Search Results (16708 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40255 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: core: prevent NULL deref in generic_hwtstamp_ioctl_lower() The ethtool tsconfig Netlink path can trigger a null pointer dereference. A call chain such as: tsconfig_prepare_data() -> dev_get_hwtstamp_phylib() -> vlan_hwtstamp_get() -> generic_hwtstamp_get_lower() -> generic_hwtstamp_ioctl_lower() results in generic_hwtstamp_ioctl_lower() being called with kernel_cfg->ifr as NULL. The generic_hwtstamp_ioctl_lower() function does not expect a NULL ifr and dereferences it, leading to a system crash. Fix this by adding a NULL check for kernel_cfg->ifr in generic_hwtstamp_ioctl_lower(). If ifr is NULL, return -EINVAL.
CVE-2025-40218 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/damon/vaddr: do not repeat pte_offset_map_lock() until success DAMON's virtual address space operation set implementation (vaddr) calls pte_offset_map_lock() inside the page table walk callback function. This is for reading and writing page table accessed bits. If pte_offset_map_lock() fails, it retries by returning the page table walk callback function with ACTION_AGAIN. pte_offset_map_lock() can continuously fail if the target is a pmd migration entry, though. Hence it could cause an infinite page table walk if the migration cannot be done until the page table walk is finished. This indeed caused a soft lockup when CPU hotplugging and DAMON were running in parallel. Avoid the infinite loop by simply not retrying the page table walk. DAMON is promising only a best-effort accuracy, so missing access to such pages is no problem.
CVE-2025-40226 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Account for failed debug initialization When the SCMI debug subsystem fails to initialize, the related debug root will be missing, and the underlying descriptor will be NULL. Handle this fault condition in the SCMI debug helpers that maintain metrics counters.
CVE-2025-40229 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme Currently, damon_destroy_scheme() only cleans up the filter list but leaves ops_filter untouched, which could lead to memory leaks when a scheme is destroyed. This patch ensures both filter and ops_filter are properly freed in damon_destroy_scheme(), preventing potential memory leaks.
CVE-2025-40236 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: virtio-net: zero unused hash fields When GSO tunnel is negotiated virtio_net_hdr_tnl_from_skb() tries to initialize the tunnel metadata but forget to zero unused rxhash fields. This may leak information to another side. Fixing this by zeroing the unused hash fields.
CVE-2025-40238 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix IPsec cleanup over MPV device When we do mlx5e_detach_netdev() we eventually disable blocking events notifier, among those events are IPsec MPV events from IB to core. So before disabling those blocking events, make sure to also unregister the devcom device and mark all this device operations as complete, in order to prevent the other device from using invalid netdev during future devcom events which could cause the trace below. BUG: kernel NULL pointer dereference, address: 0000000000000010 PGD 146427067 P4D 146427067 PUD 146488067 PMD 0 Oops: Oops: 0000 [#1] SMP CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1 Tainted: [W]=WARN Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40 RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206 RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00 RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000 RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000 R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600 R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80 FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x150/0x3e0 ? exc_page_fault+0x74/0x130 ? asm_exc_page_fault+0x22/0x30 ? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core] mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core] mlx5_devcom_send_event+0x8c/0x170 [mlx5_core] blocking_event+0x17b/0x230 [mlx5_core] notifier_call_chain+0x35/0xa0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core] mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib] mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib] ? idr_alloc_cyclic+0x50/0xb0 ? __kmalloc_cache_noprof+0x167/0x340 ? __kmalloc_noprof+0x1a7/0x430 __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe9/0x310 [mlx5_ib] ? kernfs_add_one+0x107/0x150 ? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib] auxiliary_bus_probe+0x3e/0x90 really_probe+0xc5/0x3a0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x62d/0x830 __auxiliary_device_add+0x3b/0xa0 ? auxiliary_device_init+0x41/0x90 add_adev+0xd1/0x150 [mlx5_core] mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core] esw_mode_change+0x6c/0xc0 [mlx5_core] mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core] devlink_nl_eswitch_set_doit+0x60/0xe0 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x180/0x2b0 ? devlink_get_from_attrs_lock+0x170/0x170 ? devlink_nl_eswitch_get_doit+0x290/0x290 ? devlink_nl_pre_doit_port_optional+0x50/0x50 ? genl_family_rcv_msg_dumpit+0xf0/0xf0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1fc/0x2d0 netlink_sendmsg+0x1e4/0x410 __sock_sendmsg+0x38/0x60 ? sockfd_lookup_light+0x12/0x60 __sys_sendto+0x105/0x160 ? __sys_recvmsg+0x4e/0x90 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x4c/0x100 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f27bc91b13a Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff ---truncated---
CVE-2025-40241 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: erofs: fix crafted invalid cases for encoded extents Robert recently reported two corrupted images that can cause system crashes, which are related to the new encoded extents introduced in Linux 6.15: - The first one [1] has plen != 0 (e.g. plen == 0x2000000) but (plen & Z_EROFS_EXTENT_PLEN_MASK) == 0. It is used to represent special extents such as sparse extents (!EROFS_MAP_MAPPED), but previously only plen == 0 was handled; - The second one [2] has pa 0xffffffffffdcffed and plen 0xb4000, then "cur [0xfffffffffffff000] += bvec.bv_len [0x1000]" in "} while ((cur += bvec.bv_len) < end);" wraps around, causing an out-of-bound access of pcl->compressed_bvecs[] in z_erofs_submit_queue(). EROFS only supports 48-bit physical block addresses (up to 1EiB for 4k blocks), so add a sanity check to enforce this.
CVE-2025-40228 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: catch commit test ctx alloc failure Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation". DAMON sysfs interface dynamically allocates and uses a damon_ctx object for testing if given inputs for online DAMON parameters update is valid. The object is being used without an allocation failure check, and leaked when the test succeeds. Fix the two bugs. This patch (of 2): The damon_ctx for testing online DAMON parameters commit inputs is used without its allocation failure check. This could result in an invalid memory access. Fix it by directly returning an error when the allocation failed.
CVE-2025-40249 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: gpio: cdev: make sure the cdev fd is still active before emitting events With the final call to fput() on a file descriptor, the release action may be deferred and scheduled on a work queue. The reference count of that descriptor is still zero and it must not be used. It's possible that a GPIO change, we want to notify the user-space about, happens AFTER the reference count on the file descriptor associated with the character device went down to zero but BEFORE the .release() callback was called from the workqueue and so BEFORE we unregistered from the notifier. Using the regular get_file() routine in this situation triggers the following warning: struct file::f_count incremented from zero; use-after-free condition present! So use the get_file_active() variant that will return NULL on file descriptors that have been or are being released.
CVE-2025-40240 1 Linux 1 Linux Kernel 2025-12-04 7.5 High
In the Linux kernel, the following vulnerability has been resolved: sctp: avoid NULL dereference when chunk data buffer is missing chunk->skb pointer is dereferenced in the if-block where it's supposed to be NULL only. chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list instead and do it just before replacing chunk->skb. We're sure that otherwise chunk->skb is non-NULL because of outer if() condition.
CVE-2025-40233 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ocfs2: clear extent cache after moving/defragmenting extents The extent map cache can become stale when extents are moved or defragmented, causing subsequent operations to see outdated extent flags. This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters(). The problem occurs when: 1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED 2. ioctl(FITRIM) triggers ocfs2_move_extents() 3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2) 4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent() which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0) 5. The extent map cache is not invalidated after the move 6. Later write() operations read stale cached flags (0x2) but disk has updated flags (0x0), causing a mismatch 7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers Fix by clearing the extent map cache after each extent move/defrag operation in __ocfs2_move_extents_range(). This ensures subsequent operations read fresh extent data from disk.
CVE-2025-40232 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rv: Fully convert enabled_monitors to use list_head as iterator The callbacks in enabled_monitors_seq_ops are inconsistent. Some treat the iterator as struct rv_monitor *, while others treat the iterator as struct list_head *. This causes a wrong type cast and crashes the system as reported by Nathan. Convert everything to use struct list_head * as iterator. This also makes enabled_monitors consistent with available_monitors.
CVE-2025-40231 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock: fix lock inversion in vsock_assign_transport() Syzbot reported a potential lock inversion deadlock between vsock_register_mutex and sk_lock-AF_VSOCK when vsock_linger() is called. The issue was introduced by commit 687aa0c5581b ("vsock: Fix transport_* TOCTOU") which added vsock_register_mutex locking in vsock_assign_transport() around the transport->release() call, that can call vsock_linger(). vsock_assign_transport() can be called with sk_lock held. vsock_linger() calls sk_wait_event() that temporarily releases and re-acquires sk_lock. During this window, if another thread hold vsock_register_mutex while trying to acquire sk_lock, a circular dependency is created. Fix this by releasing vsock_register_mutex before calling transport->release() and vsock_deassign_transport(). This is safe because we don't need to hold vsock_register_mutex while releasing the old transport, and we ensure the new transport won't disappear by obtaining a module reference first via try_module_get().
CVE-2025-40227 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/damon/sysfs: dealloc commit test ctx always The damon_ctx for testing online DAMON parameters commit inputs is deallocated only when the test fails. This means memory is leaked for every successful online DAMON parameters commit. Fix the leak by always deallocating it.
CVE-2025-40223 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: most: usb: Fix use-after-free in hdm_disconnect hdm_disconnect() calls most_deregister_interface(), which eventually unregisters the MOST interface device with device_unregister(iface->dev). If that drops the last reference, the device core may call release_mdev() immediately while hdm_disconnect() is still executing. The old code also freed several mdev-owned allocations in hdm_disconnect() and then performed additional put_device() calls. Depending on refcount order, this could lead to use-after-free or double-free when release_mdev() ran (or when unregister paths also performed puts). Fix by moving the frees of mdev-owned allocations into release_mdev(), so they happen exactly once when the device is truly released, and by dropping the extra put_device() calls in hdm_disconnect() that are redundant after device_unregister() and most_deregister_interface(). This addresses the KASAN slab-use-after-free reported by syzbot in hdm_disconnect(). See report and stack traces in the bug link below.
CVE-2025-40222 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: serial: sh-sci: fix RSCI FIFO overrun handling The receive error handling code is shared between RSCI and all other SCIF port types, but the RSCI overrun_reg is specified as a memory offset, while for other SCIF types it is an enum value used to index into the sci_port_params->regs array, as mentioned above the sci_serial_in() function. For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call inside the sci_handle_fifo_overrun() function to index outside the bounds of the regs array, which currently has a size of 20, as specified by SCI_NR_REGS. Because of this, we end up accessing memory outside of RSCI's rsci_port_params structure, which, when interpreted as a plat_sci_reg, happens to have a non-zero size, causing the following WARN when sci_serial_in() is called, as the accidental size does not match the supported register sizes. The existence of the overrun_reg needs to be checked because SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not present in the regs array. Avoid calling sci_getreg() for port types which don't use standard register handling. Use the ops->read_reg() and ops->write_reg() functions to properly read and write registers for RSCI, and change the type of the status variable to accommodate the 32-bit CSR register. sci_getreg() and sci_serial_in() are also called with overrun_reg in the sci_mpxed_interrupt() interrupt handler, but that code path is not used for RSCI, as it does not have a muxed interrupt. ------------[ cut here ]------------ Invalid register access WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT) pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : sci_serial_in+0x38/0xac lr : sci_serial_in+0x38/0xac sp : ffff800080003e80 x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80 x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000 x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720 x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720 x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48 x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48 x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80 Call trace: sci_serial_in+0x38/0xac (P) sci_handle_fifo_overrun.isra.0+0x70/0x134 sci_er_interrupt+0x50/0x39c __handle_irq_event_percpu+0x48/0x140 handle_irq_event+0x44/0xb0 handle_fasteoi_irq+0xf4/0x1a0 handle_irq_desc+0x34/0x58 generic_handle_domain_irq+0x1c/0x28 gic_handle_irq+0x4c/0x140 call_on_irq_stack+0x30/0x48 do_interrupt_handler+0x80/0x84 el1_interrupt+0x34/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 default_idle_call+0x28/0x58 (P) do_idle+0x1f8/0x250 cpu_startup_entry+0x34/0x3c rest_init+0xd8/0xe0 console_on_rootfs+0x0/0x6c __primary_switched+0x88/0x90 ---[ end trace 0000000000000000 ]---
CVE-2025-40216 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: io_uring/rsrc: don't rely on user vaddr alignment There is no guaranteed alignment for user pointers, however the calculation of an offset of the first page into a folio after coalescing uses some weird bit mask logic, get rid of it.
CVE-2025-40234 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: alienware-wmi-wmax: Fix NULL pointer dereference in sleep handlers Devices without the AWCC interface don't initialize `awcc`. Add a check before dereferencing it in sleep handlers.
CVE-2025-40230 1 Linux 1 Linux Kernel 2025-12-04 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm: prevent poison consumption when splitting THP When performing memory error injection on a THP (Transparent Huge Page) mapped to userspace on an x86 server, the kernel panics with the following trace. The expected behavior is to terminate the affected process instead of panicking the kernel, as the x86 Machine Check code can recover from an in-userspace #MC. mce: [Hardware Error]: CPU 0: Machine Check Exception: f Bank 3: bd80000000070134 mce: [Hardware Error]: RIP 10:<ffffffff8372f8bc> {memchr_inv+0x4c/0xf0} mce: [Hardware Error]: TSC afff7bbff88a ADDR 1d301b000 MISC 80 PPIN 1e741e77539027db mce: [Hardware Error]: PROCESSOR 0:d06d0 TIME 1758093249 SOCKET 0 APIC 0 microcode 80000320 mce: [Hardware Error]: Run the above through 'mcelog --ascii' mce: [Hardware Error]: Machine check: Data load in unrecoverable area of kernel Kernel panic - not syncing: Fatal local machine check The root cause of this panic is that handling a memory failure triggered by an in-userspace #MC necessitates splitting the THP. The splitting process employs a mechanism, implemented in try_to_map_unused_to_zeropage(), which reads the pages in the THP to identify zero-filled pages. However, reading the pages in the THP results in a second in-kernel #MC, occurring before the initial memory_failure() completes, ultimately leading to a kernel panic. See the kernel panic call trace on the two #MCs. First Machine Check occurs // [1] memory_failure() // [2] try_to_split_thp_page() split_huge_page() split_huge_page_to_list_to_order() __folio_split() // [3] remap_page() remove_migration_ptes() remove_migration_pte() try_to_map_unused_to_zeropage() // [4] memchr_inv() // [5] Second Machine Check occurs // [6] Kernel panic [1] Triggered by accessing a hardware-poisoned THP in userspace, which is typically recoverable by terminating the affected process. [2] Call folio_set_has_hwpoisoned() before try_to_split_thp_page(). [3] Pass the RMP_USE_SHARED_ZEROPAGE remap flag to remap_page(). [4] Try to map the unused THP to zeropage. [5] Re-access pages in the hw-poisoned THP in the kernel. [6] Triggered in-kernel, leading to a panic kernel. In Step[2], memory_failure() sets the poisoned flag on the page in the THP by TestSetPageHWPoison() before calling try_to_split_thp_page(). As suggested by David Hildenbrand, fix this panic by not accessing to the poisoned page in the THP during zeropage identification, while continuing to scan unaffected pages in the THP for possible zeropage mapping. This prevents a second in-kernel #MC that would cause kernel panic in Step[4]. Thanks to Andrew Zaborowski for his initial work on fixing this issue.
CVE-2025-40221 1 Linux 1 Linux Kernel 2025-12-04 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: pci: mg4b: fix uninitialized iio scan data Fix potential leak of uninitialized stack data to userspace by ensuring that the `scan` structure is zeroed before use.