Search Results (16708 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40240 1 Linux 1 Linux Kernel 2025-12-04 7.5 High
In the Linux kernel, the following vulnerability has been resolved: sctp: avoid NULL dereference when chunk data buffer is missing chunk->skb pointer is dereferenced in the if-block where it's supposed to be NULL only. chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list instead and do it just before replacing chunk->skb. We're sure that otherwise chunk->skb is non-NULL because of outer if() condition.
CVE-2025-40233 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: clear extent cache after moving/defragmenting extents The extent map cache can become stale when extents are moved or defragmented, causing subsequent operations to see outdated extent flags. This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters(). The problem occurs when: 1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED 2. ioctl(FITRIM) triggers ocfs2_move_extents() 3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2) 4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent() which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0) 5. The extent map cache is not invalidated after the move 6. Later write() operations read stale cached flags (0x2) but disk has updated flags (0x0), causing a mismatch 7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers Fix by clearing the extent map cache after each extent move/defrag operation in __ocfs2_move_extents_range(). This ensures subsequent operations read fresh extent data from disk.
CVE-2025-40216 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: don't rely on user vaddr alignment There is no guaranteed alignment for user pointers, however the calculation of an offset of the first page into a folio after coalescing uses some weird bit mask logic, get rid of it.
CVE-2025-40222 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: serial: sh-sci: fix RSCI FIFO overrun handling The receive error handling code is shared between RSCI and all other SCIF port types, but the RSCI overrun_reg is specified as a memory offset, while for other SCIF types it is an enum value used to index into the sci_port_params->regs array, as mentioned above the sci_serial_in() function. For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call inside the sci_handle_fifo_overrun() function to index outside the bounds of the regs array, which currently has a size of 20, as specified by SCI_NR_REGS. Because of this, we end up accessing memory outside of RSCI's rsci_port_params structure, which, when interpreted as a plat_sci_reg, happens to have a non-zero size, causing the following WARN when sci_serial_in() is called, as the accidental size does not match the supported register sizes. The existence of the overrun_reg needs to be checked because SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not present in the regs array. Avoid calling sci_getreg() for port types which don't use standard register handling. Use the ops->read_reg() and ops->write_reg() functions to properly read and write registers for RSCI, and change the type of the status variable to accommodate the 32-bit CSR register. sci_getreg() and sci_serial_in() are also called with overrun_reg in the sci_mpxed_interrupt() interrupt handler, but that code path is not used for RSCI, as it does not have a muxed interrupt. ------------[ cut here ]------------ Invalid register access WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : sci_serial_in+0x38/0xac lr : sci_serial_in+0x38/0xac sp : ffff800080003e80 x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80 x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000 x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720 x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720 x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48 x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48 x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80 Call trace: sci_serial_in+0x38/0xac (P) sci_handle_fifo_overrun.isra.0+0x70/0x134 sci_er_interrupt+0x50/0x39c __handle_irq_event_percpu+0x48/0x140 handle_irq_event+0x44/0xb0 handle_fasteoi_irq+0xf4/0x1a0 handle_irq_desc+0x34/0x58 generic_handle_domain_irq+0x1c/0x28 gic_handle_irq+0x4c/0x140 call_on_irq_stack+0x30/0x48 do_interrupt_handler+0x80/0x84 el1_interrupt+0x34/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 default_idle_call+0x28/0x58 (P) do_idle+0x1f8/0x250 cpu_startup_entry+0x34/0x3c rest_init+0xd8/0xe0 console_on_rootfs+0x0/0x6c __primary_switched+0x88/0x90 ---[ end trace 0000000000000000 ]---
CVE-2025-40227 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: dealloc commit test ctx always The damon_ctx for testing online DAMON parameters commit inputs is deallocated only when the test fails. This means memory is leaked for every successful online DAMON parameters commit. Fix the leak by always deallocating it.
CVE-2025-40228 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: catch commit test ctx alloc failure Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation". DAMON sysfs interface dynamically allocates and uses a damon_ctx object for testing if given inputs for online DAMON parameters update is valid. The object is being used without an allocation failure check, and leaked when the test succeeds. Fix the two bugs. This patch (of 2): The damon_ctx for testing online DAMON parameters commit inputs is used without its allocation failure check. This could result in an invalid memory access. Fix it by directly returning an error when the allocation failed.
CVE-2025-40231 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock: fix lock inversion in vsock_assign_transport() Syzbot reported a potential lock inversion deadlock between vsock_register_mutex and sk_lock-AF_VSOCK when vsock_linger() is called. The issue was introduced by commit 687aa0c5581b ("vsock: Fix transport_* TOCTOU") which added vsock_register_mutex locking in vsock_assign_transport() around the transport->release() call, that can call vsock_linger(). vsock_assign_transport() can be called with sk_lock held. vsock_linger() calls sk_wait_event() that temporarily releases and re-acquires sk_lock. During this window, if another thread hold vsock_register_mutex while trying to acquire sk_lock, a circular dependency is created. Fix this by releasing vsock_register_mutex before calling transport->release() and vsock_deassign_transport(). This is safe because we don't need to hold vsock_register_mutex while releasing the old transport, and we ensure the new transport won't disappear by obtaining a module reference first via try_module_get().
CVE-2025-40249 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: make sure the cdev fd is still active before emitting events With the final call to fput() on a file descriptor, the release action may be deferred and scheduled on a work queue. The reference count of that descriptor is still zero and it must not be used. It's possible that a GPIO change, we want to notify the user-space about, happens AFTER the reference count on the file descriptor associated with the character device went down to zero but BEFORE the .release() callback was called from the workqueue and so BEFORE we unregistered from the notifier. Using the regular get_file() routine in this situation triggers the following warning: struct file::f_count incremented from zero; use-after-free condition present! So use the get_file_active() variant that will return NULL on file descriptors that have been or are being released.
CVE-2025-40232 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rv: Fully convert enabled_monitors to use list_head as iterator The callbacks in enabled_monitors_seq_ops are inconsistent. Some treat the iterator as struct rv_monitor *, while others treat the iterator as struct list_head *. This causes a wrong type cast and crashes the system as reported by Nathan. Convert everything to use struct list_head * as iterator. This also makes enabled_monitors consistent with available_monitors.
CVE-2025-40265 1 Linux 1 Linux Kernel 2025-12-04 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: vfat: fix missing sb_min_blocksize() return value checks When emulating an nvme device on qemu with both logical_block_size and physical_block_size set to 8 KiB, but without format, a kernel panic was triggered during the early boot stage while attempting to mount a vfat filesystem. [95553.682035] EXT4-fs (nvme0n1): unable to set blocksize [95553.684326] EXT4-fs (nvme0n1): unable to set blocksize [95553.686501] EXT4-fs (nvme0n1): unable to set blocksize [95553.696448] ISOFS: unsupported/invalid hardware sector size 8192 [95553.697117] ------------[ cut here ]------------ [95553.697567] kernel BUG at fs/buffer.c:1582! [95553.697984] Oops: invalid opcode: 0000 [#1] SMP NOPTI [95553.698602] CPU: 0 UID: 0 PID: 7212 Comm: mount Kdump: loaded Not tainted 6.18.0-rc2+ #38 PREEMPT(voluntary) [95553.699511] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [95553.700534] RIP: 0010:folio_alloc_buffers+0x1bb/0x1c0 [95553.701018] Code: 48 8b 15 e8 93 18 02 65 48 89 35 e0 93 18 02 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d 31 d2 31 c9 31 f6 31 ff c3 cc cc cc cc <0f> 0b 90 66 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f [95553.702648] RSP: 0018:ffffd1b0c676f990 EFLAGS: 00010246 [95553.703132] RAX: ffff8cfc4176d820 RBX: 0000000000508c48 RCX: 0000000000000001 [95553.703805] RDX: 0000000000002000 RSI: 0000000000000000 RDI: 0000000000000000 [95553.704481] RBP: ffffd1b0c676f9c8 R08: 0000000000000000 R09: 0000000000000000 [95553.705148] R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000001 [95553.705816] R13: 0000000000002000 R14: fffff8bc8257e800 R15: 0000000000000000 [95553.706483] FS: 000072ee77315840(0000) GS:ffff8cfdd2c8d000(0000) knlGS:0000000000000000 [95553.707248] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [95553.707782] CR2: 00007d8f2a9e5a20 CR3: 0000000039d0c006 CR4: 0000000000772ef0 [95553.708439] PKRU: 55555554 [95553.708734] Call Trace: [95553.709015] <TASK> [95553.709266] __getblk_slow+0xd2/0x230 [95553.709641] ? find_get_block_common+0x8b/0x530 [95553.710084] bdev_getblk+0x77/0xa0 [95553.710449] __bread_gfp+0x22/0x140 [95553.710810] fat_fill_super+0x23a/0xfc0 [95553.711216] ? __pfx_setup+0x10/0x10 [95553.711580] ? __pfx_vfat_fill_super+0x10/0x10 [95553.712014] vfat_fill_super+0x15/0x30 [95553.712401] get_tree_bdev_flags+0x141/0x1e0 [95553.712817] get_tree_bdev+0x10/0x20 [95553.713177] vfat_get_tree+0x15/0x20 [95553.713550] vfs_get_tree+0x2a/0x100 [95553.713910] vfs_cmd_create+0x62/0xf0 [95553.714273] __do_sys_fsconfig+0x4e7/0x660 [95553.714669] __x64_sys_fsconfig+0x20/0x40 [95553.715062] x64_sys_call+0x21ee/0x26a0 [95553.715453] do_syscall_64+0x80/0x670 [95553.715816] ? __fs_parse+0x65/0x1e0 [95553.716172] ? fat_parse_param+0x103/0x4b0 [95553.716587] ? vfs_parse_fs_param_source+0x21/0xa0 [95553.717034] ? __do_sys_fsconfig+0x3d9/0x660 [95553.717548] ? __x64_sys_fsconfig+0x20/0x40 [95553.717957] ? x64_sys_call+0x21ee/0x26a0 [95553.718360] ? do_syscall_64+0xb8/0x670 [95553.718734] ? __x64_sys_fsconfig+0x20/0x40 [95553.719141] ? x64_sys_call+0x21ee/0x26a0 [95553.719545] ? do_syscall_64+0xb8/0x670 [95553.719922] ? x64_sys_call+0x1405/0x26a0 [95553.720317] ? do_syscall_64+0xb8/0x670 [95553.720702] ? __x64_sys_close+0x3e/0x90 [95553.721080] ? x64_sys_call+0x1b5e/0x26a0 [95553.721478] ? do_syscall_64+0xb8/0x670 [95553.721841] ? irqentry_exit+0x43/0x50 [95553.722211] ? exc_page_fault+0x90/0x1b0 [95553.722681] entry_SYSCALL_64_after_hwframe+0x76/0x7e [95553.723166] RIP: 0033:0x72ee774f3afe [95553.723562] Code: 73 01 c3 48 8b 0d 0a 33 0f 00 f7 d8 64 89 01 48 83 c8 ff c3 0f 1f 84 00 00 00 00 00 f3 0f 1e fa 49 89 ca b8 af 01 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d da 32 0f 00 f7 d8 64 89 01 48 [95553.725188] RSP: 002b:00007ffe97148978 EFLAGS: 00000246 ORIG_RAX: 00000000000001af [95553.725892] RAX: ffffffffffffffda RBX: ---truncated---
CVE-2025-40219 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/IOV: Add PCI rescan-remove locking when enabling/disabling SR-IOV Before disabling SR-IOV via config space accesses to the parent PF, sriov_disable() first removes the PCI devices representing the VFs. Since commit 9d16947b7583 ("PCI: Add global pci_lock_rescan_remove()") such removal operations are serialized against concurrent remove and rescan using the pci_rescan_remove_lock. No such locking was ever added in sriov_disable() however. In particular when commit 18f9e9d150fc ("PCI/IOV: Factor out sriov_add_vfs()") factored out the PCI device removal into sriov_del_vfs() there was still no locking around the pci_iov_remove_virtfn() calls. On s390 the lack of serialization in sriov_disable() may cause double remove and list corruption with the below (amended) trace being observed: PSW: 0704c00180000000 0000000c914e4b38 (klist_put+56) GPRS: 000003800313fb48 0000000000000000 0000000100000001 0000000000000001 00000000f9b520a8 0000000000000000 0000000000002fbd 00000000f4cc9480 0000000000000001 0000000000000000 0000000000000000 0000000180692828 00000000818e8000 000003800313fe2c 000003800313fb20 000003800313fad8 #0 [3800313fb20] device_del at c9158ad5c #1 [3800313fb88] pci_remove_bus_device at c915105ba #2 [3800313fbd0] pci_iov_remove_virtfn at c9152f198 #3 [3800313fc28] zpci_iov_remove_virtfn at c90fb67c0 #4 [3800313fc60] zpci_bus_remove_device at c90fb6104 #5 [3800313fca0] __zpci_event_availability at c90fb3dca #6 [3800313fd08] chsc_process_sei_nt0 at c918fe4a2 #7 [3800313fd60] crw_collect_info at c91905822 #8 [3800313fe10] kthread at c90feb390 #9 [3800313fe68] __ret_from_fork at c90f6aa64 #10 [3800313fe98] ret_from_fork at c9194f3f2. This is because in addition to sriov_disable() removing the VFs, the platform also generates hot-unplug events for the VFs. This being the reverse operation to the hotplug events generated by sriov_enable() and handled via pdev->no_vf_scan. And while the event processing takes pci_rescan_remove_lock and checks whether the struct pci_dev still exists, the lack of synchronization makes this checking racy. Other races may also be possible of course though given that this lack of locking persisted so long observable races seem very rare. Even on s390 the list corruption was only observed with certain devices since the platform events are only triggered by config accesses after the removal, so as long as the removal finished synchronously they would not race. Either way the locking is missing so fix this by adding it to the sriov_del_vfs() helper. Just like PCI rescan-remove, locking is also missing in sriov_add_vfs() including for the error case where pci_stop_and_remove_bus_device() is called without the PCI rescan-remove lock being held. Even in the non-error case, adding new PCI devices and buses should be serialized via the PCI rescan-remove lock. Add the necessary locking.
CVE-2025-40221 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: pci: mg4b: fix uninitialized iio scan data Fix potential leak of uninitialized stack data to userspace by ensuring that the `scan` structure is zeroed before use.
CVE-2025-40230 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue.
CVE-2025-40234 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: alienware-wmi-wmax: Fix NULL pointer dereference in sleep handlers Devices without the AWCC interface don't initialize `awcc`. Add a check before dereferencing it in sleep handlers.
CVE-2025-40250 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Clean up only new IRQ glue on request_irq() failure The mlx5_irq_alloc() function can inadvertently free the entire rmap and end up in a crash[1] when the other threads tries to access this, when request_irq() fails due to exhausted IRQ vectors. This commit modifies the cleanup to remove only the specific IRQ mapping that was just added. This prevents removal of other valid mappings and ensures precise cleanup of the failed IRQ allocation's associated glue object. Note: This error is observed when both fwctl and rds configs are enabled. [1] mlx5_core 0000:05:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:05:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:06:00.0: Successfully registered panic handler for port 1 mlx5_core 0000:06:00.0: mlx5_irq_alloc:293:(pid 66740): Failed to request irq. err = -28 infiniband mlx5_0: mlx5_ib_test_wc:290:(pid 66740): Error -28 while trying to test write-combining support mlx5_core 0000:06:00.0: Successfully unregistered panic handler for port 1 mlx5_core 0000:03:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 mlx5_core 0000:05:00.0: mlx5_irq_alloc:293:(pid 28895): Failed to request irq. err = -28 general protection fault, probably for non-canonical address 0xe277a58fde16f291: 0000 [#1] SMP NOPTI RIP: 0010:free_irq_cpu_rmap+0x23/0x7d Call Trace: <TASK> ? show_trace_log_lvl+0x1d6/0x2f9 ? show_trace_log_lvl+0x1d6/0x2f9 ? mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] ? __die_body.cold+0x8/0xa ? die_addr+0x39/0x53 ? exc_general_protection+0x1c4/0x3e9 ? dev_vprintk_emit+0x5f/0x90 ? asm_exc_general_protection+0x22/0x27 ? free_irq_cpu_rmap+0x23/0x7d mlx5_irq_alloc.cold+0x5d/0xf3 [mlx5_core] irq_pool_request_vector+0x7d/0x90 [mlx5_core] mlx5_irq_request+0x2e/0xe0 [mlx5_core] mlx5_irq_request_vector+0xad/0xf7 [mlx5_core] comp_irq_request_pci+0x64/0xf0 [mlx5_core] create_comp_eq+0x71/0x385 [mlx5_core] ? mlx5e_open_xdpsq+0x11c/0x230 [mlx5_core] mlx5_comp_eqn_get+0x72/0x90 [mlx5_core] ? xas_load+0x8/0x91 mlx5_comp_irqn_get+0x40/0x90 [mlx5_core] mlx5e_open_channel+0x7d/0x3c7 [mlx5_core] mlx5e_open_channels+0xad/0x250 [mlx5_core] mlx5e_open_locked+0x3e/0x110 [mlx5_core] mlx5e_open+0x23/0x70 [mlx5_core] __dev_open+0xf1/0x1a5 __dev_change_flags+0x1e1/0x249 dev_change_flags+0x21/0x5c do_setlink+0x28b/0xcc4 ? __nla_parse+0x22/0x3d ? inet6_validate_link_af+0x6b/0x108 ? cpumask_next+0x1f/0x35 ? __snmp6_fill_stats64.constprop.0+0x66/0x107 ? __nla_validate_parse+0x48/0x1e6 __rtnl_newlink+0x5ff/0xa57 ? kmem_cache_alloc_trace+0x164/0x2ce rtnl_newlink+0x44/0x6e rtnetlink_rcv_msg+0x2bb/0x362 ? __netlink_sendskb+0x4c/0x6c ? netlink_unicast+0x28f/0x2ce ? rtnl_calcit.isra.0+0x150/0x146 netlink_rcv_skb+0x5f/0x112 netlink_unicast+0x213/0x2ce netlink_sendmsg+0x24f/0x4d9 __sock_sendmsg+0x65/0x6a ____sys_sendmsg+0x28f/0x2c9 ? import_iovec+0x17/0x2b ___sys_sendmsg+0x97/0xe0 __sys_sendmsg+0x81/0xd8 do_syscall_64+0x35/0x87 entry_SYSCALL_64_after_hwframe+0x6e/0x0 RIP: 0033:0x7fc328603727 Code: c3 66 90 41 54 41 89 d4 55 48 89 f5 53 89 fb 48 83 ec 10 e8 0b ed ff ff 44 89 e2 48 89 ee 89 df 41 89 c0 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 35 44 89 c7 48 89 44 24 08 e8 44 ed ff ff 48 RSP: 002b:00007ffe8eb3f1a0 EFLAGS: 00000293 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fc328603727 RDX: 0000000000000000 RSI: 00007ffe8eb3f1f0 RDI: 000000000000000d RBP: 00007ffe8eb3f1f0 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000293 R12: 0000000000000000 R13: 00000000000 ---truncated---
CVE-2025-40251 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: devlink: rate: Unset parent pointer in devl_rate_nodes_destroy The function devl_rate_nodes_destroy is documented to "Unset parent for all rate objects". However, it was only calling the driver-specific `rate_leaf_parent_set` or `rate_node_parent_set` ops and decrementing the parent's refcount, without actually setting the `devlink_rate->parent` pointer to NULL. This leaves a dangling pointer in the `devlink_rate` struct, which cause refcount error in netdevsim[1] and mlx5[2]. In addition, this is inconsistent with the behavior of `devlink_nl_rate_parent_node_set`, where the parent pointer is correctly cleared. This patch fixes the issue by explicitly setting `devlink_rate->parent` to NULL after notifying the driver, thus fulfilling the function's documented behavior for all rate objects. [1] repro steps: echo 1 > /sys/bus/netdevsim/new_device devlink dev eswitch set netdevsim/netdevsim1 mode switchdev echo 1 > /sys/bus/netdevsim/devices/netdevsim1/sriov_numvfs devlink port function rate add netdevsim/netdevsim1/test_node devlink port function rate set netdevsim/netdevsim1/128 parent test_node echo 1 > /sys/bus/netdevsim/del_device dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 8 PID: 1530 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 8 UID: 0 PID: 1530 Comm: bash Not tainted 6.18.0-rc4+ #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 __nsim_dev_port_del+0x6c/0x70 [netdevsim] nsim_dev_reload_destroy+0x11c/0x140 [netdevsim] nsim_drv_remove+0x2b/0xb0 [netdevsim] device_release_driver_internal+0x194/0x1f0 bus_remove_device+0xc6/0x130 device_del+0x159/0x3c0 device_unregister+0x1a/0x60 del_device_store+0x111/0x170 [netdevsim] kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x55/0x10f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 [2] devlink dev eswitch set pci/0000:08:00.0 mode switchdev devlink port add pci/0000:08:00.0 flavour pcisf pfnum 0 sfnum 1000 devlink port function rate add pci/0000:08:00.0/group1 devlink port function rate set pci/0000:08:00.0/32768 parent group1 modprobe -r mlx5_ib mlx5_fwctl mlx5_core dmesg: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 7 PID: 16151 at lib/refcount.c:31 refcount_warn_saturate+0x42/0xe0 CPU: 7 UID: 0 PID: 16151 Comm: bash Not tainted 6.17.0-rc7_for_upstream_min_debug_2025_10_02_12_44 #1 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 RIP: 0010:refcount_warn_saturate+0x42/0xe0 Call Trace: <TASK> devl_rate_leaf_destroy+0x8d/0x90 mlx5_esw_offloads_devlink_port_unregister+0x33/0x60 [mlx5_core] mlx5_esw_offloads_unload_rep+0x3f/0x50 [mlx5_core] mlx5_eswitch_unload_sf_vport+0x40/0x90 [mlx5_core] mlx5_sf_esw_event+0xc4/0x120 [mlx5_core] notifier_call_chain+0x33/0xa0 blocking_notifier_call_chain+0x3b/0x50 mlx5_eswitch_disable_locked+0x50/0x110 [mlx5_core] mlx5_eswitch_disable+0x63/0x90 [mlx5_core] mlx5_unload+0x1d/0x170 [mlx5_core] mlx5_uninit_one+0xa2/0x130 [mlx5_core] remove_one+0x78/0xd0 [mlx5_core] pci_device_remove+0x39/0xa0 device_release_driver_internal+0x194/0x1f0 unbind_store+0x99/0xa0 kernfs_fop_write_iter+0x12e/0x1e0 vfs_write+0x215/0x3d0 ksys_write+0x5f/0xd0 do_syscall_64+0x53/0x1f0 entry_SYSCALL_64_after_hwframe+0x4b/0x53
CVE-2025-40246 1 Linux 1 Linux Kernel 2025-12-04 7.1 High
In the Linux kernel, the following vulnerability has been resolved: xfs: fix out of bounds memory read error in symlink repair xfs/286 produced this report on my test fleet: ================================================================== BUG: KFENCE: out-of-bounds read in memcpy_orig+0x54/0x110 Out-of-bounds read at 0xffff88843fe9e038 (184B right of kfence-#184): memcpy_orig+0x54/0x110 xrep_symlink_salvage_inline+0xb3/0xf0 [xfs] xrep_symlink_salvage+0x100/0x110 [xfs] xrep_symlink+0x2e/0x80 [xfs] xrep_attempt+0x61/0x1f0 [xfs] xfs_scrub_metadata+0x34f/0x5c0 [xfs] xfs_ioc_scrubv_metadata+0x387/0x560 [xfs] xfs_file_ioctl+0xe23/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 kfence-#184: 0xffff88843fe9df80-0xffff88843fe9dfea, size=107, cache=kmalloc-128 allocated by task 3470 on cpu 1 at 263329.131592s (192823.508886s ago): xfs_init_local_fork+0x79/0xe0 [xfs] xfs_iformat_local+0xa4/0x170 [xfs] xfs_iformat_data_fork+0x148/0x180 [xfs] xfs_inode_from_disk+0x2cd/0x480 [xfs] xfs_iget+0x450/0xd60 [xfs] xfs_bulkstat_one_int+0x6b/0x510 [xfs] xfs_bulkstat_iwalk+0x1e/0x30 [xfs] xfs_iwalk_ag_recs+0xdf/0x150 [xfs] xfs_iwalk_run_callbacks+0xb9/0x190 [xfs] xfs_iwalk_ag+0x1dc/0x2f0 [xfs] xfs_iwalk_args.constprop.0+0x6a/0x120 [xfs] xfs_iwalk+0xa4/0xd0 [xfs] xfs_bulkstat+0xfa/0x170 [xfs] xfs_ioc_fsbulkstat.isra.0+0x13a/0x230 [xfs] xfs_file_ioctl+0xbf2/0x10e0 [xfs] __x64_sys_ioctl+0x76/0xc0 do_syscall_64+0x4e/0x1e0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 CPU: 1 UID: 0 PID: 1300113 Comm: xfs_scrub Not tainted 6.18.0-rc4-djwx #rc4 PREEMPT(lazy) 3d744dd94e92690f00a04398d2bd8631dcef1954 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-4.module+el8.8.0+21164+ed375313 04/01/2014 ================================================================== On further analysis, I realized that the second parameter to min() is not correct. xfs_ifork::if_bytes is the size of the xfs_ifork::if_data buffer. if_bytes can be smaller than the data fork size because: (a) the forkoff code tries to keep the data area as large as possible (b) for symbolic links, if_bytes is the ondisk file size + 1 (c) forkoff is always a multiple of 8. Case in point: for a single-byte symlink target, forkoff will be 8 but the buffer will only be 2 bytes long. In other words, the logic here is wrong and we walk off the end of the incore buffer. Fix that.
CVE-2025-40224 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwmon: (cgbc-hwmon) Add missing NULL check after devm_kzalloc() The driver allocates memory for sensor data using devm_kzalloc(), but did not check if the allocation succeeded. In case of memory allocation failure, dereferencing the NULL pointer would lead to a kernel crash. Add a NULL pointer check and return -ENOMEM to handle allocation failure properly.
CVE-2025-40235 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: directly free partially initialized fs_info in btrfs_check_leaked_roots() If fs_info->super_copy or fs_info->super_for_commit allocated failed in btrfs_get_tree_subvol(), then no need to call btrfs_free_fs_info(). Otherwise btrfs_check_leaked_roots() would access NULL pointer because fs_info->allocated_roots had not been initialised. syzkaller reported the following information: ------------[ cut here ]------------ BUG: unable to handle page fault for address: fffffffffffffbb0 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 64c9067 P4D 64c9067 PUD 64cb067 PMD 0 Oops: Oops: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 1402 Comm: syz.1.35 Not tainted 6.15.8 #4 PREEMPT(lazy) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), (...) RIP: 0010:arch_atomic_read arch/x86/include/asm/atomic.h:23 [inline] RIP: 0010:raw_atomic_read include/linux/atomic/atomic-arch-fallback.h:457 [inline] RIP: 0010:atomic_read include/linux/atomic/atomic-instrumented.h:33 [inline] RIP: 0010:refcount_read include/linux/refcount.h:170 [inline] RIP: 0010:btrfs_check_leaked_roots+0x18f/0x2c0 fs/btrfs/disk-io.c:1230 [...] Call Trace: <TASK> btrfs_free_fs_info+0x310/0x410 fs/btrfs/disk-io.c:1280 btrfs_get_tree_subvol+0x592/0x6b0 fs/btrfs/super.c:2029 btrfs_get_tree+0x63/0x80 fs/btrfs/super.c:2097 vfs_get_tree+0x98/0x320 fs/super.c:1759 do_new_mount+0x357/0x660 fs/namespace.c:3899 path_mount+0x716/0x19c0 fs/namespace.c:4226 do_mount fs/namespace.c:4239 [inline] __do_sys_mount fs/namespace.c:4450 [inline] __se_sys_mount fs/namespace.c:4427 [inline] __x64_sys_mount+0x28c/0x310 fs/namespace.c:4427 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0x92/0x180 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f032eaffa8d [...]
CVE-2025-40220 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fuse: fix livelock in synchronous file put from fuseblk workers I observed a hang when running generic/323 against a fuseblk server. This test opens a file, initiates a lot of AIO writes to that file descriptor, and closes the file descriptor before the writes complete. Unsurprisingly, the AIO exerciser threads are mostly stuck waiting for responses from the fuseblk server: # cat /proc/372265/task/372313/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_do_getattr+0xfc/0x1f0 [fuse] [<0>] fuse_file_read_iter+0xbe/0x1c0 [fuse] [<0>] aio_read+0x130/0x1e0 [<0>] io_submit_one+0x542/0x860 [<0>] __x64_sys_io_submit+0x98/0x1a0 [<0>] do_syscall_64+0x37/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 But the /weird/ part is that the fuseblk server threads are waiting for responses from itself: # cat /proc/372210/task/372232/stack [<0>] request_wait_answer+0x1fe/0x2a0 [fuse] [<0>] __fuse_simple_request+0xd3/0x2b0 [fuse] [<0>] fuse_file_put+0x9a/0xd0 [fuse] [<0>] fuse_release+0x36/0x50 [fuse] [<0>] __fput+0xec/0x2b0 [<0>] task_work_run+0x55/0x90 [<0>] syscall_exit_to_user_mode+0xe9/0x100 [<0>] do_syscall_64+0x43/0xf0 [<0>] entry_SYSCALL_64_after_hwframe+0x4b/0x53 The fuseblk server is fuse2fs so there's nothing all that exciting in the server itself. So why is the fuse server calling fuse_file_put? The commit message for the fstest sheds some light on that: "By closing the file descriptor before calling io_destroy, you pretty much guarantee that the last put on the ioctx will be done in interrupt context (during I/O completion). Aha. AIO fgets a new struct file from the fd when it queues the ioctx. The completion of the FUSE_WRITE command from userspace causes the fuse server to call the AIO completion function. The completion puts the struct file, queuing a delayed fput to the fuse server task. When the fuse server task returns to userspace, it has to run the delayed fput, which in the case of a fuseblk server, it does synchronously. Sending the FUSE_RELEASE command sychronously from fuse server threads is a bad idea because a client program can initiate enough simultaneous AIOs such that all the fuse server threads end up in delayed_fput, and now there aren't any threads left to handle the queued fuse commands. Fix this by only using asynchronous fputs when closing files, and leave a comment explaining why.