Search Results (16622 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40250 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clean up only new IRQ glue on request_irq() failure The mlx5_irq_alloc() function can inadvertently free the entire rmap and end up in a crash[1] when the other threads tries to access this, when request_irq() fails due to exhausted IRQ vectors. This commit modifies the cleanup to remove only the specific IRQ mapping that was just added. This prevents removal of other valid mappings and ensures precise cleanup of the failed IRQ allocation's associated glue object. Note: This error is observed when both fwctl and rds configs are enabled. [1] mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 general protection fault, probably for non-canonical address 0xe277a58fde16f291: 0000 [#1] SMP NOPTI RIP: 0010:free_irq_cpu_rmap+0x23/0x7d Call Trace: <TASK> ? show_trace_log_lvl+0x1d6/0x2f9 ? show_trace_log_lvl+0x1d6/0x2f9 ? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] ? __die_body.cold+0x8/0xa ? die_addr+0x39/0x53 ? exc_general_protection+0x1c4/0x3e9 ? dev_vprintk_emit+0x5f/0x90 ? asm_exc_general_protection+0x22/0x27 ? free_irq_cpu_rmap+0x23/0x7d mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] irq_pool_request_vector+0x7d/0x90 [mlx5_core] mlx5_irq_request+0x2e/0xe0 [mlx5_core] mlx5_irq_request_vector+0xad/0xf7 [mlx5_core] comp_irq_request_pci+0x64/0xf0 [mlx5_core] create_comp_eq+0x71/0x385 [mlx5_core] ? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core] mlx5_comp_eqn_get+0x72/0x90 [mlx5_core] ? xas_load+0x8/0x91 mlx5_comp_irqn_get+0x40/0x90 [mlx5_core] mlx5e_open_channel+0x7d/0x3c7 [mlx5_core] mlx5e_open_channels+0xad/0x250 [mlx5_core] mlx5e_open_locked+0x3e/0x110 [mlx5_core] mlx5e_open+0x23/0x70 [mlx5_core] __dev_open+0xf1/0x1a5 __dev_change_flags+0x1e1/0x249 dev_change_flags+0x21/0x5c do_setlink+0x28b/0xcc4 ? __nla_parse+0x22/0x3d ? inet6_validate_link_af+0x6b/0x108 ? cpumask_next+0x1f/0x35 ? __snmp6_fill_stats64.constprop.0+0x66/0x107 ? __nla_validate_parse+0x48/0x1e6 __rtnl_newlink+0x5ff/0xa57 ? kmem_cache_alloc_trace+0x164/0x2ce rtnl_newlink+0x44/0x6e rtnetlink_rcv_msg+0x2bb/0x362 ? __netlink_sendskb+0x4c/0x6c ? netlink_unicast+0x28f/0x2ce ? rtnl_calcit.isra.0+0x150/0x146 netlink_rcv_skb+0x5f/0x112 netlink_unicast+0x213/0x2ce netlink_sendmsg+0x24f/0x4d9 __sock_sendmsg+0x65/0x6a ____sys_sendmsg+0x28f/0x2c9 ? import_iovec+0x17/0x2b ___sys_sendmsg+0x97/0xe0 __sys_sendmsg+0x81/0xd8 do_syscall_64+0x35/0x87 entry_SYSCALL_64_after_hwframe+0x6e/0x0 RIP: 0033:0x7fc328603727 Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48 RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727 RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 00000000000 ---truncated---
CVE-2025-40221 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: pci: mg4b: fix uninitialized iio scan data Fix potential leak of uninitialized stack data to userspace by ensuring that the `scan` structure is zeroed before use.
CVE-2025-40246 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: xfs: fix out of bounds memory read error in symlink repair xfs/286 produced this report on my test fleet: ================================================================== BUG: KFENCE: out-of-bounds read in memcpy_orig+0x54/0x110 Out-of-bounds read at 0xffff88843fe9e038 (184B right of kfence-#184): memcpy_orig+0x54/0x110 xrep_symlink_salvage_inline+0xb3/0xf0 [xfs] xrep_symlink_salvage+0x100/0x110 [xfs] xrep_symlink+0x2e/0x80 [xfs] xrep_attempt+0x61/0x1f0 [xfs] xfs_scrub_metadata+0x34f/0x5c0 [xfs] xfs_ioc_scrubv_metadata+0x387/0x560 [xfs] xfs_file_ioctl+0xe23/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 kfence-#184: 0xffff88843fe9df80-0xffff88843fe9dfea, size=107, cache=kmalloc-128 allocated by task 3470 on cpu 1 at 263329.131592s (192823.508886s ago): xfs_init_local_fork+0x79/0xe0 [xfs] xfs_iformat_local+0xa4/0x170 [xfs] xfs_iformat_data_fork+0x148/0x180 [xfs] xfs_inode_from_disk+0x2cd/0x480 [xfs] xfs_iget+0x450/0xd60 [xfs] xfs_bulkstat_one_int+0x6b/0x510 [xfs] xfs_bulkstat_iwalk+0x1e/0x30 [xfs] xfs_iwalk_ag_recs+0xdf/0x150 [xfs] xfs_iwalk_run_callbacks+0xb9/0x190 [xfs] xfs_iwalk_ag+0x1dc/0x2f0 [xfs] xfs_iwalk_args.constprop.0+0x6a/0x120 [xfs] xfs_iwalk+0xa4/0xd0 [xfs] xfs_bulkstat+0xfa/0x170 [xfs] xfs_ioc_fsbulkstat.isra.0+0x13a/0x230 [xfs] xfs_file_ioctl+0xbf2/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 CPU: 1 UID: 0 PID: 1300113 Comm: xfs_scrub Not tainted 6.18.0-rc4-djwx #rc4 PREEMPT(lazy) 3d744dd94e92690f00a04398d2bd8631dcef1954 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-4.module+el8.8.0+21164+ed375313 04/01/2014 ================================================================== On further analysis, I realized that the second parameter to min() is not correct. xfs_ifork::if_bytes is the size of the xfs_ifork::if_data buffer. if_bytes can be smaller than the data fork size because: (a) the forkoff code tries to keep the data area as large as possible (b) for symbolic links, if_bytes is the ondisk file size + 1 (c) forkoff is always a multiple of 8. Case in point: for a single-byte symlink target, forkoff will be 8 but the buffer will only be 2 bytes long. In other words, the logic here is wrong and we walk off the end of the incore buffer. Fix that.
CVE-2025-40235 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: directly free partially initialized fs_info in btrfs_check_leaked_roots() If fs_info->super_copy or fs_info->super_for_commit allocated failed in btrfs_get_tree_subvol(), then no need to call btrfs_free_fs_info(). Otherwise btrfs_check_leaked_roots() would access NULL pointer because fs_info->allocated_roots had not been initialised. syzkaller reported the following information: ------------[ cut here ]------------ BUG: unable to handle page fault for address: fffffffffffffbb0 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 64c9067 P4D 64c9067 PUD 64cb067 PMD 0 Oops: Oops: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 1402 Comm: syz.1.35 Not tainted 6.15.8 #4 PREEMPT(lazy) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...) RIP: 0010:arch_atomic_read arch/x86/include/asm/atomic.h:23 [inline] RIP: 0010:raw_atomic_read include/linux/atomic/atomic-arch-fallback.h:457 [inline] RIP: 0010:atomic_read include/linux/atomic/atomic-instrumented.h:33 [inline] RIP: 0010:refcount_read include/linux/refcount.h:170 [inline] RIP: 0010:btrfs_check_leaked_roots+0x18f/0x2c0 fs/btrfs/disk-io.c:1230 [...] Call Trace: <TASK> btrfs_free_fs_info+0x310/0x410 fs/btrfs/disk-io.c:1280 btrfs_get_tree_subvol+0x592/0x6b0 fs/btrfs/super.c:2029 btrfs_get_tree+0x63/0x80 fs/btrfs/super.c:2097 vfs_get_tree+0x98/0x320 fs/super.c:1759 do_new_mount+0x357/0x660 fs/namespace.c:3899 path_mount+0x716/0x19c0 fs/namespace.c:4226 do_mount fs/namespace.c:4239 [inline] __do_sys_mount fs/namespace.c:4450 [inline] __se_sys_mount fs/namespace.c:4427 [inline] __x64_sys_mount+0x28c/0x310 fs/namespace.c:4427 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x92/0x180 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f032eaffa8d [...]
CVE-2025-40220 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fuse: fix livelock in synchronous file put from fuseblk workers I observed a hang when running generic/323 against a fuseblk server. This test opens a file, initiates a lot of AIO writes to that file descriptor, and closes the file descriptor before the writes complete. Unsurprisingly, the AIO exerciser threads are mostly stuck waiting for responses from the fuseblk server: # cat /proc/372265/task/372313/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_do_getattr+0xfc/0x1f0 [fuse] [<0>] fuse_file_read_iter+0xbe/0x1c0 [fuse] [<0>] aio_read+0x130/0x1e0 [<0>] io_submit_one+0x542/0x860 [<0>] __x64_sys_io_submit+0x98/0x1a0 [<0>] do_syscall_64+0x37/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 But the /weird/ part is that the fuseblk server threads are waiting for responses from itself: # cat /proc/372210/task/372232/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_file_put+0x9a/0xd0 [fuse] [<0>] fuse_release+0x36/0x50 [fuse] [<0>] __fput+0xec/0x2b0 [<0>] task_work_run+0x55/0x90 [<0>] syscall_exit_to_user_mode+0xe9/0x100 [<0>] do_syscall_64+0x43/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 The fuseblk server is fuse2fs so there's nothing all that exciting in the server itself. So why is the fuse server calling fuse_file_put? The commit message for the fstest sheds some light on that: "By closing the file descriptor before calling io_destroy, you pretty much guarantee that the last put on the ioctx will be done in interrupt context (during I/O completion). Aha. AIO fgets a new struct file from the fd when it queues the ioctx. The completion of the FUSE_WRITE command from userspace causes the fuse server to call the AIO completion function. The completion puts the struct file, queuing a delayed fput to the fuse server task. When the fuse server task returns to userspace, it has to run the delayed fput, which in the case of a fuseblk server, it does synchronously. Sending the FUSE_RELEASE command sychronously from fuse server threads is a bad idea because a client program can initiate enough simultaneous AIOs such that all the fuse server threads end up in delayed_fput, and now there aren't any threads left to handle the queued fuse commands. Fix this by only using asynchronous fputs when closing files, and leave a comment explaining why.
CVE-2025-40224 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc() The driver allocates memory for sensor data using devm_kzalloc(), but did not check if the allocation succeeded. In case of memory allocation failure, dereferencing the NULL pointer would lead to a kernel crash. Add a NULL pointer check and return -ENOMEM to handle allocation failure properly.
CVE-2025-40225 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix kernel panic on partial unmap of a GPU VA region This commit address a kernel panic issue that can happen if Userspace tries to partially unmap a GPU virtual region (aka drm_gpuva). The VM_BIND interface allows partial unmapping of a BO. Panthor driver pre-allocates memory for the new drm_gpuva structures that would be needed for the map/unmap operation, done using drm_gpuvm layer. It expected that only one new drm_gpuva would be needed on umap but a partial unmap can require 2 new drm_gpuva and that's why it ended up doing a NULL pointer dereference causing a kernel panic. Following dump was seen when partial unmap was exercised. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000078 Mem abort info: ESR = 0x0000000096000046 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x06: level 2 translation fault Data abort info: ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000 CM = 0, WnR = 1, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000088a863000 [000000000000078] pgd=080000088a842003, p4d=080000088a842003, pud=0800000884bf5003, pmd=0000000000000000 Internal error: Oops: 0000000096000046 [#1] PREEMPT SMP <snip> pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] lr : panthor_gpuva_sm_step_remap+0x6c/0x330 [panthor] sp : ffff800085d43970 x29: ffff800085d43970 x28: ffff00080363e440 x27: ffff0008090c6000 x26: 0000000000000030 x25: ffff800085d439f8 x24: ffff00080d402000 x23: ffff800085d43b60 x22: ffff800085d439e0 x21: ffff00080abdb180 x20: 0000000000000000 x19: 0000000000000000 x18: 0000000000000010 x17: 6e656c202c303030 x16: 3666666666646466 x15: 393d61766f69202c x14: 312d3d7361203a70 x13: 303030323d6e656c x12: ffff80008324bf58 x11: 0000000000000003 x10: 0000000000000002 x9 : ffff8000801a6a9c x8 : ffff00080360b300 x7 : 0000000000000000 x6 : 000000088aa35fc7 x5 : fff1000080000000 x4 : ffff8000842ddd30 x3 : 0000000000000001 x2 : 0000000100000000 x1 : 0000000000000001 x0 : 0000000000000078 Call trace: panthor_gpuva_sm_step_remap+0xe4/0x330 [panthor] op_remap_cb.isra.22+0x50/0x80 __drm_gpuvm_sm_unmap+0x10c/0x1c8 drm_gpuvm_sm_unmap+0x40/0x60 panthor_vm_exec_op+0xb4/0x3d0 [panthor] panthor_vm_bind_exec_sync_op+0x154/0x278 [panthor] panthor_ioctl_vm_bind+0x160/0x4a0 [panthor] drm_ioctl_kernel+0xbc/0x138 drm_ioctl+0x240/0x500 __arm64_sys_ioctl+0xb0/0xf8 invoke_syscall+0x4c/0x110 el0_svc_common.constprop.1+0x98/0xf8 do_el0_svc+0x24/0x38 el0_svc+0x40/0xf8 el0t_64_sync_handler+0xa0/0xc8 el0t_64_sync+0x174/0x178
CVE-2025-62189 4 Linux, Logstare, Microsoft and 1 more 5 Linux, Linux Kernel, Collector and 2 more 2025-12-04 N/A
LogStare Collector contains an incorrect authorization vulnerability in UserRegistration. If exploited, a non-administrative user may create a new user account by sending a crafted HTTP request.
CVE-2022-50297 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50298 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: slimbus: qcom-ngd: cleanup in probe error path Add proper error path in probe() to cleanup resources previously acquired/allocated to fix warnings visible during probe deferral: notifier callback qcom_slim_ngd_ssr_notify already registered WARNING: CPU: 6 PID: 70 at kernel/notifier.c:28 notifier_chain_register+0x5c/0x90 Modules linked in: CPU: 6 PID: 70 Comm: kworker/u16:1 Not tainted 6.0.0-rc3-next-20220830 #380 Call trace: notifier_chain_register+0x5c/0x90 srcu_notifier_chain_register+0x44/0x90 qcom_register_ssr_notifier+0x38/0x4c qcom_slim_ngd_ctrl_probe+0xd8/0x400 platform_probe+0x6c/0xe0 really_probe+0xbc/0x2d4 __driver_probe_device+0x78/0xe0 driver_probe_device+0x3c/0x12c __device_attach_driver+0xb8/0x120 bus_for_each_drv+0x78/0xd0 __device_attach+0xa8/0x1c0 device_initial_probe+0x18/0x24 bus_probe_device+0xa0/0xac deferred_probe_work_func+0x88/0xc0 process_one_work+0x1d4/0x320 worker_thread+0x2cc/0x44c kthread+0x110/0x114 ret_from_fork+0x10/0x20
CVE-2022-50299 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md: Replace snprintf with scnprintf Current code produces a warning as shown below when total characters in the constituent block device names plus the slashes exceeds 200. snprintf() returns the number of characters generated from the given input, which could cause the expression “200 – len” to wrap around to a large positive number. Fix this by using scnprintf() instead, which returns the actual number of characters written into the buffer. [ 1513.267938] ------------[ cut here ]------------ [ 1513.267943] WARNING: CPU: 15 PID: 37247 at <snip>/lib/vsprintf.c:2509 vsnprintf+0x2c8/0x510 [ 1513.267944] Modules linked in: <snip> [ 1513.267969] CPU: 15 PID: 37247 Comm: mdadm Not tainted 5.4.0-1085-azure #90~18.04.1-Ubuntu [ 1513.267969] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022 [ 1513.267971] RIP: 0010:vsnprintf+0x2c8/0x510 <-snip-> [ 1513.267982] Call Trace: [ 1513.267986] snprintf+0x45/0x70 [ 1513.267990] ? disk_name+0x71/0xa0 [ 1513.267993] dump_zones+0x114/0x240 [raid0] [ 1513.267996] ? _cond_resched+0x19/0x40 [ 1513.267998] raid0_run+0x19e/0x270 [raid0] [ 1513.268000] md_run+0x5e0/0xc50 [ 1513.268003] ? security_capable+0x3f/0x60 [ 1513.268005] do_md_run+0x19/0x110 [ 1513.268006] md_ioctl+0x195e/0x1f90 [ 1513.268007] blkdev_ioctl+0x91f/0x9f0 [ 1513.268010] block_ioctl+0x3d/0x50 [ 1513.268012] do_vfs_ioctl+0xa9/0x640 [ 1513.268014] ? __fput+0x162/0x260 [ 1513.268016] ksys_ioctl+0x75/0x80 [ 1513.268017] __x64_sys_ioctl+0x1a/0x20 [ 1513.268019] do_syscall_64+0x5e/0x200 [ 1513.268021] entry_SYSCALL_64_after_hwframe+0x44/0xa9
CVE-2022-50300 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix extent map use-after-free when handling missing device in read_one_chunk Store the error code before freeing the extent_map. Though it's reference counted structure, in that function it's the first and last allocation so this would lead to a potential use-after-free. The error can happen eg. when chunk is stored on a missing device and the degraded mount option is missing. Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216721
CVE-2022-50301 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: iommu/omap: Fix buffer overflow in debugfs There are two issues here: 1) The "len" variable needs to be checked before the very first write. Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a buffer overflow. 2) The snprintf() function returns the number of bytes that *would* have been copied if there were enough space. But we want to know the number of bytes which were *actually* copied so use scnprintf() instead.
CVE-2022-50302 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL.
CVE-2022-50303 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix double release compute pasid If kfd_process_device_init_vm returns failure after vm is converted to compute vm and vm->pasid set to compute pasid, KFD will not take pdd->drm_file reference. As a result, drm close file handler maybe called to release the compute pasid before KFD process destroy worker to release the same pasid and set vm->pasid to zero, this generates below WARNING backtrace and NULL pointer access. Add helper amdgpu_amdkfd_gpuvm_set_vm_pasid and call it at the last step of kfd_process_device_init_vm, to ensure vm pasid is the original pasid if acquiring vm failed or is the compute pasid with pdd->drm_file reference taken to avoid double release same pasid. amdgpu: Failed to create process VM object ida_free called for id=32770 which is not allocated. WARNING: CPU: 57 PID: 72542 at ../lib/idr.c:522 ida_free+0x96/0x140 RIP: 0010:ida_free+0x96/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10 BUG: kernel NULL pointer dereference, address: 0000000000000000 RIP: 0010:ida_free+0x76/0x140 Call Trace: amdgpu_pasid_free_delayed+0xe1/0x2a0 [amdgpu] amdgpu_driver_postclose_kms+0x2d8/0x340 [amdgpu] drm_file_free.part.13+0x216/0x270 [drm] drm_close_helper.isra.14+0x60/0x70 [drm] drm_release+0x6e/0xf0 [drm] __fput+0xcc/0x280 ____fput+0xe/0x20 task_work_run+0x96/0xc0 do_exit+0x3d0/0xc10
CVE-2022-50304 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: core: fix possible resource leak in init_mtd() I got the error report while inject fault in init_mtd(): sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0' Call Trace: <TASK> dump_stack_lvl+0x67/0x83 sysfs_warn_dup+0x60/0x70 sysfs_create_dir_ns+0x109/0x120 kobject_add_internal+0xce/0x2f0 kobject_add+0x98/0x110 device_add+0x179/0xc00 device_create_groups_vargs+0xf4/0x100 device_create+0x7b/0xb0 bdi_register_va.part.13+0x58/0x2d0 bdi_register+0x9b/0xb0 init_mtd+0x62/0x171 [mtd] do_one_initcall+0x6c/0x3c0 do_init_module+0x58/0x222 load_module+0x268e/0x27d0 __do_sys_finit_module+0xd5/0x140 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register things with the same name in the same directory. Error registering mtd class or bdi: -17 If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered, as a result, we can't load the mtd module again, to fix this by calling bdi_unregister(mtd_bdi) after out_procfs label.
CVE-2022-50305 1 Linux 1 Linux Kernel 2025-12-04 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: sof_es8336: fix possible use-after-free in sof_es8336_remove() sof_es8336_remove() calls cancel_delayed_work(). However, that function does not wait until the work function finishes. This means that the callback function may still be running after the driver's remove function has finished, which would result in a use-after-free. Fix by calling cancel_delayed_work_sync(), which ensures that the work is properly cancelled, no longer running, and unable to re-schedule itself.
CVE-2022-50307 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running.
CVE-2022-50308 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.
CVE-2022-50309 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: xilinx: vipp: Fix refcount leak in xvip_graph_dma_init of_get_child_by_name() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. Add missing of_node_put() to avoid refcount leak.