| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Use after free in Windows Connected Devices Platform Service allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows SMBv3 Client allows an authorized attacker to execute code over a network. |
| In the Linux kernel, the following vulnerability has been resolved:
wireguard: netlink: check for dangling peer via is_dead instead of empty list
If all peers are removed via wg_peer_remove_all(), rather than setting
peer_list to empty, the peer is added to a temporary list with a head on
the stack of wg_peer_remove_all(). If a netlink dump is resumed and the
cursored peer is one that has been removed via wg_peer_remove_all(), it
will iterate from that peer and then attempt to dump freed peers.
Fix this by instead checking peer->is_dead, which was explictly created
for this purpose. Also move up the device_update_lock lockdep assertion,
since reading is_dead relies on that.
It can be reproduced by a small script like:
echo "Setting config..."
ip link add dev wg0 type wireguard
wg setconf wg0 /big-config
(
while true; do
echo "Showing config..."
wg showconf wg0 > /dev/null
done
) &
sleep 4
wg setconf wg0 <(printf "[Peer]\nPublicKey=$(wg genkey)\n")
Resulting in:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x182a/0x1b20
Read of size 8 at addr ffff88811956ec70 by task wg/59
CPU: 2 PID: 59 Comm: wg Not tainted 6.8.0-rc2-debug+ #5
Call Trace:
<TASK>
dump_stack_lvl+0x47/0x70
print_address_description.constprop.0+0x2c/0x380
print_report+0xab/0x250
kasan_report+0xba/0xf0
__lock_acquire+0x182a/0x1b20
lock_acquire+0x191/0x4b0
down_read+0x80/0x440
get_peer+0x140/0xcb0
wg_get_device_dump+0x471/0x1130 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm->lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.
Note, the "obvious" alternative of using local variables doesn't fully
resolve the bug, as region->pages is also dynamically allocated. I.e. the
region structure itself would be fine, but region->pages could be freed.
Flushing multiple pages under kvm->lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes
When moving a station out of a VLAN and deleting the VLAN afterwards, the
fast_rx entry still holds a pointer to the VLAN's netdev, which can cause
use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx
after the VLAN change. |
| A use-after-free vulnerability exists in the PDF file parsing of Foxit PDF Reader before 2025.2.1, 14.0.1, and 13.2.1 on Windows. A PDF object managed by multiple parent objects could be freed while still being referenced, potentially allowing a remote attacker to execute arbitrary code. |
| A use-after-free vulnerability exists in the annotation handling of Foxit PDF Reader before 2025.2.1, 14.0.1, and 13.2.1 on Windows and MacOS. When opening a PDF containing specially crafted JavaScript, a pointer to memory that has already been freed may be accessed or dereferenced, potentially allowing a remote attacker to execute arbitrary code. |
| A use-after-free vulnerability exists in the AcroForm handling of Foxit PDF Reader and Foxit PDF Editor before 2025.2.1,14.0.1 and 13.2.1
on Windows
. When opening a PDF containing specially crafted JavaScript, a pointer to memory that has already been freed may be accessed or dereferenced, potentially allowing a remote attacker to execute arbitrary code. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix possible use-after-free issue in ftrace_location()
KASAN reports a bug:
BUG: KASAN: use-after-free in ftrace_location+0x90/0x120
Read of size 8 at addr ffff888141d40010 by task insmod/424
CPU: 8 PID: 424 Comm: insmod Tainted: G W 6.9.0-rc2+
[...]
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xa0
print_report+0xcf/0x610
kasan_report+0xb5/0xe0
ftrace_location+0x90/0x120
register_kprobe+0x14b/0xa40
kprobe_init+0x2d/0xff0 [kprobe_example]
do_one_initcall+0x8f/0x2d0
do_init_module+0x13a/0x3c0
load_module+0x3082/0x33d0
init_module_from_file+0xd2/0x130
__x64_sys_finit_module+0x306/0x440
do_syscall_64+0x68/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79
The root cause is that, in lookup_rec(), ftrace record of some address
is being searched in ftrace pages of some module, but those ftrace pages
at the same time is being freed in ftrace_release_mod() as the
corresponding module is being deleted:
CPU1 | CPU2
register_kprobes() { | delete_module() {
check_kprobe_address_safe() { |
arch_check_ftrace_location() { |
ftrace_location() { |
lookup_rec() // USE! | ftrace_release_mod() // Free!
To fix this issue:
1. Hold rcu lock as accessing ftrace pages in ftrace_location_range();
2. Use ftrace_location_range() instead of lookup_rec() in
ftrace_location();
3. Call synchronize_rcu() before freeing any ftrace pages both in
ftrace_process_locs()/ftrace_release_mod()/ftrace_free_mem(). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix UAF for cq async event
The refcount of CQ is not protected by locks. When CQ asynchronous
events and CQ destruction are concurrent, CQ may have been released,
which will cause UAF.
Use the xa_lock() to protect the CQ refcount. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| A use-after-free in the ADTSAudioFileSource::samplingFrequency() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via supplying a crafted ADTS/AAC file. |
| In the Linux kernel, the following vulnerability has been resolved:
jbd2: fix potential use-after-free in jbd2_fc_wait_bufs
In 'jbd2_fc_wait_bufs' use 'bh' after put buffer head reference count
which may lead to use-after-free.
So judge buffer if uptodate before put buffer head reference count. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvbdev: adopts refcnt to avoid UAF
dvb_unregister_device() is known that prone to use-after-free.
That is, the cleanup from dvb_unregister_device() releases the dvb_device
even if there are pointers stored in file->private_data still refer to it.
This patch adds a reference counter into struct dvb_device and delays its
deallocation until no pointer refers to the object. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: Do not free q_vector unless new one was allocated
Avoid potential use-after-free condition under memory pressure. If the
kzalloc() fails, q_vector will be freed but left in the original
adapter->q_vector[v_idx] array position. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix use-after-free on source server when doing inter-server copy
Use-after-free occurred when the laundromat tried to free expired
cpntf_state entry on the s2s_cp_stateids list after inter-server
copy completed. The sc_cp_list that the expired copy state was
inserted on was already freed.
When COPY completes, the Linux client normally sends LOCKU(lock_state x),
FREE_STATEID(lock_state x) and CLOSE(open_state y) to the source server.
The nfs4_put_stid call from nfsd4_free_stateid cleans up the copy state
from the s2s_cp_stateids list before freeing the lock state's stid.
However, sometimes the CLOSE was sent before the FREE_STATEID request.
When this happens, the nfsd4_close_open_stateid call from nfsd4_close
frees all lock states on its st_locks list without cleaning up the copy
state on the sc_cp_list list. When the time the FREE_STATEID arrives the
server returns BAD_STATEID since the lock state was freed. This causes
the use-after-free error to occur when the laundromat tries to free
the expired cpntf_state.
This patch adds a call to nfs4_free_cpntf_statelist in
nfsd4_close_open_stateid to clean up the copy state before calling
free_ol_stateid_reaplist to free the lock state's stid on the reaplist. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: unset reloc control if transaction commit fails in prepare_to_relocate()
In btrfs_relocate_block_group(), the rc is allocated. Then
btrfs_relocate_block_group() calls
relocate_block_group()
prepare_to_relocate()
set_reloc_control()
that assigns rc to the variable fs_info->reloc_ctl. When
prepare_to_relocate() returns, it calls
btrfs_commit_transaction()
btrfs_start_dirty_block_groups()
btrfs_alloc_path()
kmem_cache_zalloc()
which may fail for example (or other errors could happen). When the
failure occurs, btrfs_relocate_block_group() detects the error and frees
rc and doesn't set fs_info->reloc_ctl to NULL. After that, in
btrfs_init_reloc_root(), rc is retrieved from fs_info->reloc_ctl and
then used, which may cause a use-after-free bug.
This possible bug can be triggered by calling btrfs_ioctl_balance()
before calling btrfs_ioctl_defrag().
To fix this possible bug, in prepare_to_relocate(), check if
btrfs_commit_transaction() fails. If the failure occurs,
unset_reloc_control() is called to set fs_info->reloc_ctl to NULL.
The error log in our fault-injection testing is shown as follows:
[ 58.751070] BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
...
[ 58.753577] Call Trace:
...
[ 58.755800] kasan_report+0x45/0x60
[ 58.756066] btrfs_init_reloc_root+0x7ca/0x920 [btrfs]
[ 58.757304] record_root_in_trans+0x792/0xa10 [btrfs]
[ 58.757748] btrfs_record_root_in_trans+0x463/0x4f0 [btrfs]
[ 58.758231] start_transaction+0x896/0x2950 [btrfs]
[ 58.758661] btrfs_defrag_root+0x250/0xc00 [btrfs]
[ 58.759083] btrfs_ioctl_defrag+0x467/0xa00 [btrfs]
[ 58.759513] btrfs_ioctl+0x3c95/0x114e0 [btrfs]
...
[ 58.768510] Allocated by task 23683:
[ 58.768777] ____kasan_kmalloc+0xb5/0xf0
[ 58.769069] __kmalloc+0x227/0x3d0
[ 58.769325] alloc_reloc_control+0x10a/0x3d0 [btrfs]
[ 58.769755] btrfs_relocate_block_group+0x7aa/0x1e20 [btrfs]
[ 58.770228] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.770655] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.771071] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.771472] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.771902] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
...
[ 58.773337] Freed by task 23683:
...
[ 58.774815] kfree+0xda/0x2b0
[ 58.775038] free_reloc_control+0x1d6/0x220 [btrfs]
[ 58.775465] btrfs_relocate_block_group+0x115c/0x1e20 [btrfs]
[ 58.775944] btrfs_relocate_chunk+0xf1/0x760 [btrfs]
[ 58.776369] __btrfs_balance+0x1326/0x1f10 [btrfs]
[ 58.776784] btrfs_balance+0x3150/0x3d30 [btrfs]
[ 58.777185] btrfs_ioctl_balance+0xd84/0x1410 [btrfs]
[ 58.777621] btrfs_ioctl+0x4caa/0x114e0 [btrfs]
... |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: block range must be validated before use in ext4_mb_clear_bb()
Block range to free is validated in ext4_free_blocks() using
ext4_inode_block_valid() and then it's passed to ext4_mb_clear_bb().
However in some situations on bigalloc file system the range might be
adjusted after the validation in ext4_free_blocks() which can lead to
troubles on corrupted file systems such as one found by syzkaller that
resulted in the following BUG
kernel BUG at fs/ext4/ext4.h:3319!
PREEMPT SMP NOPTI
CPU: 28 PID: 4243 Comm: repro Kdump: loaded Not tainted 5.19.0-rc6+ #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1.fc35 04/01/2014
RIP: 0010:ext4_free_blocks+0x95e/0xa90
Call Trace:
<TASK>
? lock_timer_base+0x61/0x80
? __es_remove_extent+0x5a/0x760
? __mod_timer+0x256/0x380
? ext4_ind_truncate_ensure_credits+0x90/0x220
ext4_clear_blocks+0x107/0x1b0
ext4_free_data+0x15b/0x170
ext4_ind_truncate+0x214/0x2c0
? _raw_spin_unlock+0x15/0x30
? ext4_discard_preallocations+0x15a/0x410
? ext4_journal_check_start+0xe/0x90
? __ext4_journal_start_sb+0x2f/0x110
ext4_truncate+0x1b5/0x460
? __ext4_journal_start_sb+0x2f/0x110
ext4_evict_inode+0x2b4/0x6f0
evict+0xd0/0x1d0
ext4_enable_quotas+0x11f/0x1f0
ext4_orphan_cleanup+0x3de/0x430
? proc_create_seq_private+0x43/0x50
ext4_fill_super+0x295f/0x3ae0
? snprintf+0x39/0x40
? sget_fc+0x19c/0x330
? ext4_reconfigure+0x850/0x850
get_tree_bdev+0x16d/0x260
vfs_get_tree+0x25/0xb0
path_mount+0x431/0xa70
__x64_sys_mount+0xe2/0x120
do_syscall_64+0x5b/0x80
? do_user_addr_fault+0x1e2/0x670
? exc_page_fault+0x70/0x170
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fdf4e512ace
Fix it by making sure that the block range is properly validated before
used every time it changes in ext4_free_blocks() or ext4_mb_clear_bb(). |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix use-after-free Read in usb_udc_uevent()
The syzbot fuzzer found a race between uevent callbacks and gadget
driver unregistration that can cause a use-after-free bug:
---------------------------------------------------------------
BUG: KASAN: use-after-free in usb_udc_uevent+0x11f/0x130
drivers/usb/gadget/udc/core.c:1732
Read of size 8 at addr ffff888078ce2050 by task udevd/2968
CPU: 1 PID: 2968 Comm: udevd Not tainted 5.19.0-rc4-next-20220628-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google
06/29/2022
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:317 [inline]
print_report.cold+0x2ba/0x719 mm/kasan/report.c:433
kasan_report+0xbe/0x1f0 mm/kasan/report.c:495
usb_udc_uevent+0x11f/0x130 drivers/usb/gadget/udc/core.c:1732
dev_uevent+0x290/0x770 drivers/base/core.c:2424
---------------------------------------------------------------
The bug occurs because usb_udc_uevent() dereferences udc->driver but
does so without acquiring the udc_lock mutex, which protects this
field. If the gadget driver is unbound from the udc concurrently with
uevent processing, the driver structure may be accessed after it has
been deallocated.
To prevent the race, we make sure that the routine holds the mutex
around the racing accesses. |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of ref->proc caused by race condition
A transaction of type BINDER_TYPE_WEAK_HANDLE can fail to increment the
reference for a node. In this case, the target proc normally releases
the failed reference upon close as expected. However, if the target is
dying in parallel the call will race with binder_deferred_release(), so
the target could have released all of its references by now leaving the
cleanup of the new failed reference unhandled.
The transaction then ends and the target proc gets released making the
ref->proc now a dangling pointer. Later on, ref->node is closed and we
attempt to take spin_lock(&ref->proc->inner_lock), which leads to the
use-after-free bug reported below. Let's fix this by cleaning up the
failed reference on the spot instead of relying on the target to do so.
==================================================================
BUG: KASAN: use-after-free in _raw_spin_lock+0xa8/0x150
Write of size 4 at addr ffff5ca207094238 by task kworker/1:0/590
CPU: 1 PID: 590 Comm: kworker/1:0 Not tainted 5.19.0-rc8 #10
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
dump_backtrace.part.0+0x1d0/0x1e0
show_stack+0x18/0x70
dump_stack_lvl+0x68/0x84
print_report+0x2e4/0x61c
kasan_report+0xa4/0x110
kasan_check_range+0xfc/0x1a4
__kasan_check_write+0x3c/0x50
_raw_spin_lock+0xa8/0x150
binder_deferred_func+0x5e0/0x9b0
process_one_work+0x38c/0x5f0
worker_thread+0x9c/0x694
kthread+0x188/0x190
ret_from_fork+0x10/0x20 |