Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 16209 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-54142 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: gtp: Fix use-after-free in __gtp_encap_destroy(). syzkaller reported use-after-free in __gtp_encap_destroy(). [0] It shows the same process freed sk and touched it illegally. Commit e198987e7dd7 ("gtp: fix suspicious RCU usage") added lock_sock() and release_sock() in __gtp_encap_destroy() to protect sk->sk_user_data, but release_sock() is called after sock_put() releases the last refcnt. [0]: BUG: KASAN: slab-use-after-free in instrument_atomic_read_write include/linux/instrumented.h:96 [inline] BUG: KASAN: slab-use-after-free in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline] BUG: KASAN: slab-use-after-free in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline] BUG: KASAN: slab-use-after-free in do_raw_spin_lock include/linux/spinlock.h:186 [inline] BUG: KASAN: slab-use-after-free in __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline] BUG: KASAN: slab-use-after-free in _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178 Write of size 4 at addr ffff88800dbef398 by task syz-executor.2/2401 CPU: 1 PID: 2401 Comm: syz-executor.2 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x72/0xa0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:351 [inline] print_report+0xcc/0x620 mm/kasan/report.c:462 kasan_report+0xb2/0xe0 mm/kasan/report.c:572 check_region_inline mm/kasan/generic.c:181 [inline] kasan_check_range+0x39/0x1c0 mm/kasan/generic.c:187 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline] queued_spin_lock include/asm-generic/qspinlock.h:111 [inline] do_raw_spin_lock include/linux/spinlock.h:186 [inline] __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline] _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178 spin_lock_bh include/linux/spinlock.h:355 [inline] release_sock+0x1f/0x1a0 net/core/sock.c:3526 gtp_encap_disable_sock drivers/net/gtp.c:651 [inline] gtp_encap_disable+0xb9/0x220 drivers/net/gtp.c:664 gtp_dev_uninit+0x19/0x50 drivers/net/gtp.c:728 unregister_netdevice_many_notify+0x97e/0x1520 net/core/dev.c:10841 rtnl_delete_link net/core/rtnetlink.c:3216 [inline] rtnl_dellink+0x3c0/0xb30 net/core/rtnetlink.c:3268 rtnetlink_rcv_msg+0x450/0xb10 net/core/rtnetlink.c:6423 netlink_rcv_skb+0x15d/0x450 net/netlink/af_netlink.c:2548 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x700/0x930 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x91c/0xe30 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x1b7/0x200 net/socket.c:747 ____sys_sendmsg+0x75a/0x990 net/socket.c:2493 ___sys_sendmsg+0x11d/0x1c0 net/socket.c:2547 __sys_sendmsg+0xfe/0x1d0 net/socket.c:2576 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f1168b1fe5d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007f1167edccc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f1168b1fe5d RDX: 0000000000000000 RSI: 00000000200002c0 RDI: 0000000000000003 RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007f1168b80530 R15: 0000000000000000 </TASK> Allocated by task 1483: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x ---truncated---
CVE-2025-68735 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Prevent potential UAF in group creation This commit prevents the possibility of a use after free issue in the GROUP_CREATE ioctl function, which arose as pointer to the group is accessed in that ioctl function after storing it in the Xarray. A malicious userspace can second guess the handle of a group and try to call GROUP_DESTROY ioctl from another thread around the same time as GROUP_CREATE ioctl. To prevent the use after free exploit, this commit uses a mark on an entry of group pool Xarray which is added just before returning from the GROUP_CREATE ioctl function. The mark is checked for all ioctls that specify the group handle and so userspace won't be abe to delete a group that isn't marked yet. v2: Add R-bs and fixes tags
CVE-2023-54139 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: tracing/user_events: Ensure write index cannot be negative The write index indicates which event the data is for and accesses a per-file array. The index is passed by user processes during write() calls as the first 4 bytes. Ensure that it cannot be negative by returning -EINVAL to prevent out of bounds accesses. Update ftrace self-test to ensure this occurs properly.
CVE-2025-68745 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Clear cmds after chip reset Commit aefed3e5548f ("scsi: qla2xxx: target: Fix offline port handling and host reset handling") caused two problems: 1. Commands sent to FW, after chip reset got stuck and never freed as FW is not going to respond to them anymore. 2. BUG_ON(cmd->sg_mapped) in qlt_free_cmd(). Commit 26f9ce53817a ("scsi: qla2xxx: Fix missed DMA unmap for aborted commands") attempted to fix this, but introduced another bug under different circumstances when two different CPUs were racing to call qlt_unmap_sg() at the same time: BUG_ON(!valid_dma_direction(dir)) in dma_unmap_sg_attrs(). So revert "scsi: qla2xxx: Fix missed DMA unmap for aborted commands" and partially revert "scsi: qla2xxx: target: Fix offline port handling and host reset handling" at __qla2x00_abort_all_cmds.
CVE-2023-54149 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses When using the felix driver (the only one which supports UC filtering and MC filtering) as a DSA master for a random other DSA switch, one can see the following stack trace when the downstream switch ports join a VLAN-aware bridge: ============================= WARNING: suspicious RCU usage ----------------------------- net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage! stack backtrace: Workqueue: dsa_ordered dsa_slave_switchdev_event_work Call trace: lockdep_rcu_suspicious+0x170/0x210 vlan_for_each+0x8c/0x188 dsa_slave_sync_uc+0x128/0x178 __hw_addr_sync_dev+0x138/0x158 dsa_slave_set_rx_mode+0x58/0x70 __dev_set_rx_mode+0x88/0xa8 dev_uc_add+0x74/0xa0 dsa_port_bridge_host_fdb_add+0xec/0x180 dsa_slave_switchdev_event_work+0x7c/0x1c8 process_one_work+0x290/0x568 What it's saying is that vlan_for_each() expects rtnl_lock() context and it's not getting it, when it's called from the DSA master's ndo_set_rx_mode(). The caller of that - dsa_slave_set_rx_mode() - is the slave DSA interface's dsa_port_bridge_host_fdb_add() which comes from the deferred dsa_slave_switchdev_event_work(). We went to great lengths to avoid the rtnl_lock() context in that call path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not an option due to the possibility of deadlocking when calling dsa_flush_workqueue() from the call paths that do hold rtnl_lock() - basically all of them. So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(), the state of the 8021q driver on this device is really not protected from concurrent access by anything. Looking at net/8021q/, I don't think that vlan_info->vid_list was particularly designed with RCU traversal in mind, so introducing an RCU read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so easy, and it also wouldn't be exactly what we need anyway. In general I believe that the solution isn't in net/8021q/ anyway; vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock() to be held per se - since it's not a netdev state change that we're blocking, but rather, just concurrent additions/removals to a VLAN list. We don't even need sleepable context - the callback of vlan_for_each() just schedules deferred work. The proposed escape is to remove the dependency on vlan_for_each() and to open-code a non-sleepable, rtnl-free alternative to that, based on copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and .ndo_vlan_rx_kill_vid().
CVE-2023-54160 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_sdei: Fix sleep from invalid context BUG Running a preempt-rt (v6.2-rc3-rt1) based kernel on an Ampere Altra triggers: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46 in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 24, name: cpuhp/0 preempt_count: 0, expected: 0 RCU nest depth: 0, expected: 0 3 locks held by cpuhp/0/24: #0: ffffda30217c70d0 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248 #1: ffffda30217c7120 (cpuhp_state-up){+.+.}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248 #2: ffffda3021c711f0 (sdei_list_lock){....}-{3:3}, at: sdei_cpuhp_up+0x3c/0x130 irq event stamp: 36 hardirqs last enabled at (35): [<ffffda301e85b7bc>] finish_task_switch+0xb4/0x2b0 hardirqs last disabled at (36): [<ffffda301e812fec>] cpuhp_thread_fun+0x21c/0x248 softirqs last enabled at (0): [<ffffda301e80b184>] copy_process+0x63c/0x1ac0 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 0 PID: 24 Comm: cpuhp/0 Not tainted 5.19.0-rc3-rt5-[...] Hardware name: WIWYNN Mt.Jade Server [...] Call trace: dump_backtrace+0x114/0x120 show_stack+0x20/0x70 dump_stack_lvl+0x9c/0xd8 dump_stack+0x18/0x34 __might_resched+0x188/0x228 rt_spin_lock+0x70/0x120 sdei_cpuhp_up+0x3c/0x130 cpuhp_invoke_callback+0x250/0xf08 cpuhp_thread_fun+0x120/0x248 smpboot_thread_fn+0x280/0x320 kthread+0x130/0x140 ret_from_fork+0x10/0x20 sdei_cpuhp_up() is called in the STARTING hotplug section, which runs with interrupts disabled. Use a CPUHP_AP_ONLINE_DYN entry instead to execute the cpuhp cb later, with preemption enabled. SDEI originally got its own cpuhp slot to allow interacting with perf. It got superseded by pNMI and this early slot is not relevant anymore. [1] Some SDEI calls (e.g. SDEI_1_0_FN_SDEI_PE_MASK) take actions on the calling CPU. It is checked that preemption is disabled for them. _ONLINE cpuhp cb are executed in the 'per CPU hotplug thread'. Preemption is enabled in those threads, but their cpumask is limited to 1 CPU. Move 'WARN_ON_ONCE(preemptible())' statements so that SDEI cpuhp cb don't trigger them. Also add a check for the SDEI_1_0_FN_SDEI_PRIVATE_RESET SDEI call which acts on the calling CPU. [1]: https://lore.kernel.org/all/[email protected]/
CVE-2024-47683 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not.
CVE-2023-53642 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86: fix clear_user_rep_good() exception handling annotation This code no longer exists in mainline, because it was removed in commit d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") upstream. However, rather than backport the full range of x86 memory clearing and copying cleanups, fix the exception table annotation placement for the final 'rep movsb' in clear_user_rep_good(): rather than pointing at the actual instruction that did the user space access, it pointed to the register move just before it. That made sense from a code flow standpoint, but not from an actual usage standpoint: it means that if user access takes an exception, the exception handler won't actually find the instruction in the exception tables. As a result, rather than fixing it up and returning -EFAULT, it would then turn it into a kernel oops report instead, something like: BUG: unable to handle page fault for address: 0000000020081000 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page ... RIP: 0010:clear_user_rep_good+0x1c/0x30 arch/x86/lib/clear_page_64.S:147 ... Call Trace: __clear_user arch/x86/include/asm/uaccess_64.h:103 [inline] clear_user arch/x86/include/asm/uaccess_64.h:124 [inline] iov_iter_zero+0x709/0x1290 lib/iov_iter.c:800 iomap_dio_hole_iter fs/iomap/direct-io.c:389 [inline] iomap_dio_iter fs/iomap/direct-io.c:440 [inline] __iomap_dio_rw+0xe3d/0x1cd0 fs/iomap/direct-io.c:601 iomap_dio_rw+0x40/0xa0 fs/iomap/direct-io.c:689 ext4_dio_read_iter fs/ext4/file.c:94 [inline] ext4_file_read_iter+0x4be/0x690 fs/ext4/file.c:145 call_read_iter include/linux/fs.h:2183 [inline] do_iter_readv_writev+0x2e0/0x3b0 fs/read_write.c:733 do_iter_read+0x2f2/0x750 fs/read_write.c:796 vfs_readv+0xe5/0x150 fs/read_write.c:916 do_preadv+0x1b6/0x270 fs/read_write.c:1008 __do_sys_preadv2 fs/read_write.c:1070 [inline] __se_sys_preadv2 fs/read_write.c:1061 [inline] __x64_sys_preadv2+0xef/0x150 fs/read_write.c:1061 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x39/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd which then looks like a filesystem bug rather than the incorrect exception annotation that it is. [ The alternative to this one-liner fix is to take the upstream series that cleans this all up: 68674f94ffc9 ("x86: don't use REP_GOOD or ERMS for small memory copies") 20f3337d350c ("x86: don't use REP_GOOD or ERMS for small memory clearing") adfcf4231b8c ("x86: don't use REP_GOOD or ERMS for user memory copies") * d2c95f9d6802 ("x86: don't use REP_GOOD or ERMS for user memory clearing") 3639a535587d ("x86: move stac/clac from user copy routines into callers") 577e6a7fd50d ("x86: inline the 'rep movs' in user copies for the FSRM case") 8c9b6a88b7e2 ("x86: improve on the non-rep 'clear_user' function") 427fda2c8a49 ("x86: improve on the non-rep 'copy_user' function") * e046fe5a36a9 ("x86: set FSRS automatically on AMD CPUs that have FSRM") e1f2750edc4a ("x86: remove 'zerorest' argument from __copy_user_nocache()") 034ff37d3407 ("x86: rewrite '__copy_user_nocache' function") with either the whole series or at a minimum the two marked commits being needed to fix this issue ]
CVE-2024-46858 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2025-12-24 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: Fix uaf in __timer_delete_sync There are two paths to access mptcp_pm_del_add_timer, result in a race condition: CPU1 CPU2 ==== ==== net_rx_action napi_poll netlink_sendmsg __napi_poll netlink_unicast process_backlog netlink_unicast_kernel __netif_receive_skb genl_rcv __netif_receive_skb_one_core netlink_rcv_skb NF_HOOK genl_rcv_msg ip_local_deliver_finish genl_family_rcv_msg ip_protocol_deliver_rcu genl_family_rcv_msg_doit tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit tcp_v4_do_rcv mptcp_nl_remove_addrs_list tcp_rcv_established mptcp_pm_remove_addrs_and_subflows tcp_data_queue remove_anno_list_by_saddr mptcp_incoming_options mptcp_pm_del_add_timer mptcp_pm_del_add_timer kfree(entry) In remove_anno_list_by_saddr(running on CPU2), after leaving the critical zone protected by "pm.lock", the entry will be released, which leads to the occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1). Keeping a reference to add_timer inside the lock, and calling sk_stop_timer_sync() with this reference, instead of "entry->add_timer". Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock, do not directly access any members of the entry outside the pm lock, which can avoid similar "entry->x" uaf.
CVE-2025-52842 3 Apple, Laundry Project, Linux 3 Macos, Laundry, Linux Kernel 2025-12-23 6.1 Medium
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in Laundry on Linux, MacOS allows Account Takeover. This issue affects Laundry: 2.3.0.
CVE-2025-38410 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix a fence leak in submit error path In error paths, we could unref the submit without calling drm_sched_entity_push_job(), so msm_job_free() will never get called. Since drm_sched_job_cleanup() will NULL out the s_fence, we can use that to detect this case. Patchwork: https://patchwork.freedesktop.org/patch/653584/
CVE-2025-38409 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: Fix another leak in the submit error path put_unused_fd() doesn't free the installed file, if we've already done fd_install(). So we need to also free the sync_file. Patchwork: https://patchwork.freedesktop.org/patch/653583/
CVE-2025-38406 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath6kl: remove WARN on bad firmware input If the firmware gives bad input, that's nothing to do with the driver's stack at this point etc., so the WARN_ON() doesn't add any value. Additionally, this is one of the top syzbot reports now. Just print a message, and as an added bonus, print the sizes too.
CVE-2025-38404 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: displayport: Fix potential deadlock The deadlock can occur due to a recursive lock acquisition of `cros_typec_altmode_data::mutex`. The call chain is as follows: 1. cros_typec_altmode_work() acquires the mutex 2. typec_altmode_vdm() -> dp_altmode_vdm() -> 3. typec_altmode_exit() -> cros_typec_altmode_exit() 4. cros_typec_altmode_exit() attempts to acquire the mutex again To prevent this, defer the `typec_altmode_exit()` call by scheduling it rather than calling it directly from within the mutex-protected context.
CVE-2025-38403 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: vsock/vmci: Clear the vmci transport packet properly when initializing it In vmci_transport_packet_init memset the vmci_transport_packet before populating the fields to avoid any uninitialised data being left in the structure.
CVE-2025-38401 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mtk-sd: Prevent memory corruption from DMA map failure If msdc_prepare_data() fails to map the DMA region, the request is not prepared for data receiving, but msdc_start_data() proceeds the DMA with previous setting. Since this will lead a memory corruption, we have to stop the request operation soon after the msdc_prepare_data() fails to prepare it.
CVE-2025-38399 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port() The function core_scsi3_decode_spec_i_port(), in its error code path, unconditionally calls core_scsi3_lunacl_undepend_item() passing the dest_se_deve pointer, which may be NULL. This can lead to a NULL pointer dereference if dest_se_deve remains unset. SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg Unable to handle kernel paging request at virtual address dfff800000000012 Call trace: core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P) core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod] core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod] target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod] Fix this by adding a NULL check before calling core_scsi3_lunacl_undepend_item()
CVE-2025-38396 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: fs: export anon_inode_make_secure_inode() and fix secretmem LSM bypass Export anon_inode_make_secure_inode() to allow KVM guest_memfd to create anonymous inodes with proper security context. This replaces the current pattern of calling alloc_anon_inode() followed by inode_init_security_anon() for creating security context manually. This change also fixes a security regression in secretmem where the S_PRIVATE flag was not cleared after alloc_anon_inode(), causing LSM/SELinux checks to be bypassed for secretmem file descriptors. As guest_memfd currently resides in the KVM module, we need to export this symbol for use outside the core kernel. In the future, guest_memfd might be moved to core-mm, at which point the symbols no longer would have to be exported. When/if that happens is still unclear.
CVE-2024-35848 3 Debian, Linux, Redhat 3 Debian Linux, Linux Kernel, Enterprise Linux 2025-12-23 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: eeprom: at24: fix memory corruption race condition If the eeprom is not accessible, an nvmem device will be registered, the read will fail, and the device will be torn down. If another driver accesses the nvmem device after the teardown, it will reference invalid memory. Move the failure point before registering the nvmem device.
CVE-2024-35877 3 Debian, Linux, Redhat 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more 2025-12-23 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/mm/pat: fix VM_PAT handling in COW mappings PAT handling won't do the right thing in COW mappings: the first PTE (or, in fact, all PTEs) can be replaced during write faults to point at anon folios. Reliably recovering the correct PFN and cachemode using follow_phys() from PTEs will not work in COW mappings. Using follow_phys(), we might just get the address+protection of the anon folio (which is very wrong), or fail on swap/nonswap entries, failing follow_phys() and triggering a WARN_ON_ONCE() in untrack_pfn() and track_pfn_copy(), not properly calling free_pfn_range(). In free_pfn_range(), we either wouldn't call memtype_free() or would call it with the wrong range, possibly leaking memory. To fix that, let's update follow_phys() to refuse returning anon folios, and fallback to using the stored PFN inside vma->vm_pgoff for COW mappings if we run into that. We will now properly handle untrack_pfn() with COW mappings, where we don't need the cachemode. We'll have to fail fork()->track_pfn_copy() if the first page was replaced by an anon folio, though: we'd have to store the cachemode in the VMA to make this work, likely growing the VMA size. For now, lets keep it simple and let track_pfn_copy() just fail in that case: it would have failed in the past with swap/nonswap entries already, and it would have done the wrong thing with anon folios. Simple reproducer to trigger the WARN_ON_ONCE() in untrack_pfn(): <--- C reproducer ---> #include <stdio.h> #include <sys/mman.h> #include <unistd.h> #include <liburing.h> int main(void) { struct io_uring_params p = {}; int ring_fd; size_t size; char *map; ring_fd = io_uring_setup(1, &p); if (ring_fd < 0) { perror("io_uring_setup"); return 1; } size = p.sq_off.array + p.sq_entries * sizeof(unsigned); /* Map the submission queue ring MAP_PRIVATE */ map = mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE, ring_fd, IORING_OFF_SQ_RING); if (map == MAP_FAILED) { perror("mmap"); return 1; } /* We have at least one page. Let's COW it. */ *map = 0; pause(); return 0; } <--- C reproducer ---> On a system with 16 GiB RAM and swap configured: # ./iouring & # memhog 16G # killall iouring [ 301.552930] ------------[ cut here ]------------ [ 301.553285] WARNING: CPU: 7 PID: 1402 at arch/x86/mm/pat/memtype.c:1060 untrack_pfn+0xf4/0x100 [ 301.553989] Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_g [ 301.558232] CPU: 7 PID: 1402 Comm: iouring Not tainted 6.7.5-100.fc38.x86_64 #1 [ 301.558772] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebu4 [ 301.559569] RIP: 0010:untrack_pfn+0xf4/0x100 [ 301.559893] Code: 75 c4 eb cf 48 8b 43 10 8b a8 e8 00 00 00 3b 6b 28 74 b8 48 8b 7b 30 e8 ea 1a f7 000 [ 301.561189] RSP: 0018:ffffba2c0377fab8 EFLAGS: 00010282 [ 301.561590] RAX: 00000000ffffffea RBX: ffff9208c8ce9cc0 RCX: 000000010455e047 [ 301.562105] RDX: 07fffffff0eb1e0a RSI: 0000000000000000 RDI: ffff9208c391d200 [ 301.562628] RBP: 0000000000000000 R08: ffffba2c0377fab8 R09: 0000000000000000 [ 301.563145] R10: ffff9208d2292d50 R11: 0000000000000002 R12: 00007fea890e0000 [ 301.563669] R13: 0000000000000000 R14: ffffba2c0377fc08 R15: 0000000000000000 [ 301.564186] FS: 0000000000000000(0000) GS:ffff920c2fbc0000(0000) knlGS:0000000000000000 [ 301.564773] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 301.565197] CR2: 00007fea88ee8a20 CR3: 00000001033a8000 CR4: 0000000000750ef0 [ 301.565725] PKRU: 55555554 [ 301.565944] Call Trace: [ 301.566148] <TASK> [ 301.566325] ? untrack_pfn+0xf4/0x100 [ 301.566618] ? __warn+0x81/0x130 [ 301.566876] ? untrack_pfn+0xf4/0x100 [ 3 ---truncated---