| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: vivid: fix compose size exceed boundary
syzkaller found a bug:
BUG: unable to handle page fault for address: ffffc9000a3b1000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 100000067 P4D 100000067 PUD 10015f067 PMD 1121ca067 PTE 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 0 PID: 23489 Comm: vivid-000-vid-c Not tainted 6.1.0-rc1+ #512
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:memcpy_erms+0x6/0x10
[...]
Call Trace:
<TASK>
? tpg_fill_plane_buffer+0x856/0x15b0
vivid_fillbuff+0x8ac/0x1110
vivid_thread_vid_cap_tick+0x361/0xc90
vivid_thread_vid_cap+0x21a/0x3a0
kthread+0x143/0x180
ret_from_fork+0x1f/0x30
</TASK>
This is because we forget to check boundary after adjust compose->height
int V4L2_SEL_TGT_CROP case. Add v4l2_rect_map_inside() to fix this problem
for this case. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Don't overmap identity VRAM mapping
Overmapping the identity VRAM mapping is triggering hardware bugs on
certain platforms. Use 2M pages for the last unaligned (to 1G) VRAM
chunk.
v2:
- Always use 2M pages for last chunk (Fei Yang)
- break loop when 2M pages are used
- Add assert for usable_size being 2M aligned
v3:
- Fix checkpatch |
| In the Linux kernel, the following vulnerability has been resolved:
cachefiles: Set the max subreq size for cache writes to MAX_RW_COUNT
Set the maximum size of a subrequest that writes to cachefiles to be
MAX_RW_COUNT so that we don't overrun the maximum write we can make to the
backing filesystem. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Remove tst_run from lwt_seg6local_prog_ops.
The syzbot reported that the lwt_seg6 related BPF ops can be invoked
via bpf_test_run() without without entering input_action_end_bpf()
first.
Martin KaFai Lau said that self test for BPF_PROG_TYPE_LWT_SEG6LOCAL
probably didn't work since it was introduced in commit 04d4b274e2a
("ipv6: sr: Add seg6local action End.BPF"). The reason is that the
per-CPU variable seg6_bpf_srh_states::srh is never assigned in the self
test case but each BPF function expects it.
Remove test_run for BPF_PROG_TYPE_LWT_SEG6LOCAL. |
| In the Linux kernel, the following vulnerability has been resolved:
xfs: fix finding a last resort AG in xfs_filestream_pick_ag
When the main loop in xfs_filestream_pick_ag fails to find a suitable
AG it tries to just pick the online AG. But the loop for that uses
args->pag as loop iterator while the later code expects pag to be
set. Fix this by reusing the max_pag case for this last resort, and
also add a check for impossible case of no AG just to make sure that
the uninitialized pag doesn't even escape in theory. |
| In the Linux kernel, the following vulnerability has been resolved:
media: av7110: fix a spectre vulnerability
As warned by smatch:
drivers/staging/media/av7110/av7110_ca.c:270 dvb_ca_ioctl() warn: potential spectre issue 'av7110->ci_slot' [w] (local cap)
There is a spectre-related vulnerability at the code. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: tegra194: Move controller cleanups to pex_ep_event_pex_rst_deassert()
Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF
deinit notify function pci_epc_deinit_notify() are called during the
execution of pex_ep_event_pex_rst_assert() i.e., when the host has asserted
PERST#. But quickly after this step, refclk will also be disabled by the
host.
All of the tegra194 endpoint SoCs supported as of now depend on the refclk
from the host for keeping the controller operational. Due to this
limitation, any access to the hardware registers in the absence of refclk
will result in a whole endpoint crash. Unfortunately, most of the
controller cleanups require accessing the hardware registers (like eDMA
cleanup performed in dw_pcie_ep_cleanup(), etc...). So these cleanup
functions can cause the crash in the endpoint SoC once host asserts PERST#.
One way to address this issue is by generating the refclk in the endpoint
itself and not depending on the host. But that is not always possible as
some of the endpoint designs do require the endpoint to consume refclk from
the host.
Thus, fix this crash by moving the controller cleanups to the start of
the pex_ep_event_pex_rst_deassert() function. This function is called
whenever the host has deasserted PERST# and it is guaranteed that the
refclk would be active at this point. So at the start of this function
(after enabling resources) the controller cleanup can be performed. Once
finished, rest of the code execution for PERST# deassert can continue as
usual. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: qcom-ep: Move controller cleanups to qcom_pcie_perst_deassert()
Currently, the endpoint cleanup function dw_pcie_ep_cleanup() and EPF
deinit notify function pci_epc_deinit_notify() are called during the
execution of qcom_pcie_perst_assert() i.e., when the host has asserted
PERST#. But quickly after this step, refclk will also be disabled by the
host.
All of the Qcom endpoint SoCs supported as of now depend on the refclk from
the host for keeping the controller operational. Due to this limitation,
any access to the hardware registers in the absence of refclk will result
in a whole endpoint crash. Unfortunately, most of the controller cleanups
require accessing the hardware registers (like eDMA cleanup performed in
dw_pcie_ep_cleanup(), powering down MHI EPF etc...). So these cleanup
functions are currently causing the crash in the endpoint SoC once host
asserts PERST#.
One way to address this issue is by generating the refclk in the endpoint
itself and not depending on the host. But that is not always possible as
some of the endpoint designs do require the endpoint to consume refclk from
the host (as I was told by the Qcom engineers).
Thus, fix this crash by moving the controller cleanups to the start of
the qcom_pcie_perst_deassert() function. qcom_pcie_perst_deassert() is
called whenever the host has deasserted PERST# and it is guaranteed that
the refclk would be active at this point. So at the start of this function
(after enabling resources), the controller cleanup can be performed. Once
finished, rest of the code execution for PERST# deassert can continue as
usual. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: During unmount, ensure all cached dir instances drop their dentry
The unmount process (cifs_kill_sb() calling close_all_cached_dirs()) can
race with various cached directory operations, which ultimately results
in dentries not being dropped and these kernel BUGs:
BUG: Dentry ffff88814f37e358{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs]
VFS: Busy inodes after unmount of cifs (cifs)
------------[ cut here ]------------
kernel BUG at fs/super.c:661!
This happens when a cfid is in the process of being cleaned up when, and
has been removed from the cfids->entries list, including:
- Receiving a lease break from the server
- Server reconnection triggers invalidate_all_cached_dirs(), which
removes all the cfids from the list
- The laundromat thread decides to expire an old cfid.
To solve these problems, dropping the dentry is done in queued work done
in a newly-added cfid_put_wq workqueue, and close_all_cached_dirs()
flushes that workqueue after it drops all the dentries of which it's
aware. This is a global workqueue (rather than scoped to a mount), but
the queued work is minimal.
The final cleanup work for cleaning up a cfid is performed via work
queued in the serverclose_wq workqueue; this is done separate from
dropping the dentries so that close_all_cached_dirs() doesn't block on
any server operations.
Both of these queued works expect to invoked with a cfid reference and
a tcon reference to avoid those objects from being freed while the work
is ongoing.
While we're here, add proper locking to close_all_cached_dirs(), and
locking around the freeing of cfid->dentry. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: nl80211: fix bounds checker error in nl80211_parse_sched_scan
The channels array in the cfg80211_scan_request has a __counted_by
attribute attached to it, which points to the n_channels variable. This
attribute is used in bounds checking, and if it is not set before the
array is filled, then the bounds sanitizer will issue a warning or a
kernel panic if CONFIG_UBSAN_TRAP is set.
This patch sets the size of allocated memory as the initial value for
n_channels. It is updated with the actual number of added elements after
the array is filled. |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: fix false positive warning in extack during dumps
Commit under fixes extended extack reporting to dumps.
It works under normal conditions, because extack errors are
usually reported during ->start() or the first ->dump(),
it's quite rare that the dump starts okay but fails later.
If the dump does fail later, however, the input skb will
already have the initiating message pulled, so checking
if bad attr falls within skb->data will fail.
Switch the check to using nlh, which is always valid.
syzbot found a way to hit that scenario by filling up
the receive queue. In this case we initiate a dump
but don't call ->dump() until there is read space for
an skb.
WARNING: CPU: 1 PID: 5845 at net/netlink/af_netlink.c:2210 netlink_ack_tlv_fill+0x1a8/0x560 net/netlink/af_netlink.c:2209
RIP: 0010:netlink_ack_tlv_fill+0x1a8/0x560 net/netlink/af_netlink.c:2209
Call Trace:
<TASK>
netlink_dump_done+0x513/0x970 net/netlink/af_netlink.c:2250
netlink_dump+0x91f/0xe10 net/netlink/af_netlink.c:2351
netlink_recvmsg+0x6bb/0x11d0 net/netlink/af_netlink.c:1983
sock_recvmsg_nosec net/socket.c:1051 [inline]
sock_recvmsg+0x22f/0x280 net/socket.c:1073
__sys_recvfrom+0x246/0x3d0 net/socket.c:2267
__do_sys_recvfrom net/socket.c:2285 [inline]
__se_sys_recvfrom net/socket.c:2281 [inline]
__x64_sys_recvfrom+0xde/0x100 net/socket.c:2281
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7ff37dd17a79 |
| In the Linux kernel, the following vulnerability has been resolved:
net/l2tp: fix warning in l2tp_exit_net found by syzbot
In l2tp's net exit handler, we check that an IDR is empty before
destroying it:
WARN_ON_ONCE(!idr_is_empty(&pn->l2tp_tunnel_idr));
idr_destroy(&pn->l2tp_tunnel_idr);
By forcing memory allocation failures in idr_alloc_32, syzbot is able
to provoke a condition where idr_is_empty returns false despite there
being no items in the IDR. This turns out to be because the radix tree
of the IDR contains only internal radix-tree nodes and it is this that
causes idr_is_empty to return false. The internal nodes are cleaned by
idr_destroy.
Use idr_for_each to check that the IDR is empty instead of
idr_is_empty to avoid the problem. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/stacktrace: Use break instead of return statement
arch_stack_walk_user_common() contains a return statement instead of a
break statement in case store_ip() fails while trying to store a callchain
entry of a user space process.
This may lead to a missing pagefault_enable() call.
If this happens any subsequent page fault of the process won't be resolved
by the page fault handler and this in turn will lead to the process being
killed.
Use a break instead of a return statement to fix this. |
| In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix missed RCU barrier on deoffloading
Currently, running rcutorture test with torture_type=rcu fwd_progress=8
n_barrier_cbs=8 nocbs_nthreads=8 nocbs_toggle=100 onoff_interval=60
test_boost=2, will trigger the following warning:
WARNING: CPU: 19 PID: 100 at kernel/rcu/tree_nocb.h:1061 rcu_nocb_rdp_deoffload+0x292/0x2a0
RIP: 0010:rcu_nocb_rdp_deoffload+0x292/0x2a0
Call Trace:
<TASK>
? __warn+0x7e/0x120
? rcu_nocb_rdp_deoffload+0x292/0x2a0
? report_bug+0x18e/0x1a0
? handle_bug+0x3d/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? rcu_nocb_rdp_deoffload+0x292/0x2a0
rcu_nocb_cpu_deoffload+0x70/0xa0
rcu_nocb_toggle+0x136/0x1c0
? __pfx_rcu_nocb_toggle+0x10/0x10
kthread+0xd1/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork+0x2f/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
CPU0 CPU2 CPU3
//rcu_nocb_toggle //nocb_cb_wait //rcutorture
// deoffload CPU1 // process CPU1's rdp
rcu_barrier()
rcu_segcblist_entrain()
rcu_segcblist_add_len(1);
// len == 2
// enqueue barrier
// callback to CPU1's
// rdp->cblist
rcu_do_batch()
// invoke CPU1's rdp->cblist
// callback
rcu_barrier_callback()
rcu_barrier()
mutex_lock(&rcu_state.barrier_mutex);
// still see len == 2
// enqueue barrier callback
// to CPU1's rdp->cblist
rcu_segcblist_entrain()
rcu_segcblist_add_len(1);
// len == 3
// decrement len
rcu_segcblist_add_len(-2);
kthread_parkme()
// CPU1's rdp->cblist len == 1
// Warn because there is
// still a pending barrier
// trigger warning
WARN_ON_ONCE(rcu_segcblist_n_cbs(&rdp->cblist));
cpus_read_unlock();
// wait CPU1 to comes online and
// invoke barrier callback on
// CPU1 rdp's->cblist
wait_for_completion(&rcu_state.barrier_completion);
// deoffload CPU4
cpus_read_lock()
rcu_barrier()
mutex_lock(&rcu_state.barrier_mutex);
// block on barrier_mutex
// wait rcu_barrier() on
// CPU3 to unlock barrier_mutex
// but CPU3 unlock barrier_mutex
// need to wait CPU1 comes online
// when CPU1 going online will block on cpus_write_lock
The above scenario will not only trigger a WARN_ON_ONCE(), but also
trigger a deadlock.
Thanks to nocb locking, a second racing rcu_barrier() on an offline CPU
will either observe the decremented callback counter down to 0 and spare
the callback enqueue, or rcuo will observe the new callback and keep
rdp->nocb_cb_sleep to false.
Therefore check rdp->nocb_cb_sleep before parking to make sure no
further rcu_barrier() is waiting on the rdp. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Skip Rx TID cleanup for self peer
During peer create, dp setup for the peer is done where Rx TID is
updated for all the TIDs. Peer object for self peer will not go through
dp setup.
When core halts, dp cleanup is done for all the peers. While cleanup,
rx_tid::ab is accessed which causes below stack trace for self peer.
WARNING: CPU: 6 PID: 12297 at drivers/net/wireless/ath/ath12k/dp_rx.c:851
Call Trace:
__warn+0x7b/0x1a0
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
report_bug+0x10b/0x200
handle_bug+0x3f/0x70
exc_invalid_op+0x13/0x60
asm_exc_invalid_op+0x16/0x20
ath12k_dp_rx_frags_cleanup+0xd2/0xe0 [ath12k]
ath12k_dp_rx_frags_cleanup+0xca/0xe0 [ath12k]
ath12k_dp_rx_peer_tid_cleanup+0x39/0xa0 [ath12k]
ath12k_mac_peer_cleanup_all+0x61/0x100 [ath12k]
ath12k_core_halt+0x3b/0x100 [ath12k]
ath12k_core_reset+0x494/0x4c0 [ath12k]
sta object in peer will be updated when remote peer is created. Hence
use peer::sta to detect the self peer and skip the cleanup.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1
Tested-on: WCN7850 hw2.0 PCI WLAN.HMT.1.0.c5-00481-QCAHMTSWPL_V1.0_V2.0_SILICONZ-3 |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: streamline driver probe to avoid devres issues
It was found that unloading 'hid_hyperv' module results in a devres
complaint:
...
hv_vmbus: unregistering driver hid_hyperv
------------[ cut here ]------------
WARNING: CPU: 2 PID: 3983 at drivers/base/devres.c:691 devres_release_group+0x1f2/0x2c0
...
Call Trace:
<TASK>
? devres_release_group+0x1f2/0x2c0
? __warn+0xd1/0x1c0
? devres_release_group+0x1f2/0x2c0
? report_bug+0x32a/0x3c0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1a/0x20
? devres_release_group+0x1f2/0x2c0
? devres_release_group+0x90/0x2c0
? rcu_is_watching+0x15/0xb0
? __pfx_devres_release_group+0x10/0x10
hid_device_remove+0xf5/0x220
device_release_driver_internal+0x371/0x540
? klist_put+0xf3/0x170
bus_remove_device+0x1f1/0x3f0
device_del+0x33f/0x8c0
? __pfx_device_del+0x10/0x10
? cleanup_srcu_struct+0x337/0x500
hid_destroy_device+0xc8/0x130
mousevsc_remove+0xd2/0x1d0 [hid_hyperv]
device_release_driver_internal+0x371/0x540
driver_detach+0xc5/0x180
bus_remove_driver+0x11e/0x2a0
? __mutex_unlock_slowpath+0x160/0x5e0
vmbus_driver_unregister+0x62/0x2b0 [hv_vmbus]
...
And the issue seems to be that the corresponding devres group is not
allocated. Normally, devres_open_group() is called from
__hid_device_probe() but Hyper-V HID driver overrides 'hid_dev->driver'
with 'mousevsc_hid_driver' stub and basically re-implements
__hid_device_probe() by calling hid_parse() and hid_hw_start() but not
devres_open_group(). hid_device_probe() does not call __hid_device_probe()
for it. Later, when the driver is removed, hid_device_remove() calls
devres_release_group() as it doesn't check whether hdev->driver was
initially overridden or not.
The issue seems to be related to the commit 62c68e7cee33 ("HID: ensure
timely release of driver-allocated resources") but the commit itself seems
to be correct.
Fix the issue by dropping the 'hid_dev->driver' override and using
hid_register_driver()/hid_unregister_driver() instead. Alternatively, it
would have been possible to rely on the default handling but
HID_CONNECT_DEFAULT implies HID_CONNECT_HIDRAW and it doesn't seem to work
for mousevsc as-is. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ralink: mtmips: fix clocks probe order in oldest ralink SoCs
Base clocks are the first in being probed and are real dependencies of the
rest of fixed, factor and peripheral clocks. For old ralink SoCs RT2880,
RT305x and RT3883 'xtal' must be defined first since in any other case,
when fixed clocks are probed they are delayed until 'xtal' is probed so the
following warning appears:
WARNING: CPU: 0 PID: 0 at drivers/clk/ralink/clk-mtmips.c:499 rt3883_bus_recalc_rate+0x98/0x138
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 6.6.43 #0
Stack : 805e58d0 00000000 00000004 8004f950 00000000 00000004 00000000 00000000
80669c54 80830000 80700000 805ae570 80670068 00000001 80669bf8 00000000
00000000 00000000 805ae570 80669b38 00000020 804db7dc 00000000 00000000
203a6d6d 80669b78 80669e48 70617773 00000000 805ae570 00000000 00000009
00000000 00000001 00000004 00000001 00000000 00000000 83fe43b0 00000000
...
Call Trace:
[<800065d0>] show_stack+0x64/0xf4
[<804bca14>] dump_stack_lvl+0x38/0x60
[<800218ac>] __warn+0x94/0xe4
[<8002195c>] warn_slowpath_fmt+0x60/0x94
[<80259ff8>] rt3883_bus_recalc_rate+0x98/0x138
[<80254530>] __clk_register+0x568/0x688
[<80254838>] of_clk_hw_register+0x18/0x2c
[<8070b910>] rt2880_clk_of_clk_init_driver+0x18c/0x594
[<8070b628>] of_clk_init+0x1c0/0x23c
[<806fc448>] plat_time_init+0x58/0x18c
[<806fdaf0>] time_init+0x10/0x6c
[<806f9bc4>] start_kernel+0x458/0x67c
---[ end trace 0000000000000000 ]---
When this driver was mainlined we could not find any active users of old
ralink SoCs so we cannot perform any real tests for them. Now, one user
of a Belkin f9k1109 version 1 device which uses RT3883 SoC appeared and
reported some issues in openWRT:
- https://github.com/openwrt/openwrt/issues/16054
Thus, define a 'rt2880_xtal_recalc_rate()' just returning the expected
frequency 40Mhz and use it along the old ralink SoCs to have a correct
boot trace with no warnings and a working clock plan from the beggining. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix atomic calls in ath12k_mac_op_set_bitrate_mask()
When I try to manually set bitrates:
iw wlan0 set bitrates legacy-2.4 1
I get sleeping from invalid context error, see below. Fix that by switching to
use recently introduced ieee80211_iterate_stations_mtx().
Do note that WCN6855 firmware is still crashing, I'm not sure if that firmware
even supports bitrate WMI commands and should we consider disabling
ath12k_mac_op_set_bitrate_mask() for WCN6855? But that's for another patch.
BUG: sleeping function called from invalid context at drivers/net/wireless/ath/ath12k/wmi.c:420
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 2236, name: iw
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
3 locks held by iw/2236:
#0: ffffffffabc6f1d8 (cb_lock){++++}-{3:3}, at: genl_rcv+0x14/0x40
#1: ffff888138410810 (&rdev->wiphy.mtx){+.+.}-{3:3}, at: nl80211_pre_doit+0x54d/0x800 [cfg80211]
#2: ffffffffab2cfaa0 (rcu_read_lock){....}-{1:2}, at: ieee80211_iterate_stations_atomic+0x2f/0x200 [mac80211]
CPU: 3 UID: 0 PID: 2236 Comm: iw Not tainted 6.11.0-rc7-wt-ath+ #1772
Hardware name: Intel(R) Client Systems NUC8i7HVK/NUC8i7HVB, BIOS HNKBLi70.86A.0067.2021.0528.1339 05/28/2021
Call Trace:
<TASK>
dump_stack_lvl+0xa4/0xe0
dump_stack+0x10/0x20
__might_resched+0x363/0x5a0
? __alloc_skb+0x165/0x340
__might_sleep+0xad/0x160
ath12k_wmi_cmd_send+0xb1/0x3d0 [ath12k]
? ath12k_wmi_init_wcn7850+0xa40/0xa40 [ath12k]
? __netdev_alloc_skb+0x45/0x7b0
? __asan_memset+0x39/0x40
? ath12k_wmi_alloc_skb+0xf0/0x150 [ath12k]
? reacquire_held_locks+0x4d0/0x4d0
ath12k_wmi_set_peer_param+0x340/0x5b0 [ath12k]
ath12k_mac_disable_peer_fixed_rate+0xa3/0x110 [ath12k]
? ath12k_mac_vdev_stop+0x4f0/0x4f0 [ath12k]
ieee80211_iterate_stations_atomic+0xd4/0x200 [mac80211]
ath12k_mac_op_set_bitrate_mask+0x5d2/0x1080 [ath12k]
? ath12k_mac_vif_chan+0x320/0x320 [ath12k]
drv_set_bitrate_mask+0x267/0x470 [mac80211]
ieee80211_set_bitrate_mask+0x4cc/0x8a0 [mac80211]
? __this_cpu_preempt_check+0x13/0x20
nl80211_set_tx_bitrate_mask+0x2bc/0x530 [cfg80211]
? nl80211_parse_tx_bitrate_mask+0x2320/0x2320 [cfg80211]
? trace_contention_end+0xef/0x140
? rtnl_unlock+0x9/0x10
? nl80211_pre_doit+0x557/0x800 [cfg80211]
genl_family_rcv_msg_doit+0x1f0/0x2e0
? genl_family_rcv_msg_attrs_parse.isra.0+0x250/0x250
? ns_capable+0x57/0xd0
genl_family_rcv_msg+0x34c/0x600
? genl_family_rcv_msg_dumpit+0x310/0x310
? __lock_acquire+0xc62/0x1de0
? he_set_mcs_mask.isra.0+0x8d0/0x8d0 [cfg80211]
? nl80211_parse_tx_bitrate_mask+0x2320/0x2320 [cfg80211]
? cfg80211_external_auth_request+0x690/0x690 [cfg80211]
genl_rcv_msg+0xa0/0x130
netlink_rcv_skb+0x14c/0x400
? genl_family_rcv_msg+0x600/0x600
? netlink_ack+0xd70/0xd70
? rwsem_optimistic_spin+0x4f0/0x4f0
? genl_rcv+0x14/0x40
? down_read_killable+0x580/0x580
? netlink_deliver_tap+0x13e/0x350
? __this_cpu_preempt_check+0x13/0x20
genl_rcv+0x23/0x40
netlink_unicast+0x45e/0x790
? netlink_attachskb+0x7f0/0x7f0
netlink_sendmsg+0x7eb/0xdb0
? netlink_unicast+0x790/0x790
? __this_cpu_preempt_check+0x13/0x20
? selinux_socket_sendmsg+0x31/0x40
? netlink_unicast+0x790/0x790
__sock_sendmsg+0xc9/0x160
____sys_sendmsg+0x620/0x990
? kernel_sendmsg+0x30/0x30
? __copy_msghdr+0x410/0x410
? __kasan_check_read+0x11/0x20
? mark_lock+0xe6/0x1470
___sys_sendmsg+0xe9/0x170
? copy_msghdr_from_user+0x120/0x120
? __lock_acquire+0xc62/0x1de0
? do_fault_around+0x2c6/0x4e0
? do_user_addr_fault+0x8c1/0xde0
? reacquire_held_locks+0x220/0x4d0
? do_user_addr_fault+0x8c1/0xde0
? __kasan_check_read+0x11/0x20
? __fdget+0x4e/0x1d0
? sockfd_lookup_light+0x1a/0x170
__sys_sendmsg+0xd2/0x180
? __sys_sendmsg_sock+0x20/0x20
? reacquire_held_locks+0x4d0/0x4d0
? debug_smp_processor_id+0x17/0x20
__x64_sys_sendmsg+0x72/0xb0
? lockdep_hardirqs_on+0x7d/0x100
x64_sys_call+0x894/0x9f0
do_syscall_64+0x64/0x130
entry_SYSCALL_64_after_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Call free_htab_elem() after htab_unlock_bucket()
For htab of maps, when the map is removed from the htab, it may hold the
last reference of the map. bpf_map_fd_put_ptr() will invoke
bpf_map_free_id() to free the id of the removed map element. However,
bpf_map_fd_put_ptr() is invoked while holding a bucket lock
(raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock
(spinlock_t), triggering the following lockdep warning:
=============================
[ BUG: Invalid wait context ]
6.11.0-rc4+ #49 Not tainted
-----------------------------
test_maps/4881 is trying to lock:
ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70
other info that might help us debug this:
context-{5:5}
2 locks held by test_maps/4881:
#0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270
#1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80
stack backtrace:
CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ...
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0xb0
dump_stack+0x10/0x20
__lock_acquire+0x73e/0x36c0
lock_acquire+0x182/0x450
_raw_spin_lock_irqsave+0x43/0x70
bpf_map_free_id.part.0+0x21/0x70
bpf_map_put+0xcf/0x110
bpf_map_fd_put_ptr+0x9a/0xb0
free_htab_elem+0x69/0xe0
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
htab_map_update_elem+0x50f/0xa80
bpf_fd_htab_map_update_elem+0x131/0x270
bpf_map_update_value+0x266/0x380
__sys_bpf+0x21bb/0x36b0
__x64_sys_bpf+0x45/0x60
x64_sys_call+0x1b2a/0x20d0
do_syscall_64+0x5d/0x100
entry_SYSCALL_64_after_hwframe+0x76/0x7e
One way to fix the lockdep warning is using raw_spinlock_t for
map_idr_lock as well. However, bpf_map_alloc_id() invokes
idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a
similar lockdep warning because the slab's lock (s->cpu_slab->lock) is
still a spinlock.
Instead of changing map_idr_lock's type, fix the issue by invoking
htab_put_fd_value() after htab_unlock_bucket(). However, only deferring
the invocation of htab_put_fd_value() is not enough, because the old map
pointers in htab of maps can not be saved during batched deletion.
Therefore, also defer the invocation of free_htab_elem(), so these
to-be-freed elements could be linked together similar to lru map.
There are four callers for ->map_fd_put_ptr:
(1) alloc_htab_elem() (through htab_put_fd_value())
It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of
htab_put_fd_value() can not simply move after htab_unlock_bucket(),
because the old element has already been stashed in htab->extra_elems.
It may be reused immediately after htab_unlock_bucket() and the
invocation of htab_put_fd_value() after htab_unlock_bucket() may release
the newly-added element incorrectly. Therefore, saving the map pointer
of the old element for htab of maps before unlocking the bucket and
releasing the map_ptr after unlock. Beside the map pointer in the old
element, should do the same thing for the special fields in the old
element as well.
(2) free_htab_elem() (through htab_put_fd_value())
Its caller includes __htab_map_lookup_and_delete_elem(),
htab_map_delete_elem() and __htab_map_lookup_and_delete_batch().
For htab_map_delete_elem(), simply invoke free_htab_elem() after
htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just
like lru map, linking the to-be-freed element into node_to_free list
and invoking free_htab_elem() for these element after unlock. It is safe
to reuse batch_flink as the link for node_to_free, because these
elements have been removed from the hash llist.
Because htab of maps doesn't support lookup_and_delete operation,
__htab_map_lookup_and_delete_elem() doesn't have the problem, so kept
it as
---truncated--- |
| Improper Authentication (CWE-287) in the LDAP authentication engine in AxxonSoft Axxon One (C-Werk) 2.0.2 and earlier on Windows allows a remote authenticated user to be denied access or misassigned roles via incorrect evaluation of nested LDAP group memberships during login. |