with same entry
<direct swapin path> <direct swapin path>
<alloc page A> <alloc page B>
swap_read_folio() <- read to page A swap_read_folio() <- read to page B
<slow on later locks or interrupt> <finished swapin first>
... set_pte_at()
swap_free() <- entry is free
<write to page B, now page A stalled>
<swap out page B to same swap entry>
pte_same() <- Check pass, PTE seems
unchanged, but page A
is stalled!
swap_free() <- page B content lost!
set_pte_at() <- staled page A installed!
And besides, for ZRAM, swap_free() allows the swap device to discard the
entry content, so even if page (B) is not modified, if swap_read_folio()
on CPU0 happens later than swap_free() on CPU1, it may also cause data
loss.
To fix this, reuse swapcache_prepare which will pin the swap entry using
the cache flag, and allow only one thread to swap it in, also prevent any
parallel code from putting the entry in the cache. Release the pin after
PT unlocked.
Racers just loop and wait since it's a rare and very short event. A
schedule_timeout_uninterruptible(1) call is added to avoid repeated page
faults wasting too much CPU, causing livelock or adding too much noise to
perf statistics. A similar livelock issue was described in commit
029c4628b2eb ("mm: swap: get rid of livelock in swapin readahead")
Reproducer:
This race issue can be triggered easily using a well constructed
reproducer and patched brd (with a delay in read path) [1]:
With latest 6.8 mainline, race caused data loss can be observed easily:
$ gcc -g -lpthread test-thread-swap-race.c && ./a.out
Polulating 32MB of memory region...
Keep swapping out...
Starting round 0...
Spawning 65536 workers...
32746 workers spawned, wait for done...
Round 0: Error on 0x5aa00, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x395200, expected 32746, got 32743, 3 data loss!
Round 0: Error on 0x3fd000, expected 32746, got 32737, 9 data loss!
Round 0 Failed, 15 data loss!
This reproducer spawns multiple threads sharing the same memory region
using a small swap device. Every two threads updates mapped pages one by
one in opposite direction trying to create a race, with one dedicated
thread keep swapping out the data out using madvise.
The reproducer created a reproduce rate of about once every 5 minutes, so
the race should be totally possible in production.
After this patch, I ran the reproducer for over a few hundred rounds and
no data loss observed.
Performance overhead is minimal, microbenchmark swapin 10G from 32G
zram:
Before: 10934698 us
After: 11157121 us
Cached: 13155355 us (Dropping SWP_SYNCHRONOUS_IO flag)
[[email protected]: v4] |
| In the Linux kernel, the following vulnerability has been resolved:
md: Don't ignore suspended array in md_check_recovery()
mddev_suspend() never stop sync_thread, hence it doesn't make sense to
ignore suspended array in md_check_recovery(), which might cause
sync_thread can't be unregistered.
After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following
hang can be triggered by test shell/integrity-caching.sh:
1) suspend the array:
raid_postsuspend
mddev_suspend
2) stop the array:
raid_dtr
md_stop
__md_stop_writes
stop_sync_thread
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_wakeup_thread_directly(mddev->sync_thread);
wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3) sync thread done:
md_do_sync
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
md_wakeup_thread(mddev->thread);
4) daemon thread can't unregister sync thread:
md_check_recovery
if (mddev->suspended)
return; -> return directly
md_read_sync_thread
clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
-> MD_RECOVERY_RUNNING can't be cleared, hence step 2 hang;
This problem is not just related to dm-raid, fix it by ignoring
suspended array in md_check_recovery(). And follow up patches will
improve dm-raid better to frozen sync thread during suspend. |
| In the Linux kernel, the following vulnerability has been resolved:
md: Don't ignore read-only array in md_check_recovery()
Usually if the array is not read-write, md_check_recovery() won't
register new sync_thread in the first place. And if the array is
read-write and sync_thread is registered, md_set_readonly() will
unregister sync_thread before setting the array read-only. md/raid
follow this behavior hence there is no problem.
After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following
hang can be triggered by test shell/integrity-caching.sh:
1) array is read-only. dm-raid update super block:
rs_update_sbs
ro = mddev->ro
mddev->ro = 0
-> set array read-write
md_update_sb
2) register new sync thread concurrently.
3) dm-raid set array back to read-only:
rs_update_sbs
mddev->ro = ro
4) stop the array:
raid_dtr
md_stop
stop_sync_thread
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
md_wakeup_thread_directly(mddev->sync_thread);
wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5) sync thread done:
md_do_sync
set_bit(MD_RECOVERY_DONE, &mddev->recovery);
md_wakeup_thread(mddev->thread);
6) daemon thread can't unregister sync thread:
md_check_recovery
if (!md_is_rdwr(mddev) &&
!test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
return;
-> -> MD_RECOVERY_RUNNING can't be cleared, hence step 4 hang;
The root cause is that dm-raid manipulate 'mddev->ro' by itself,
however, dm-raid really should stop sync thread before setting the
array read-only. Unfortunately, I need to read more code before I
can refacter the handler of 'mddev->ro' in dm-raid, hence let's fix
the problem the easy way for now to prevent dm-raid regression. |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Ensure safe user copy of completion record
If CONFIG_HARDENED_USERCOPY is enabled, copying completion record from
event log cache to user triggers a kernel bug.
[ 1987.159822] usercopy: Kernel memory exposure attempt detected from SLUB object 'dsa0' (offset 74, size 31)!
[ 1987.170845] ------------[ cut here ]------------
[ 1987.176086] kernel BUG at mm/usercopy.c:102!
[ 1987.180946] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 1987.186866] CPU: 17 PID: 528 Comm: kworker/17:1 Not tainted 6.8.0-rc2+ #5
[ 1987.194537] Hardware name: Intel Corporation AvenueCity/AvenueCity, BIOS BHSDCRB1.86B.2492.D03.2307181620 07/18/2023
[ 1987.206405] Workqueue: wq0.0 idxd_evl_fault_work [idxd]
[ 1987.212338] RIP: 0010:usercopy_abort+0x72/0x90
[ 1987.217381] Code: 58 65 9c 50 48 c7 c2 17 85 61 9c 57 48 c7 c7 98 fd 6b 9c 48 0f 44 d6 48 c7 c6 b3 08 62 9c 4c 89 d1 49 0f 44 f3 e8 1e 2e d5 ff <0f> 0b 49 c7 c1 9e 42 61 9c 4c 89 cf 4d 89 c8 eb a9 66 66 2e 0f 1f
[ 1987.238505] RSP: 0018:ff62f5cf20607d60 EFLAGS: 00010246
[ 1987.244423] RAX: 000000000000005f RBX: 000000000000001f RCX: 0000000000000000
[ 1987.252480] RDX: 0000000000000000 RSI: ffffffff9c61429e RDI: 00000000ffffffff
[ 1987.260538] RBP: ff62f5cf20607d78 R08: ff2a6a89ef3fffe8 R09: 00000000fffeffff
[ 1987.268595] R10: ff2a6a89eed00000 R11: 0000000000000003 R12: ff2a66934849c89a
[ 1987.276652] R13: 0000000000000001 R14: ff2a66934849c8b9 R15: ff2a66934849c899
[ 1987.284710] FS: 0000000000000000(0000) GS:ff2a66b22fe40000(0000) knlGS:0000000000000000
[ 1987.293850] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1987.300355] CR2: 00007fe291a37000 CR3: 000000010fbd4005 CR4: 0000000000f71ef0
[ 1987.308413] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1987.316470] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[ 1987.324527] PKRU: 55555554
[ 1987.327622] Call Trace:
[ 1987.330424] <TASK>
[ 1987.332826] ? show_regs+0x6e/0x80
[ 1987.336703] ? die+0x3c/0xa0
[ 1987.339988] ? do_trap+0xd4/0xf0
[ 1987.343662] ? do_error_trap+0x75/0xa0
[ 1987.347922] ? usercopy_abort+0x72/0x90
[ 1987.352277] ? exc_invalid_op+0x57/0x80
[ 1987.356634] ? usercopy_abort+0x72/0x90
[ 1987.360988] ? asm_exc_invalid_op+0x1f/0x30
[ 1987.365734] ? usercopy_abort+0x72/0x90
[ 1987.370088] __check_heap_object+0xb7/0xd0
[ 1987.374739] __check_object_size+0x175/0x2d0
[ 1987.379588] idxd_copy_cr+0xa9/0x130 [idxd]
[ 1987.384341] idxd_evl_fault_work+0x127/0x390 [idxd]
[ 1987.389878] process_one_work+0x13e/0x300
[ 1987.394435] ? __pfx_worker_thread+0x10/0x10
[ 1987.399284] worker_thread+0x2f7/0x420
[ 1987.403544] ? _raw_spin_unlock_irqrestore+0x2b/0x50
[ 1987.409171] ? __pfx_worker_thread+0x10/0x10
[ 1987.414019] kthread+0x107/0x140
[ 1987.417693] ? __pfx_kthread+0x10/0x10
[ 1987.421954] ret_from_fork+0x3d/0x60
[ 1987.426019] ? __pfx_kthread+0x10/0x10
[ 1987.430281] ret_from_fork_asm+0x1b/0x30
[ 1987.434744] </TASK>
The issue arises because event log cache is created using
kmem_cache_create() which is not suitable for user copy.
Fix the issue by creating event log cache with
kmem_cache_create_usercopy(), ensuring safe user copy. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/srpt: Support specifying the srpt_service_guid parameter
Make loading ib_srpt with this parameter set work. The current behavior is
that setting that parameter while loading the ib_srpt kernel module
triggers the following kernel crash:
BUG: kernel NULL pointer dereference, address: 0000000000000000
Call Trace:
<TASK>
parse_one+0x18c/0x1d0
parse_args+0xe1/0x230
load_module+0x8de/0xa60
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x181/0x240
__x64_sys_finit_module+0x5a/0xb0
do_syscall_64+0x5f/0xe0
entry_SYSCALL_64_after_hwframe+0x6e/0x76 |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/qedr: Fix qedr_create_user_qp error flow
Avoid the following warning by making sure to free the allocated
resources in case that qedr_init_user_queue() fail.
-----------[ cut here ]-----------
WARNING: CPU: 0 PID: 143192 at drivers/infiniband/core/rdma_core.c:874 uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Modules linked in: tls target_core_user uio target_core_pscsi target_core_file target_core_iblock ib_srpt ib_srp scsi_transport_srp nfsd nfs_acl rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace fscache netfs 8021q garp mrp stp llc ext4 mbcache jbd2 opa_vnic ib_umad ib_ipoib sunrpc rdma_ucm ib_isert iscsi_target_mod target_core_mod ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm hfi1 intel_rapl_msr intel_rapl_common mgag200 qedr sb_edac drm_shmem_helper rdmavt x86_pkg_temp_thermal drm_kms_helper intel_powerclamp ib_uverbs coretemp i2c_algo_bit kvm_intel dell_wmi_descriptor ipmi_ssif sparse_keymap kvm ib_core rfkill syscopyarea sysfillrect video sysimgblt irqbypass ipmi_si ipmi_devintf fb_sys_fops rapl iTCO_wdt mxm_wmi iTCO_vendor_support intel_cstate pcspkr dcdbas intel_uncore ipmi_msghandler lpc_ich acpi_power_meter mei_me mei fuse drm xfs libcrc32c qede sd_mod ahci libahci t10_pi sg crct10dif_pclmul crc32_pclmul crc32c_intel qed libata tg3
ghash_clmulni_intel megaraid_sas crc8 wmi [last unloaded: ib_srpt]
CPU: 0 PID: 143192 Comm: fi_rdm_tagged_p Kdump: loaded Not tainted 5.14.0-408.el9.x86_64 #1
Hardware name: Dell Inc. PowerEdge R430/03XKDV, BIOS 2.14.0 01/25/2022
RIP: 0010:uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
Code: 5d 41 5c 41 5d 41 5e e9 0f 26 1b dd 48 89 df e8 67 6a ff ff 49 8b 86 10 01 00 00 48 85 c0 74 9c 4c 89 e7 e8 83 c0 cb dd eb 92 <0f> 0b eb be 0f 0b be 04 00 00 00 48 89 df e8 8e f5 ff ff e9 6d ff
RSP: 0018:ffffb7c6cadfbc60 EFLAGS: 00010286
RAX: ffff8f0889ee3f60 RBX: ffff8f088c1a5200 RCX: 00000000802a0016
RDX: 00000000802a0017 RSI: 0000000000000001 RDI: ffff8f0880042600
RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
R10: ffff8f11fffd5000 R11: 0000000000039000 R12: ffff8f0d5b36cd80
R13: ffff8f088c1a5250 R14: ffff8f1206d91000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8f11d7c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000147069200e20 CR3: 00000001c7210002 CR4: 00000000001706f0
Call Trace:
<TASK>
? show_trace_log_lvl+0x1c4/0x2df
? show_trace_log_lvl+0x1c4/0x2df
? ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? __warn+0x81/0x110
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
? report_bug+0x10a/0x140
? handle_bug+0x3c/0x70
? exc_invalid_op+0x14/0x70
? asm_exc_invalid_op+0x16/0x20
? uverbs_destroy_ufile_hw+0xcf/0xf0 [ib_uverbs]
ib_uverbs_close+0x1f/0xb0 [ib_uverbs]
__fput+0x94/0x250
task_work_run+0x5c/0x90
do_exit+0x270/0x4a0
do_group_exit+0x2d/0x90
get_signal+0x87c/0x8c0
arch_do_signal_or_restart+0x25/0x100
? ib_uverbs_ioctl+0xc2/0x110 [ib_uverbs]
exit_to_user_mode_loop+0x9c/0x130
exit_to_user_mode_prepare+0xb6/0x100
syscall_exit_to_user_mode+0x12/0x40
do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? syscall_exit_work+0x103/0x130
? syscall_exit_to_user_mode+0x22/0x40
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
? common_interrupt+0x43/0xa0
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x1470abe3ec6b
Code: Unable to access opcode bytes at RIP 0x1470abe3ec41.
RSP: 002b:00007fff13ce9108 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: fffffffffffffffc RBX: 00007fff13ce9218 RCX: 00001470abe3ec6b
RDX: 00007fff13ce9200 RSI: 00000000c0181b01 RDI: 0000000000000004
RBP: 00007fff13ce91e0 R08: 0000558d9655da10 R09: 0000558d9655dd00
R10: 00007fff13ce95c0 R11: 0000000000000246 R12: 00007fff13ce9358
R13: 0000000000000013 R14: 0000558d9655db50 R15: 00007fff13ce9470
</TASK>
--[ end trace 888a9b92e04c5c97 ]-- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: use the backlog for mirred ingress
The test Davide added in commit ca22da2fbd69 ("act_mirred: use the backlog
for nested calls to mirred ingress") hangs our testing VMs every 10 or so
runs, with the familiar tcp_v4_rcv -> tcp_v4_rcv deadlock reported by
lockdep.
The problem as previously described by Davide (see Link) is that
if we reverse flow of traffic with the redirect (egress -> ingress)
we may reach the same socket which generated the packet. And we may
still be holding its socket lock. The common solution to such deadlocks
is to put the packet in the Rx backlog, rather than run the Rx path
inline. Do that for all egress -> ingress reversals, not just once
we started to nest mirred calls.
In the past there was a concern that the backlog indirection will
lead to loss of error reporting / less accurate stats. But the current
workaround does not seem to address the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancel
The following race is possible between bpf_timer_cancel_and_free
and bpf_timer_cancel. It will lead a UAF on the timer->timer.
bpf_timer_cancel();
spin_lock();
t = timer->time;
spin_unlock();
bpf_timer_cancel_and_free();
spin_lock();
t = timer->timer;
timer->timer = NULL;
spin_unlock();
hrtimer_cancel(&t->timer);
kfree(t);
/* UAF on t */
hrtimer_cancel(&t->timer);
In bpf_timer_cancel_and_free, this patch frees the timer->timer
after a rcu grace period. This requires a rcu_head addition
to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init,
this does not need a kfree_rcu because it is still under the
spin_lock and timer->timer has not been visible by others yet.
In bpf_timer_cancel, rcu_read_lock() is added because this helper
can be used in a non rcu critical section context (e.g. from
a sleepable bpf prog). Other timer->timer usages in helpers.c
have been audited, bpf_timer_cancel() is the only place where
timer->timer is used outside of the spin_lock.
Another solution considered is to mark a t->flag in bpf_timer_cancel
and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free,
it busy waits for the flag to be cleared before kfree(t). This patch
goes with a straight forward solution and frees timer->timer after
a rcu grace period. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix possible use-after-free and null-ptr-deref
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: fix possible use-after-free and memory leaks in devlink_init()
The pernet operations structure for the subsystem must be registered
before registering the generic netlink family.
Make an unregister in case of unsuccessful registration. |
| In the Linux kernel, the following vulnerability has been resolved:
arp: Prevent overflow in arp_req_get().
syzkaller reported an overflown write in arp_req_get(). [0]
When ioctl(SIOCGARP) is issued, arp_req_get() looks up an neighbour
entry and copies neigh->ha to struct arpreq.arp_ha.sa_data.
The arp_ha here is struct sockaddr, not struct sockaddr_storage, so
the sa_data buffer is just 14 bytes.
In the splat below, 2 bytes are overflown to the next int field,
arp_flags. We initialise the field just after the memcpy(), so it's
not a problem.
However, when dev->addr_len is greater than 22 (e.g. MAX_ADDR_LEN),
arp_netmask is overwritten, which could be set as htonl(0xFFFFFFFFUL)
in arp_ioctl() before calling arp_req_get().
To avoid the overflow, let's limit the max length of memcpy().
Note that commit b5f0de6df6dc ("net: dev: Convert sa_data to flexible
array in struct sockaddr") just silenced syzkaller.
[0]:
memcpy: detected field-spanning write (size 16) of single field "r->arp_ha.sa_data" at net/ipv4/arp.c:1128 (size 14)
WARNING: CPU: 0 PID: 144638 at net/ipv4/arp.c:1128 arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Modules linked in:
CPU: 0 PID: 144638 Comm: syz-executor.4 Not tainted 6.1.74 #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-debian-1.16.0-5 04/01/2014
RIP: 0010:arp_req_get+0x411/0x4a0 net/ipv4/arp.c:1128
Code: fd ff ff e8 41 42 de fb b9 0e 00 00 00 4c 89 fe 48 c7 c2 20 6d ab 87 48 c7 c7 80 6d ab 87 c6 05 25 af 72 04 01 e8 5f 8d ad fb <0f> 0b e9 6c fd ff ff e8 13 42 de fb be 03 00 00 00 4c 89 e7 e8 a6
RSP: 0018:ffffc900050b7998 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff88803a815000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8641a44a RDI: 0000000000000001
RBP: ffffc900050b7a98 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 203a7970636d656d R12: ffff888039c54000
R13: 1ffff92000a16f37 R14: ffff88803a815084 R15: 0000000000000010
FS: 00007f172bf306c0(0000) GS:ffff88805aa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f172b3569f0 CR3: 0000000057f12005 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
arp_ioctl+0x33f/0x4b0 net/ipv4/arp.c:1261
inet_ioctl+0x314/0x3a0 net/ipv4/af_inet.c:981
sock_do_ioctl+0xdf/0x260 net/socket.c:1204
sock_ioctl+0x3ef/0x650 net/socket.c:1321
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x18e/0x220 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x37/0x90 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x64/0xce
RIP: 0033:0x7f172b262b8d
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f172bf300b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 00007f172b3abf80 RCX: 00007f172b262b8d
RDX: 0000000020000000 RSI: 0000000000008954 RDI: 0000000000000003
RBP: 00007f172b2d3493 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007f172b3abf80 R15: 00007f172bf10000
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix possible deadlock during netlink dump operation
Recently, I've been hitting following deadlock warning during dpll pin
dump:
[52804.637962] ======================================================
[52804.638536] WARNING: possible circular locking dependency detected
[52804.639111] 6.8.0-rc2jiri+ #1 Not tainted
[52804.639529] ------------------------------------------------------
[52804.640104] python3/2984 is trying to acquire lock:
[52804.640581] ffff88810e642678 (nlk_cb_mutex-GENERIC){+.+.}-{3:3}, at: netlink_dump+0xb3/0x780
[52804.641417]
but task is already holding lock:
[52804.642010] ffffffff83bde4c8 (dpll_lock){+.+.}-{3:3}, at: dpll_lock_dumpit+0x13/0x20
[52804.642747]
which lock already depends on the new lock.
[52804.643551]
the existing dependency chain (in reverse order) is:
[52804.644259]
-> #1 (dpll_lock){+.+.}-{3:3}:
[52804.644836] lock_acquire+0x174/0x3e0
[52804.645271] __mutex_lock+0x119/0x1150
[52804.645723] dpll_lock_dumpit+0x13/0x20
[52804.646169] genl_start+0x266/0x320
[52804.646578] __netlink_dump_start+0x321/0x450
[52804.647056] genl_family_rcv_msg_dumpit+0x155/0x1e0
[52804.647575] genl_rcv_msg+0x1ed/0x3b0
[52804.648001] netlink_rcv_skb+0xdc/0x210
[52804.648440] genl_rcv+0x24/0x40
[52804.648831] netlink_unicast+0x2f1/0x490
[52804.649290] netlink_sendmsg+0x36d/0x660
[52804.649742] __sock_sendmsg+0x73/0xc0
[52804.650165] __sys_sendto+0x184/0x210
[52804.650597] __x64_sys_sendto+0x72/0x80
[52804.651045] do_syscall_64+0x6f/0x140
[52804.651474] entry_SYSCALL_64_after_hwframe+0x46/0x4e
[52804.652001]
-> #0 (nlk_cb_mutex-GENERIC){+.+.}-{3:3}:
[52804.652650] check_prev_add+0x1ae/0x1280
[52804.653107] __lock_acquire+0x1ed3/0x29a0
[52804.653559] lock_acquire+0x174/0x3e0
[52804.653984] __mutex_lock+0x119/0x1150
[52804.654423] netlink_dump+0xb3/0x780
[52804.654845] __netlink_dump_start+0x389/0x450
[52804.655321] genl_family_rcv_msg_dumpit+0x155/0x1e0
[52804.655842] genl_rcv_msg+0x1ed/0x3b0
[52804.656272] netlink_rcv_skb+0xdc/0x210
[52804.656721] genl_rcv+0x24/0x40
[52804.657119] netlink_unicast+0x2f1/0x490
[52804.657570] netlink_sendmsg+0x36d/0x660
[52804.658022] __sock_sendmsg+0x73/0xc0
[52804.658450] __sys_sendto+0x184/0x210
[52804.658877] __x64_sys_sendto+0x72/0x80
[52804.659322] do_syscall_64+0x6f/0x140
[52804.659752] entry_SYSCALL_64_after_hwframe+0x46/0x4e
[52804.660281]
other info that might help us debug this:
[52804.661077] Possible unsafe locking scenario:
[52804.661671] CPU0 CPU1
[52804.662129] ---- ----
[52804.662577] lock(dpll_lock);
[52804.662924] lock(nlk_cb_mutex-GENERIC);
[52804.663538] lock(dpll_lock);
[52804.664073] lock(nlk_cb_mutex-GENERIC);
[52804.664490]
The issue as follows: __netlink_dump_start() calls control->start(cb)
with nlk->cb_mutex held. In control->start(cb) the dpll_lock is taken.
Then nlk->cb_mutex is released and taken again in netlink_dump(), while
dpll_lock still being held. That leads to ABBA deadlock when another
CPU races with the same operation.
Fix this by moving dpll_lock taking into dumpit() callback which ensures
correct lock taking order. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid-of: fix NULL-deref on failed power up
A while back the I2C HID implementation was split in an ACPI and OF
part, but the new OF driver never initialises the client pointer which
is dereferenced on power-up failures. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: really cope with fastopen race
Fastopen and PM-trigger subflow shutdown can race, as reported by
syzkaller.
In my first attempt to close such race, I missed the fact that
the subflow status can change again before the subflow_state_change
callback is invoked.
Address the issue additionally copying with all the states directly
reachable from TCP_FIN_WAIT1. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hsr: remove WARN_ONCE() in send_hsr_supervision_frame()
Syzkaller reported [1] hitting a warning after failing to allocate
resources for skb in hsr_init_skb(). Since a WARN_ONCE() call will
not help much in this case, it might be prudent to switch to
netdev_warn_once(). At the very least it will suppress syzkaller
reports such as [1].
Just in case, use netdev_warn_once() in send_prp_supervision_frame()
for similar reasons.
[1]
HSR: Could not send supervision frame
WARNING: CPU: 1 PID: 85 at net/hsr/hsr_device.c:294 send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
RIP: 0010:send_hsr_supervision_frame+0x60a/0x810 net/hsr/hsr_device.c:294
...
Call Trace:
<IRQ>
hsr_announce+0x114/0x370 net/hsr/hsr_device.c:382
call_timer_fn+0x193/0x590 kernel/time/timer.c:1700
expire_timers kernel/time/timer.c:1751 [inline]
__run_timers+0x764/0xb20 kernel/time/timer.c:2022
run_timer_softirq+0x58/0xd0 kernel/time/timer.c:2035
__do_softirq+0x21a/0x8de kernel/softirq.c:553
invoke_softirq kernel/softirq.c:427 [inline]
__irq_exit_rcu kernel/softirq.c:632 [inline]
irq_exit_rcu+0xb7/0x120 kernel/softirq.c:644
sysvec_apic_timer_interrupt+0x95/0xb0 arch/x86/kernel/apic/apic.c:1076
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:649
...
This issue is also found in older kernels (at least up to 5.10). |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix double-free of blocks due to wrong extents moved_len
In ext4_move_extents(), moved_len is only updated when all moves are
successfully executed, and only discards orig_inode and donor_inode
preallocations when moved_len is not zero. When the loop fails to exit
after successfully moving some extents, moved_len is not updated and
remains at 0, so it does not discard the preallocations.
If the moved extents overlap with the preallocated extents, the
overlapped extents are freed twice in ext4_mb_release_inode_pa() and
ext4_process_freed_data() (as described in commit 94d7c16cbbbd ("ext4:
Fix double-free of blocks with EXT4_IOC_MOVE_EXT")), and bb_free is
incremented twice. Hence when trim is executed, a zero-division bug is
triggered in mb_update_avg_fragment_size() because bb_free is not zero
and bb_fragments is zero.
Therefore, update move_len after each extent move to avoid the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Fix race condition between netvsc_probe and netvsc_remove
In commit ac5047671758 ("hv_netvsc: Disable NAPI before closing the
VMBus channel"), napi_disable was getting called for all channels,
including all subchannels without confirming if they are enabled or not.
This caused hv_netvsc getting hung at napi_disable, when netvsc_probe()
has finished running but nvdev->subchan_work has not started yet.
netvsc_subchan_work() -> rndis_set_subchannel() has not created the
sub-channels and because of that netvsc_sc_open() is not running.
netvsc_remove() calls cancel_work_sync(&nvdev->subchan_work), for which
netvsc_subchan_work did not run.
netif_napi_add() sets the bit NAPI_STATE_SCHED because it ensures NAPI
cannot be scheduled. Then netvsc_sc_open() -> napi_enable will clear the
NAPIF_STATE_SCHED bit, so it can be scheduled. napi_disable() does the
opposite.
Now during netvsc_device_remove(), when napi_disable is called for those
subchannels, napi_disable gets stuck on infinite msleep.
This fix addresses this problem by ensuring that napi_disable() is not
getting called for non-enabled NAPI struct.
But netif_napi_del() is still necessary for these non-enabled NAPI struct
for cleanup purpose.
Call trace:
[ 654.559417] task:modprobe state:D stack: 0 pid: 2321 ppid: 1091 flags:0x00004002
[ 654.568030] Call Trace:
[ 654.571221] <TASK>
[ 654.573790] __schedule+0x2d6/0x960
[ 654.577733] schedule+0x69/0xf0
[ 654.581214] schedule_timeout+0x87/0x140
[ 654.585463] ? __bpf_trace_tick_stop+0x20/0x20
[ 654.590291] msleep+0x2d/0x40
[ 654.593625] napi_disable+0x2b/0x80
[ 654.597437] netvsc_device_remove+0x8a/0x1f0 [hv_netvsc]
[ 654.603935] rndis_filter_device_remove+0x194/0x1c0 [hv_netvsc]
[ 654.611101] ? do_wait_intr+0xb0/0xb0
[ 654.615753] netvsc_remove+0x7c/0x120 [hv_netvsc]
[ 654.621675] vmbus_remove+0x27/0x40 [hv_vmbus] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: fix double-free bug
The storage for the TLV PC register data wasn't done like all
the other storage in the drv->fw area, which is cleared at the
end of deallocation. Therefore, the freeing must also be done
differently, explicitly NULL'ing it out after the free, since
otherwise there's a nasty double-free bug here if a file fails
to load after this has been parsed, and we get another free
later (e.g. because no other file exists.) Fix that by adding
the missing NULL assignment. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: fix a crash when we run out of stations
A DoS tool that injects loads of authentication frames made our AP
crash. The iwl_mvm_is_dup() function couldn't find the per-queue
dup_data which was not allocated.
The root cause for that is that we ran out of stations in the firmware
and we didn't really add the station to the firmware, yet we didn't
return an error to mac80211.
Mac80211 was thinking that we have the station and because of that,
sta_info::uploaded was set to 1. This allowed
ieee80211_find_sta_by_ifaddr() to return a valid station object, but
that ieee80211_sta didn't have any iwl_mvm_sta object initialized and
that caused the crash mentioned earlier when we got Rx on that station. |
| In the Linux kernel, the following vulnerability has been resolved:
net: atlantic: Fix DMA mapping for PTP hwts ring
Function aq_ring_hwts_rx_alloc() maps extra AQ_CFG_RXDS_DEF bytes
for PTP HWTS ring but then generic aq_ring_free() does not take this
into account.
Create and use a specific function to free HWTS ring to fix this
issue.
Trace:
[ 215.351607] ------------[ cut here ]------------
[ 215.351612] DMA-API: atlantic 0000:4b:00.0: device driver frees DMA memory with different size [device address=0x00000000fbdd0000] [map size=34816 bytes] [unmap size=32768 bytes]
[ 215.351635] WARNING: CPU: 33 PID: 10759 at kernel/dma/debug.c:988 check_unmap+0xa6f/0x2360
...
[ 215.581176] Call Trace:
[ 215.583632] <TASK>
[ 215.585745] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.590114] ? show_trace_log_lvl+0x1c4/0x2df
[ 215.594497] ? debug_dma_free_coherent+0x196/0x210
[ 215.599305] ? check_unmap+0xa6f/0x2360
[ 215.603147] ? __warn+0xca/0x1d0
[ 215.606391] ? check_unmap+0xa6f/0x2360
[ 215.610237] ? report_bug+0x1ef/0x370
[ 215.613921] ? handle_bug+0x3c/0x70
[ 215.617423] ? exc_invalid_op+0x14/0x50
[ 215.621269] ? asm_exc_invalid_op+0x16/0x20
[ 215.625480] ? check_unmap+0xa6f/0x2360
[ 215.629331] ? mark_lock.part.0+0xca/0xa40
[ 215.633445] debug_dma_free_coherent+0x196/0x210
[ 215.638079] ? __pfx_debug_dma_free_coherent+0x10/0x10
[ 215.643242] ? slab_free_freelist_hook+0x11d/0x1d0
[ 215.648060] dma_free_attrs+0x6d/0x130
[ 215.651834] aq_ring_free+0x193/0x290 [atlantic]
[ 215.656487] aq_ptp_ring_free+0x67/0x110 [atlantic]
...
[ 216.127540] ---[ end trace 6467e5964dd2640b ]---
[ 216.132160] DMA-API: Mapped at:
[ 216.132162] debug_dma_alloc_coherent+0x66/0x2f0
[ 216.132165] dma_alloc_attrs+0xf5/0x1b0
[ 216.132168] aq_ring_hwts_rx_alloc+0x150/0x1f0 [atlantic]
[ 216.132193] aq_ptp_ring_alloc+0x1bb/0x540 [atlantic]
[ 216.132213] aq_nic_init+0x4a1/0x760 [atlantic] |