| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: add the missing IP_SET_HASH_WITH_NET0 macro for ip_set_hash_netportnet.c
The missing IP_SET_HASH_WITH_NET0 macro in ip_set_hash_netportnet can
lead to the use of wrong `CIDR_POS(c)` for calculating array offsets,
which can lead to integer underflow. As a result, it leads to slab
out-of-bound access.
This patch adds back the IP_SET_HASH_WITH_NET0 macro to
ip_set_hash_netportnet to address the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
dma-buf/dma-resv: Stop leaking on krealloc() failure
Currently dma_resv_get_fences() will leak the previously
allocated array if the fence iteration got restarted and
the krealloc_array() fails.
Free the old array by hand, and make sure we still clear
the returned *fences so the caller won't end up accessing
freed memory. Some (but not all) of the callers of
dma_resv_get_fences() seem to still trawl through the
array even when dma_resv_get_fences() failed. And let's
zero out *num_fences as well for good measure. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: don't allow to overwrite ENDPOINT0 attributes
A bad USB device is able to construct a service connection response
message with target endpoint being ENDPOINT0 which is reserved for
HTC_CTRL_RSVD_SVC and should not be modified to be used for any other
services.
Reject such service connection responses.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
skbuff: Fix a race between coalescing and releasing SKBs
Commit 1effe8ca4e34 ("skbuff: fix coalescing for page_pool fragment
recycling") allowed coalescing to proceed with non page pool page and page
pool page when @from is cloned, i.e.
to->pp_recycle --> false
from->pp_recycle --> true
skb_cloned(from) --> true
However, it actually requires skb_cloned(@from) to hold true until
coalescing finishes in this situation. If the other cloned SKB is
released while the merging is in process, from_shinfo->nr_frags will be
set to 0 toward the end of the function, causing the increment of frag
page _refcount to be unexpectedly skipped resulting in inconsistent
reference counts. Later when SKB(@to) is released, it frees the page
directly even though the page pool page is still in use, leading to
use-after-free or double-free errors. So it should be prohibited.
The double-free error message below prompted us to investigate:
BUG: Bad page state in process swapper/1 pfn:0e0d1
page:00000000c6548b28 refcount:-1 mapcount:0 mapping:0000000000000000
index:0x2 pfn:0xe0d1
flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000000 0000000000000000 ffffffff00000101 0000000000000000
raw: 0000000000000002 0000000000000000 ffffffffffffffff 0000000000000000
page dumped because: nonzero _refcount
CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 6.2.0+
Call Trace:
<IRQ>
dump_stack_lvl+0x32/0x50
bad_page+0x69/0xf0
free_pcp_prepare+0x260/0x2f0
free_unref_page+0x20/0x1c0
skb_release_data+0x10b/0x1a0
napi_consume_skb+0x56/0x150
net_rx_action+0xf0/0x350
? __napi_schedule+0x79/0x90
__do_softirq+0xc8/0x2b1
__irq_exit_rcu+0xb9/0xf0
common_interrupt+0x82/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:default_idle+0xb/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free of new block group that became unused
If a task creates a new block group and that block group becomes unused
before we finish its creation, at btrfs_create_pending_block_groups(),
then when btrfs_mark_bg_unused() is called against the block group, we
assume that the block group is currently in the list of block groups to
reclaim, and we move it out of the list of new block groups and into the
list of unused block groups. This has two consequences:
1) We move it out of the list of new block groups associated to the
current transaction. So the block group creation is not finished and
if we attempt to delete the bg because it's unused, we will not find
the block group item in the extent tree (or the new block group tree),
its device extent items in the device tree etc, resulting in the
deletion to fail due to the missing items;
2) We don't increment the reference count on the block group when we
move it to the list of unused block groups, because we assumed the
block group was on the list of block groups to reclaim, and in that
case it already has the correct reference count. However the block
group was on the list of new block groups, in which case no extra
reference was taken because it's local to the current task. This
later results in doing an extra reference count decrement when
removing the block group from the unused list, eventually leading the
reference count to 0.
This second case was caught when running generic/297 from fstests, which
produced the following assertion failure and stack trace:
[589.559] assertion failed: refcount_read(&block_group->refs) == 1, in fs/btrfs/block-group.c:4299
[589.559] ------------[ cut here ]------------
[589.559] kernel BUG at fs/btrfs/block-group.c:4299!
[589.560] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[589.560] CPU: 8 PID: 2819134 Comm: umount Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[589.560] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[589.560] RIP: 0010:btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.561] Code: 68 62 da c0 (...)
[589.561] RSP: 0018:ffffa55a8c3b3d98 EFLAGS: 00010246
[589.561] RAX: 0000000000000058 RBX: ffff8f030d7f2000 RCX: 0000000000000000
[589.562] RDX: 0000000000000000 RSI: ffffffff953f0878 RDI: 00000000ffffffff
[589.562] RBP: ffff8f030d7f2088 R08: 0000000000000000 R09: ffffa55a8c3b3c50
[589.562] R10: 0000000000000001 R11: 0000000000000001 R12: ffff8f05850b4c00
[589.562] R13: ffff8f030d7f2090 R14: ffff8f05850b4cd8 R15: dead000000000100
[589.563] FS: 00007f497fd2e840(0000) GS:ffff8f09dfc00000(0000) knlGS:0000000000000000
[589.563] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[589.563] CR2: 00007f497ff8ec10 CR3: 0000000271472006 CR4: 0000000000370ee0
[589.563] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[589.564] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[589.564] Call Trace:
[589.564] <TASK>
[589.565] ? __die_body+0x1b/0x60
[589.565] ? die+0x39/0x60
[589.565] ? do_trap+0xeb/0x110
[589.565] ? btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.566] ? do_error_trap+0x6a/0x90
[589.566] ? btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.566] ? exc_invalid_op+0x4e/0x70
[589.566] ? btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.567] ? asm_exc_invalid_op+0x16/0x20
[589.567] ? btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.567] ? btrfs_free_block_groups+0x449/0x4a0 [btrfs]
[589.567] close_ctree+0x35d/0x560 [btrfs]
[589.568] ? fsnotify_sb_delete+0x13e/0x1d0
[589.568] ? dispose_list+0x3a/0x50
[589.568] ? evict_inodes+0x151/0x1a0
[589.568] generic_shutdown_super+0x73/0x1a0
[589.569] kill_anon_super+0x14/0x30
[589.569] btrfs_kill_super+0x12/0x20 [btrfs]
[589.569] deactivate_locked
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix race on port output
assume the following setup on a single machine:
1. An openvswitch instance with one bridge and default flows
2. two network namespaces "server" and "client"
3. two ovs interfaces "server" and "client" on the bridge
4. for each ovs interface a veth pair with a matching name and 32 rx and
tx queues
5. move the ends of the veth pairs to the respective network namespaces
6. assign ip addresses to each of the veth ends in the namespaces (needs
to be the same subnet)
7. start some http server on the server network namespace
8. test if a client in the client namespace can reach the http server
when following the actions below the host has a chance of getting a cpu
stuck in a infinite loop:
1. send a large amount of parallel requests to the http server (around
3000 curls should work)
2. in parallel delete the network namespace (do not delete interfaces or
stop the server, just kill the namespace)
there is a low chance that this will cause the below kernel cpu stuck
message. If this does not happen just retry.
Below there is also the output of bpftrace for the functions mentioned
in the output.
The series of events happening here is:
1. the network namespace is deleted calling
`unregister_netdevice_many_notify` somewhere in the process
2. this sets first `NETREG_UNREGISTERING` on both ends of the veth and
then runs `synchronize_net`
3. it then calls `call_netdevice_notifiers` with `NETDEV_UNREGISTER`
4. this is then handled by `dp_device_event` which calls
`ovs_netdev_detach_dev` (if a vport is found, which is the case for
the veth interface attached to ovs)
5. this removes the rx_handlers of the device but does not prevent
packages to be sent to the device
6. `dp_device_event` then queues the vport deletion to work in
background as a ovs_lock is needed that we do not hold in the
unregistration path
7. `unregister_netdevice_many_notify` continues to call
`netdev_unregister_kobject` which sets `real_num_tx_queues` to 0
8. port deletion continues (but details are not relevant for this issue)
9. at some future point the background task deletes the vport
If after 7. but before 9. a packet is send to the ovs vport (which is
not deleted at this point in time) which forwards it to the
`dev_queue_xmit` flow even though the device is unregistering.
In `skb_tx_hash` (which is called in the `dev_queue_xmit`) path there is
a while loop (if the packet has a rx_queue recorded) that is infinite if
`dev->real_num_tx_queues` is zero.
To prevent this from happening we update `do_output` to handle devices
without carrier the same as if the device is not found (which would
be the code path after 9. is done).
Additionally we now produce a warning in `skb_tx_hash` if we will hit
the infinite loop.
bpftrace (first word is function name):
__dev_queue_xmit server: real_num_tx_queues: 1, cpu: 2, pid: 28024, tid: 28024, skb_addr: 0xffff9edb6f207000, reg_state: 1
netdev_core_pick_tx server: addr: 0xffff9f0a46d4a000 real_num_tx_queues: 1, cpu: 2, pid: 28024, tid: 28024, skb_addr: 0xffff9edb6f207000, reg_state: 1
dp_device_event server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, event 2, reg_state: 1
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
dp_device_event server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, event 6, reg_state: 2
ovs_netdev_detach_dev server: real_num_tx_queues: 1 cpu 9, pid: 21024, tid: 21024, reg_state: 2
netdev_rx_handler_unregister server: real_num_tx_queues: 1, cpu: 9, pid: 21024, tid: 21024, reg_state: 2
synchronize_rcu_expedited: cpu 9, pid: 21024, tid: 21024
netdev_rx_handler_unregister ret server: real_num_tx_queues: 1, cpu: 9, pid: 21024, tid: 21024, reg_state: 2
dp_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6/addrconf: fix a potential refcount underflow for idev
Now in addrconf_mod_rs_timer(), reference idev depends on whether
rs_timer is not pending. Then modify rs_timer timeout.
There is a time gap in [1], during which if the pending rs_timer
becomes not pending. It will miss to hold idev, but the rs_timer
is activated. Thus rs_timer callback function addrconf_rs_timer()
will be executed and put idev later without holding idev. A refcount
underflow issue for idev can be caused by this.
if (!timer_pending(&idev->rs_timer))
in6_dev_hold(idev);
<--------------[1]
mod_timer(&idev->rs_timer, jiffies + when);
To fix the issue, hold idev if mod_timer() return 0. |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix memory leaks in error path
The memory allocated by vxlan_vnigroup_init() is not freed in the error
path, leading to memory leaks [1]. Fix by calling
vxlan_vnigroup_uninit() in the error path.
The leaks can be reproduced by annotating gro_cells_init() with
ALLOW_ERROR_INJECTION() and then running:
# echo "100" > /sys/kernel/debug/fail_function/probability
# echo "1" > /sys/kernel/debug/fail_function/times
# echo "gro_cells_init" > /sys/kernel/debug/fail_function/inject
# printf %#x -12 > /sys/kernel/debug/fail_function/gro_cells_init/retval
# ip link add name vxlan0 type vxlan dstport 4789 external vnifilter
RTNETLINK answers: Cannot allocate memory
[1]
unreferenced object 0xffff88810db84a00 (size 512):
comm "ip", pid 330, jiffies 4295010045 (age 66.016s)
hex dump (first 32 bytes):
f8 d5 76 0e 81 88 ff ff 01 00 00 00 00 00 00 02 ..v.............
03 00 04 00 48 00 00 00 00 00 00 01 04 00 01 00 ....H...........
backtrace:
[<ffffffff81a3097a>] kmalloc_trace+0x2a/0x60
[<ffffffff82f049fc>] vxlan_vnigroup_init+0x4c/0x160
[<ffffffff82ecd69e>] vxlan_init+0x1ae/0x280
[<ffffffff836858ca>] register_netdevice+0x57a/0x16d0
[<ffffffff82ef67b7>] __vxlan_dev_create+0x7c7/0xa50
[<ffffffff82ef6ce6>] vxlan_newlink+0xd6/0x130
[<ffffffff836d02ab>] __rtnl_newlink+0x112b/0x18a0
[<ffffffff836d0a8c>] rtnl_newlink+0x6c/0xa0
[<ffffffff836c0ddf>] rtnetlink_rcv_msg+0x43f/0xd40
[<ffffffff83908ce0>] netlink_rcv_skb+0x170/0x440
[<ffffffff839066af>] netlink_unicast+0x53f/0x810
[<ffffffff839072d8>] netlink_sendmsg+0x958/0xe70
[<ffffffff835c319f>] ____sys_sendmsg+0x78f/0xa90
[<ffffffff835cd6da>] ___sys_sendmsg+0x13a/0x1e0
[<ffffffff835cd94c>] __sys_sendmsg+0x11c/0x1f0
[<ffffffff8424da78>] do_syscall_64+0x38/0x80
unreferenced object 0xffff88810e76d5f8 (size 192):
comm "ip", pid 330, jiffies 4295010045 (age 66.016s)
hex dump (first 32 bytes):
04 00 00 00 00 00 00 00 db e1 4f e7 00 00 00 00 ..........O.....
08 d6 76 0e 81 88 ff ff 08 d6 76 0e 81 88 ff ff ..v.......v.....
backtrace:
[<ffffffff81a3162e>] __kmalloc_node+0x4e/0x90
[<ffffffff81a0e166>] kvmalloc_node+0xa6/0x1f0
[<ffffffff8276e1a3>] bucket_table_alloc.isra.0+0x83/0x460
[<ffffffff8276f18b>] rhashtable_init+0x43b/0x7c0
[<ffffffff82f04a1c>] vxlan_vnigroup_init+0x6c/0x160
[<ffffffff82ecd69e>] vxlan_init+0x1ae/0x280
[<ffffffff836858ca>] register_netdevice+0x57a/0x16d0
[<ffffffff82ef67b7>] __vxlan_dev_create+0x7c7/0xa50
[<ffffffff82ef6ce6>] vxlan_newlink+0xd6/0x130
[<ffffffff836d02ab>] __rtnl_newlink+0x112b/0x18a0
[<ffffffff836d0a8c>] rtnl_newlink+0x6c/0xa0
[<ffffffff836c0ddf>] rtnetlink_rcv_msg+0x43f/0xd40
[<ffffffff83908ce0>] netlink_rcv_skb+0x170/0x440
[<ffffffff839066af>] netlink_unicast+0x53f/0x810
[<ffffffff839072d8>] netlink_sendmsg+0x958/0xe70
[<ffffffff835c319f>] ____sys_sendmsg+0x78f/0xa90 |
| In the Linux kernel, the following vulnerability has been resolved:
irqchip/alpine-msi: Fix refcount leak in alpine_msix_init_domains
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
| In the Linux kernel, the following vulnerability has been resolved:
vxlan: Fix nexthop hash size
The nexthop code expects a 31 bit hash, such as what is returned by
fib_multipath_hash() and rt6_multipath_hash(). Passing the 32 bit hash
returned by skb_get_hash() can lead to problems related to the fact that
'int hash' is a negative number when the MSB is set.
In the case of hash threshold nexthop groups, nexthop_select_path_hthr()
will disproportionately select the first nexthop group entry. In the case
of resilient nexthop groups, nexthop_select_path_res() may do an out of
bounds access in nh_buckets[], for example:
hash = -912054133
num_nh_buckets = 2
bucket_index = 65535
which leads to the following panic:
BUG: unable to handle page fault for address: ffffc900025910c8
PGD 100000067 P4D 100000067 PUD 10026b067 PMD 0
Oops: 0002 [#1] PREEMPT SMP KASAN NOPTI
CPU: 4 PID: 856 Comm: kworker/4:3 Not tainted 6.5.0-rc2+ #34
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Workqueue: ipv6_addrconf addrconf_dad_work
RIP: 0010:nexthop_select_path+0x197/0xbf0
Code: c1 e4 05 be 08 00 00 00 4c 8b 35 a4 14 7e 01 4e 8d 6c 25 00 4a 8d 7c 25 08 48 01 dd e8 c2 25 15 ff 49 8d 7d 08 e8 39 13 15 ff <4d> 89 75 08 48 89 ef e8 7d 12 15 ff 48 8b 5d 00 e8 14 55 2f 00 85
RSP: 0018:ffff88810c36f260 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000002000c0 RCX: ffffffffaf02dd77
RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffffc900025910c8
RBP: ffffc900025910c0 R08: 0000000000000001 R09: fffff520004b2219
R10: ffffc900025910cf R11: 31392d2068736168 R12: 00000000002000c0
R13: ffffc900025910c0 R14: 00000000fffef608 R15: ffff88811840e900
FS: 0000000000000000(0000) GS:ffff8881f7000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc900025910c8 CR3: 0000000129d00000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
<TASK>
? __die+0x23/0x70
? page_fault_oops+0x1ee/0x5c0
? __pfx_is_prefetch.constprop.0+0x10/0x10
? __pfx_page_fault_oops+0x10/0x10
? search_bpf_extables+0xfe/0x1c0
? fixup_exception+0x3b/0x470
? exc_page_fault+0xf6/0x110
? asm_exc_page_fault+0x26/0x30
? nexthop_select_path+0x197/0xbf0
? nexthop_select_path+0x197/0xbf0
? lock_is_held_type+0xe7/0x140
vxlan_xmit+0x5b2/0x2340
? __lock_acquire+0x92b/0x3370
? __pfx_vxlan_xmit+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
? __pfx_register_lock_class+0x10/0x10
? skb_network_protocol+0xce/0x2d0
? dev_hard_start_xmit+0xca/0x350
? __pfx_vxlan_xmit+0x10/0x10
dev_hard_start_xmit+0xca/0x350
__dev_queue_xmit+0x513/0x1e20
? __pfx___dev_queue_xmit+0x10/0x10
? __pfx_lock_release+0x10/0x10
? mark_held_locks+0x44/0x90
? skb_push+0x4c/0x80
? eth_header+0x81/0xe0
? __pfx_eth_header+0x10/0x10
? neigh_resolve_output+0x215/0x310
? ip6_finish_output2+0x2ba/0xc90
ip6_finish_output2+0x2ba/0xc90
? lock_release+0x236/0x3e0
? ip6_mtu+0xbb/0x240
? __pfx_ip6_finish_output2+0x10/0x10
? find_held_lock+0x83/0xa0
? lock_is_held_type+0xe7/0x140
ip6_finish_output+0x1ee/0x780
ip6_output+0x138/0x460
? __pfx_ip6_output+0x10/0x10
? __pfx___lock_acquire+0x10/0x10
? __pfx_ip6_finish_output+0x10/0x10
NF_HOOK.constprop.0+0xc0/0x420
? __pfx_NF_HOOK.constprop.0+0x10/0x10
? ndisc_send_skb+0x2c0/0x960
? __pfx_lock_release+0x10/0x10
? __local_bh_enable_ip+0x93/0x110
? lock_is_held_type+0xe7/0x140
ndisc_send_skb+0x4be/0x960
? __pfx_ndisc_send_skb+0x10/0x10
? mark_held_locks+0x65/0x90
? find_held_lock+0x83/0xa0
ndisc_send_ns+0xb0/0x110
? __pfx_ndisc_send_ns+0x10/0x10
addrconf_dad_work+0x631/0x8e0
? lock_acquire+0x180/0x3f0
? __pfx_addrconf_dad_work+0x10/0x10
? mark_held_locks+0x24/0x90
process_one_work+0x582/0x9c0
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? mark_held_locks+0x24/0x90
worker_thread+0x93/0x630
? __kthread_parkme+0xdc/0x100
? __pfx_worker_thread+0x10/0x10
kthread+0x1a5/0x1e0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x34/0x60
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v10_0_hw_fini
The gmc.ecc_irq is enabled by firmware per IFWI setting,
and the host driver is not privileged to enable/disable
the interrupt. So, it is meaningless to use the amdgpu_irq_put
function in gmc_v10_0_hw_fini, which also leads to the call
trace.
[ 82.340264] Call Trace:
[ 82.340265] <TASK>
[ 82.340269] gmc_v10_0_hw_fini+0x83/0xa0 [amdgpu]
[ 82.340447] gmc_v10_0_suspend+0xe/0x20 [amdgpu]
[ 82.340623] amdgpu_device_ip_suspend_phase2+0x127/0x1c0 [amdgpu]
[ 82.340789] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu]
[ 82.340955] amdgpu_device_pre_asic_reset+0xdd/0x2b0 [amdgpu]
[ 82.341122] amdgpu_device_gpu_recover.cold+0x4dd/0xbb2 [amdgpu]
[ 82.341359] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu]
[ 82.341529] process_one_work+0x21d/0x3f0
[ 82.341535] worker_thread+0x1fa/0x3c0
[ 82.341538] ? process_one_work+0x3f0/0x3f0
[ 82.341540] kthread+0xff/0x130
[ 82.341544] ? kthread_complete_and_exit+0x20/0x20
[ 82.341547] ret_from_fork+0x22/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Add length check in indx_get_root
This adds a length check to guarantee the retrieved index root is legit.
[ 162.459513] BUG: KASAN: use-after-free in hdr_find_e.isra.0+0x10c/0x320
[ 162.460176] Read of size 2 at addr ffff8880037bca99 by task mount/243
[ 162.460851]
[ 162.461252] CPU: 0 PID: 243 Comm: mount Not tainted 6.0.0-rc7 #42
[ 162.461744] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 162.462609] Call Trace:
[ 162.462954] <TASK>
[ 162.463276] dump_stack_lvl+0x49/0x63
[ 162.463822] print_report.cold+0xf5/0x689
[ 162.464608] ? unwind_get_return_address+0x3a/0x60
[ 162.465766] ? hdr_find_e.isra.0+0x10c/0x320
[ 162.466975] kasan_report+0xa7/0x130
[ 162.467506] ? _raw_spin_lock_irq+0xc0/0xf0
[ 162.467998] ? hdr_find_e.isra.0+0x10c/0x320
[ 162.468536] __asan_load2+0x68/0x90
[ 162.468923] hdr_find_e.isra.0+0x10c/0x320
[ 162.469282] ? cmp_uints+0xe0/0xe0
[ 162.469557] ? cmp_sdh+0x90/0x90
[ 162.469864] ? ni_find_attr+0x214/0x300
[ 162.470217] ? ni_load_mi+0x80/0x80
[ 162.470479] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 162.470931] ? ntfs_bread_run+0x190/0x190
[ 162.471307] ? indx_get_root+0xe4/0x190
[ 162.471556] ? indx_get_root+0x140/0x190
[ 162.471833] ? indx_init+0x1e0/0x1e0
[ 162.472069] ? fnd_clear+0x115/0x140
[ 162.472363] ? _raw_spin_lock_irqsave+0x100/0x100
[ 162.472731] indx_find+0x184/0x470
[ 162.473461] ? sysvec_apic_timer_interrupt+0x57/0xc0
[ 162.474429] ? indx_find_buffer+0x2d0/0x2d0
[ 162.474704] ? do_syscall_64+0x3b/0x90
[ 162.474962] dir_search_u+0x196/0x2f0
[ 162.475381] ? ntfs_nls_to_utf16+0x450/0x450
[ 162.475661] ? ntfs_security_init+0x3d6/0x440
[ 162.475906] ? is_sd_valid+0x180/0x180
[ 162.476191] ntfs_extend_init+0x13f/0x2c0
[ 162.476496] ? ntfs_fix_post_read+0x130/0x130
[ 162.476861] ? iput.part.0+0x286/0x320
[ 162.477325] ntfs_fill_super+0x11e0/0x1b50
[ 162.477709] ? put_ntfs+0x1d0/0x1d0
[ 162.477970] ? vsprintf+0x20/0x20
[ 162.478258] ? set_blocksize+0x95/0x150
[ 162.478538] get_tree_bdev+0x232/0x370
[ 162.478789] ? put_ntfs+0x1d0/0x1d0
[ 162.479038] ntfs_fs_get_tree+0x15/0x20
[ 162.479374] vfs_get_tree+0x4c/0x130
[ 162.479729] path_mount+0x654/0xfe0
[ 162.480124] ? putname+0x80/0xa0
[ 162.480484] ? finish_automount+0x2e0/0x2e0
[ 162.480894] ? putname+0x80/0xa0
[ 162.481467] ? kmem_cache_free+0x1c4/0x440
[ 162.482280] ? putname+0x80/0xa0
[ 162.482714] do_mount+0xd6/0xf0
[ 162.483264] ? path_mount+0xfe0/0xfe0
[ 162.484782] ? __kasan_check_write+0x14/0x20
[ 162.485593] __x64_sys_mount+0xca/0x110
[ 162.486024] do_syscall_64+0x3b/0x90
[ 162.486543] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 162.487141] RIP: 0033:0x7f9d374e948a
[ 162.488324] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008
[ 162.489728] RSP: 002b:00007ffe30e73d18 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[ 162.490971] RAX: ffffffffffffffda RBX: 0000561cdb43a060 RCX: 00007f9d374e948a
[ 162.491669] RDX: 0000561cdb43a260 RSI: 0000561cdb43a2e0 RDI: 0000561cdb442af0
[ 162.492050] RBP: 0000000000000000 R08: 0000561cdb43a280 R09: 0000000000000020
[ 162.492459] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000561cdb442af0
[ 162.493183] R13: 0000561cdb43a260 R14: 0000000000000000 R15: 00000000ffffffff
[ 162.493644] </TASK>
[ 162.493908]
[ 162.494214] The buggy address belongs to the physical page:
[ 162.494761] page:000000003e38a3d5 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x37bc
[ 162.496064] flags: 0xfffffc0000000(node=0|zone=1|lastcpupid=0x1fffff)
[ 162.497278] raw: 000fffffc0000000 ffffea00000df1c8 ffffea00000df008 0000000000000000
[ 162.498928] raw: 0000000000000000 0000000000240000 00000000ffffffff 0000000000000000
[ 162.500542] page dumped becau
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mlxsw: minimal: fix potential memory leak in mlxsw_m_linecards_init
The line cards array is not freed in the error path of
mlxsw_m_linecards_init(), which can lead to a memory leak. Fix by
freeing the array in the error path, thereby making the error path
identical to mlxsw_m_linecards_fini(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: Add missing lock in cfg80211_check_and_end_cac()
Callers of wdev_chandef() must hold the wiphy mutex.
But the worker cfg80211_propagate_cac_done_wk() never takes the lock.
Which triggers the warning below with the mesh_peer_connected_dfs
test from hostapd and not (yet) released mac80211 code changes:
WARNING: CPU: 0 PID: 495 at net/wireless/chan.c:1552 wdev_chandef+0x60/0x165
Modules linked in:
CPU: 0 UID: 0 PID: 495 Comm: kworker/u4:2 Not tainted 6.14.0-rc5-wt-g03960e6f9d47 #33 13c287eeabfe1efea01c0bcc863723ab082e17cf
Workqueue: cfg80211 cfg80211_propagate_cac_done_wk
Stack:
00000000 00000001 ffffff00 6093267c
00000000 6002ec30 6d577c50 60037608
00000000 67e8d108 6063717b 00000000
Call Trace:
[<6002ec30>] ? _printk+0x0/0x98
[<6003c2b3>] show_stack+0x10e/0x11a
[<6002ec30>] ? _printk+0x0/0x98
[<60037608>] dump_stack_lvl+0x71/0xb8
[<6063717b>] ? wdev_chandef+0x60/0x165
[<6003766d>] dump_stack+0x1e/0x20
[<6005d1b7>] __warn+0x101/0x20f
[<6005d3a8>] warn_slowpath_fmt+0xe3/0x15d
[<600b0c5c>] ? mark_lock.part.0+0x0/0x4ec
[<60751191>] ? __this_cpu_preempt_check+0x0/0x16
[<600b11a2>] ? mark_held_locks+0x5a/0x6e
[<6005d2c5>] ? warn_slowpath_fmt+0x0/0x15d
[<60052e53>] ? unblock_signals+0x3a/0xe7
[<60052f2d>] ? um_set_signals+0x2d/0x43
[<60751191>] ? __this_cpu_preempt_check+0x0/0x16
[<607508b2>] ? lock_is_held_type+0x207/0x21f
[<6063717b>] wdev_chandef+0x60/0x165
[<605f89b4>] regulatory_propagate_dfs_state+0x247/0x43f
[<60052f00>] ? um_set_signals+0x0/0x43
[<605e6bfd>] cfg80211_propagate_cac_done_wk+0x3a/0x4a
[<6007e460>] process_scheduled_works+0x3bc/0x60e
[<6007d0ec>] ? move_linked_works+0x4d/0x81
[<6007d120>] ? assign_work+0x0/0xaa
[<6007f81f>] worker_thread+0x220/0x2dc
[<600786ef>] ? set_pf_worker+0x0/0x57
[<60087c96>] ? to_kthread+0x0/0x43
[<6008ab3c>] kthread+0x2d3/0x2e2
[<6007f5ff>] ? worker_thread+0x0/0x2dc
[<6006c05b>] ? calculate_sigpending+0x0/0x56
[<6003b37d>] new_thread_handler+0x4a/0x64
irq event stamp: 614611
hardirqs last enabled at (614621): [<00000000600bc96b>] __up_console_sem+0x82/0xaf
hardirqs last disabled at (614630): [<00000000600bc92c>] __up_console_sem+0x43/0xaf
softirqs last enabled at (614268): [<00000000606c55c6>] __ieee80211_wake_queue+0x933/0x985
softirqs last disabled at (614266): [<00000000606c52d6>] __ieee80211_wake_queue+0x643/0x985 |
| In the Linux kernel, the following vulnerability has been resolved:
drm: nv04: Fix out of bounds access
When Output Resource (dcb->or) value is assigned in
fabricate_dcb_output(), there may be out of bounds access to
dac_users array in case dcb->or is zero because ffs(dcb->or) is
used as index there.
The 'or' argument of fabricate_dcb_output() must be interpreted as a
number of bit to set, not value.
Utilize macros from 'enum nouveau_or' in calls instead of hardcoding.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix use-after-free in do_zone_finish()
Shinichiro reported the following use-after-free triggered by the device
replace operation in fstests btrfs/070.
BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0
==================================================================
BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs]
Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007
CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1
Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020
Call Trace:
<TASK>
dump_stack_lvl+0x5b/0x90
print_report+0xcf/0x670
? __virt_addr_valid+0x200/0x3e0
kasan_report+0xd8/0x110
? do_zone_finish+0x91a/0xb90 [btrfs]
? do_zone_finish+0x91a/0xb90 [btrfs]
do_zone_finish+0x91a/0xb90 [btrfs]
btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs]
? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs]
? btrfs_put_root+0x2d/0x220 [btrfs]
? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs]
cleaner_kthread+0x21e/0x380 [btrfs]
? __pfx_cleaner_kthread+0x10/0x10 [btrfs]
kthread+0x2e3/0x3c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 3493983:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
btrfs_alloc_device+0xb3/0x4e0 [btrfs]
device_list_add.constprop.0+0x993/0x1630 [btrfs]
btrfs_scan_one_device+0x219/0x3d0 [btrfs]
btrfs_control_ioctl+0x26e/0x310 [btrfs]
__x64_sys_ioctl+0x134/0x1b0
do_syscall_64+0x99/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
Freed by task 3494056:
kasan_save_stack+0x33/0x60
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3f/0x60
poison_slab_object+0x102/0x170
__kasan_slab_free+0x32/0x70
kfree+0x11b/0x320
btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs]
btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs]
btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs]
btrfs_ioctl+0xb27/0x57d0 [btrfs]
__x64_sys_ioctl+0x134/0x1b0
do_syscall_64+0x99/0x190
entry_SYSCALL_64_after_hwframe+0x6e/0x76
The buggy address belongs to the object at ffff8881543c8000
which belongs to the cache kmalloc-1k of size 1024
The buggy address is located 96 bytes inside of
freed 1024-byte region [ffff8881543c8000, ffff8881543c8400)
The buggy address belongs to the physical page:
page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8
head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff)
page_type: 0xffffffff()
raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002
raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
This UAF happens because we're accessing stale zone information of a
already removed btrfs_device in do_zone_finish().
The sequence of events is as follows:
btrfs_dev_replace_start
btrfs_scrub_dev
btrfs_dev_replace_finishing
btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced
btrfs_rm_dev_replace_free_srcdev
btrfs_free_device <-- device freed
cleaner_kthread
btrfs_delete_unused_bgs
btrfs_zone_finish
do_zone_finish <-- refers the freed device
The reason for this is that we're using a
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix UAF of f2fs_inode_info in f2fs_free_dic
The decompress_io_ctx may be released asynchronously after
I/O completion. If this file is deleted immediately after read,
and the kworker of processing post_read_wq has not been executed yet
due to high workloads, It is possible that the inode(f2fs_inode_info)
is evicted and freed before it is used f2fs_free_dic.
The UAF case as below:
Thread A Thread B
- f2fs_decompress_end_io
- f2fs_put_dic
- queue_work
add free_dic work to post_read_wq
- do_unlink
- iput
- evict
- call_rcu
This file is deleted after read.
Thread C kworker to process post_read_wq
- rcu_do_batch
- f2fs_free_inode
- kmem_cache_free
inode is freed by rcu
- process_scheduled_works
- f2fs_late_free_dic
- f2fs_free_dic
- f2fs_release_decomp_mem
read (dic->inode)->i_compress_algorithm
This patch store compress_algorithm and sbi in dic to avoid inode UAF.
In addition, the previous solution is deprecated in [1] may cause system hang.
[1] https://lore.kernel.org/all/[email protected] |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: MGMT: fix crash in set_mesh_sync and set_mesh_complete
There is a BUG: KASAN: stack-out-of-bounds in set_mesh_sync due to
memcpy from badly declared on-stack flexible array.
Another crash is in set_mesh_complete() due to double list_del via
mgmt_pending_valid + mgmt_pending_remove.
Use DEFINE_FLEX to declare the flexible array right, and don't memcpy
outside bounds.
As mgmt_pending_valid removes the cmd from list, use mgmt_pending_free,
and also report status on error. |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix refcount leak in nfsd_set_fh_dentry()
nfsd exports a "pseudo root filesystem" which is used by NFSv4 to find
the various exported filesystems using LOOKUP requests from a known root
filehandle. NFSv3 uses the MOUNT protocol to find those exported
filesystems and so is not given access to the pseudo root filesystem.
If a v3 (or v2) client uses a filehandle from that filesystem,
nfsd_set_fh_dentry() will report an error, but still stores the export
in "struct svc_fh" even though it also drops the reference (exp_put()).
This means that when fh_put() is called an extra reference will be dropped
which can lead to use-after-free and possible denial of service.
Normal NFS usage will not provide a pseudo-root filehandle to a v3
client. This bug can only be triggered by the client synthesising an
incorrect filehandle.
To fix this we move the assignments to the svc_fh later, after all
possible error cases have been detected. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix memory leak of qgroup_list in btrfs_add_qgroup_relation
When btrfs_add_qgroup_relation() is called with invalid qgroup levels
(src >= dst), the function returns -EINVAL directly without freeing the
preallocated qgroup_list structure passed by the caller. This causes a
memory leak because the caller unconditionally sets the pointer to NULL
after the call, preventing any cleanup.
The issue occurs because the level validation check happens before the
mutex is acquired and before any error handling path that would free
the prealloc pointer. On this early return, the cleanup code at the
'out' label (which includes kfree(prealloc)) is never reached.
In btrfs_ioctl_qgroup_assign(), the code pattern is:
prealloc = kzalloc(sizeof(*prealloc), GFP_KERNEL);
ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst, prealloc);
prealloc = NULL; // Always set to NULL regardless of return value
...
kfree(prealloc); // This becomes kfree(NULL), does nothing
When the level check fails, 'prealloc' is never freed by either the
callee or the caller, resulting in a 64-byte memory leak per failed
operation. This can be triggered repeatedly by an unprivileged user
with access to a writable btrfs mount, potentially exhausting kernel
memory.
Fix this by freeing prealloc before the early return, ensuring prealloc
is always freed on all error paths. |