| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Bad cast in Loader in Google Chrome prior to 143.0.7499.41 allowed a remote attacker who had compromised the renderer process to potentially exploit heap corruption via a crafted HTML page. (Chromium security severity: Medium) |
| Inappropriate implementation in Passwords in Google Chrome prior to 143.0.7499.41 allowed a local attacker to bypass authentication via physical access to the device. (Chromium security severity: Low) |
| OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. Prior to version 2.4.15, a client that connects to cupsd but sends slow messages, e.g. only one byte per second, delays cupsd as a whole, such that it becomes unusable by other clients. This issue has been patched in version 2.4.15. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: dealloc commit test ctx always
The damon_ctx for testing online DAMON parameters commit inputs is
deallocated only when the test fails. This means memory is leaked for
every successful online DAMON parameters commit. Fix the leak by always
deallocating it. |
| In the Linux kernel, the following vulnerability has been resolved:
sctp: avoid NULL dereference when chunk data buffer is missing
chunk->skb pointer is dereferenced in the if-block where it's supposed
to be NULL only.
chunk->skb can only be NULL if chunk->head_skb is not. Check for frag_list
instead and do it just before replacing chunk->skb. We're sure that
otherwise chunk->skb is non-NULL because of outer if() condition. |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: clear extent cache after moving/defragmenting extents
The extent map cache can become stale when extents are moved or
defragmented, causing subsequent operations to see outdated extent flags.
This triggers a BUG_ON in ocfs2_refcount_cal_cow_clusters().
The problem occurs when:
1. copy_file_range() creates a reflinked extent with OCFS2_EXT_REFCOUNTED
2. ioctl(FITRIM) triggers ocfs2_move_extents()
3. __ocfs2_move_extents_range() reads and caches the extent (flags=0x2)
4. ocfs2_move_extent()/ocfs2_defrag_extent() calls __ocfs2_move_extent()
which clears OCFS2_EXT_REFCOUNTED flag on disk (flags=0x0)
5. The extent map cache is not invalidated after the move
6. Later write() operations read stale cached flags (0x2) but disk has
updated flags (0x0), causing a mismatch
7. BUG_ON(!(rec->e_flags & OCFS2_EXT_REFCOUNTED)) triggers
Fix by clearing the extent map cache after each extent move/defrag
operation in __ocfs2_move_extents_range(). This ensures subsequent
operations read fresh extent data from disk. |
| In the Linux kernel, the following vulnerability has been resolved:
rv: Fully convert enabled_monitors to use list_head as iterator
The callbacks in enabled_monitors_seq_ops are inconsistent. Some treat the
iterator as struct rv_monitor *, while others treat the iterator as struct
list_head *.
This causes a wrong type cast and crashes the system as reported by Nathan.
Convert everything to use struct list_head * as iterator. This also makes
enabled_monitors consistent with available_monitors. |
| In the Linux kernel, the following vulnerability has been resolved:
gpio: cdev: make sure the cdev fd is still active before emitting events
With the final call to fput() on a file descriptor, the release action
may be deferred and scheduled on a work queue. The reference count of
that descriptor is still zero and it must not be used. It's possible
that a GPIO change, we want to notify the user-space about, happens
AFTER the reference count on the file descriptor associated with the
character device went down to zero but BEFORE the .release() callback
was called from the workqueue and so BEFORE we unregistered from the
notifier.
Using the regular get_file() routine in this situation triggers the
following warning:
struct file::f_count incremented from zero; use-after-free condition present!
So use the get_file_active() variant that will return NULL on file
descriptors that have been or are being released. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: fix lock inversion in vsock_assign_transport()
Syzbot reported a potential lock inversion deadlock between
vsock_register_mutex and sk_lock-AF_VSOCK when vsock_linger() is called.
The issue was introduced by commit 687aa0c5581b ("vsock: Fix
transport_* TOCTOU") which added vsock_register_mutex locking in
vsock_assign_transport() around the transport->release() call, that can
call vsock_linger(). vsock_assign_transport() can be called with sk_lock
held. vsock_linger() calls sk_wait_event() that temporarily releases and
re-acquires sk_lock. During this window, if another thread hold
vsock_register_mutex while trying to acquire sk_lock, a circular
dependency is created.
Fix this by releasing vsock_register_mutex before calling
transport->release() and vsock_deassign_transport(). This is safe
because we don't need to hold vsock_register_mutex while releasing the
old transport, and we ensure the new transport won't disappear by
obtaining a module reference first via try_module_get(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/sysfs: catch commit test ctx alloc failure
Patch series "mm/damon/sysfs: fix commit test damon_ctx [de]allocation".
DAMON sysfs interface dynamically allocates and uses a damon_ctx object
for testing if given inputs for online DAMON parameters update is valid.
The object is being used without an allocation failure check, and leaked
when the test succeeds. Fix the two bugs.
This patch (of 2):
The damon_ctx for testing online DAMON parameters commit inputs is used
without its allocation failure check. This could result in an invalid
memory access. Fix it by directly returning an error when the allocation
failed. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rsrc: don't rely on user vaddr alignment
There is no guaranteed alignment for user pointers, however the
calculation of an offset of the first page into a folio after coalescing
uses some weird bit mask logic, get rid of it. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: sh-sci: fix RSCI FIFO overrun handling
The receive error handling code is shared between RSCI and all other
SCIF port types, but the RSCI overrun_reg is specified as a memory
offset, while for other SCIF types it is an enum value used to index
into the sci_port_params->regs array, as mentioned above the
sci_serial_in() function.
For RSCI, the overrun_reg is CSR (0x48), causing the sci_getreg() call
inside the sci_handle_fifo_overrun() function to index outside the
bounds of the regs array, which currently has a size of 20, as specified
by SCI_NR_REGS.
Because of this, we end up accessing memory outside of RSCI's
rsci_port_params structure, which, when interpreted as a plat_sci_reg,
happens to have a non-zero size, causing the following WARN when
sci_serial_in() is called, as the accidental size does not match the
supported register sizes.
The existence of the overrun_reg needs to be checked because
SCIx_SH3_SCIF_REGTYPE has overrun_reg set to SCLSR, but SCLSR is not
present in the regs array.
Avoid calling sci_getreg() for port types which don't use standard
register handling.
Use the ops->read_reg() and ops->write_reg() functions to properly read
and write registers for RSCI, and change the type of the status variable
to accommodate the 32-bit CSR register.
sci_getreg() and sci_serial_in() are also called with overrun_reg in the
sci_mpxed_interrupt() interrupt handler, but that code path is not used
for RSCI, as it does not have a muxed interrupt.
------------[ cut here ]------------
Invalid register access
WARNING: CPU: 0 PID: 0 at drivers/tty/serial/sh-sci.c:522 sci_serial_in+0x38/0xac
Modules linked in: renesas_usbhs at24 rzt2h_adc industrialio_adc sha256 cfg80211 bluetooth ecdh_generic ecc rfkill fuse drm backlight ipv6
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.17.0-rc1+ #30 PREEMPT
Hardware name: Renesas RZ/T2H EVK Board based on r9a09g077m44 (DT)
pstate: 604000c5 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : sci_serial_in+0x38/0xac
lr : sci_serial_in+0x38/0xac
sp : ffff800080003e80
x29: ffff800080003e80 x28: ffff800082195b80 x27: 000000000000000d
x26: ffff8000821956d0 x25: 0000000000000000 x24: ffff800082195b80
x23: ffff000180e0d800 x22: 0000000000000010 x21: 0000000000000000
x20: 0000000000000010 x19: ffff000180e72000 x18: 000000000000000a
x17: ffff8002bcee7000 x16: ffff800080000000 x15: 0720072007200720
x14: 0720072007200720 x13: 0720072007200720 x12: 0720072007200720
x11: 0000000000000058 x10: 0000000000000018 x9 : ffff8000821a6a48
x8 : 0000000000057fa8 x7 : 0000000000000406 x6 : ffff8000821fea48
x5 : ffff00033ef88408 x4 : ffff8002bcee7000 x3 : ffff800082195b80
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff800082195b80
Call trace:
sci_serial_in+0x38/0xac (P)
sci_handle_fifo_overrun.isra.0+0x70/0x134
sci_er_interrupt+0x50/0x39c
__handle_irq_event_percpu+0x48/0x140
handle_irq_event+0x44/0xb0
handle_fasteoi_irq+0xf4/0x1a0
handle_irq_desc+0x34/0x58
generic_handle_domain_irq+0x1c/0x28
gic_handle_irq+0x4c/0x140
call_on_irq_stack+0x30/0x48
do_interrupt_handler+0x80/0x84
el1_interrupt+0x34/0x68
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
default_idle_call+0x28/0x58 (P)
do_idle+0x1f8/0x250
cpu_startup_entry+0x34/0x3c
rest_init+0xd8/0xe0
console_on_rootfs+0x0/0x6c
__primary_switched+0x88/0x90
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
most: usb: Fix use-after-free in hdm_disconnect
hdm_disconnect() calls most_deregister_interface(), which eventually
unregisters the MOST interface device with device_unregister(iface->dev).
If that drops the last reference, the device core may call release_mdev()
immediately while hdm_disconnect() is still executing.
The old code also freed several mdev-owned allocations in
hdm_disconnect() and then performed additional put_device() calls.
Depending on refcount order, this could lead to use-after-free or
double-free when release_mdev() ran (or when unregister paths also
performed puts).
Fix by moving the frees of mdev-owned allocations into release_mdev(),
so they happen exactly once when the device is truly released, and by
dropping the extra put_device() calls in hdm_disconnect() that are
redundant after device_unregister() and most_deregister_interface().
This addresses the KASAN slab-use-after-free reported by syzbot in
hdm_disconnect(). See report and stack traces in the bug link below. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix scx_enable() crash on helper kthread creation failure
A crash was observed when the sched_ext selftests runner was
terminated with Ctrl+\ while test 15 was running:
NIP [c00000000028fa58] scx_enable.constprop.0+0x358/0x12b0
LR [c00000000028fa2c] scx_enable.constprop.0+0x32c/0x12b0
Call Trace:
scx_enable.constprop.0+0x32c/0x12b0 (unreliable)
bpf_struct_ops_link_create+0x18c/0x22c
__sys_bpf+0x23f8/0x3044
sys_bpf+0x2c/0x6c
system_call_exception+0x124/0x320
system_call_vectored_common+0x15c/0x2ec
kthread_run_worker() returns an ERR_PTR() on failure rather than NULL,
but the current code in scx_alloc_and_add_sched() only checks for a NULL
helper. Incase of failure on SIGQUIT, the error is not handled in
scx_alloc_and_add_sched() and scx_enable() ends up dereferencing an
error pointer.
Error handling is fixed in scx_alloc_and_add_sched() to propagate
PTR_ERR() into ret, so that scx_enable() jumps to the existing error
path, avoiding random dereference on failure. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/vaddr: do not repeat pte_offset_map_lock() until success
DAMON's virtual address space operation set implementation (vaddr) calls
pte_offset_map_lock() inside the page table walk callback function. This
is for reading and writing page table accessed bits. If
pte_offset_map_lock() fails, it retries by returning the page table walk
callback function with ACTION_AGAIN.
pte_offset_map_lock() can continuously fail if the target is a pmd
migration entry, though. Hence it could cause an infinite page table walk
if the migration cannot be done until the page table walk is finished.
This indeed caused a soft lockup when CPU hotplugging and DAMON were
running in parallel.
Avoid the infinite loop by simply not retrying the page table walk. DAMON
is promising only a best-effort accuracy, so missing access to such pages
is no problem. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scmi: Account for failed debug initialization
When the SCMI debug subsystem fails to initialize, the related debug root
will be missing, and the underlying descriptor will be NULL.
Handle this fault condition in the SCMI debug helpers that maintain
metrics counters. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/core: fix potential memory leak by cleaning ops_filter in damon_destroy_scheme
Currently, damon_destroy_scheme() only cleans up the filter list but
leaves ops_filter untouched, which could lead to memory leaks when a
scheme is destroyed.
This patch ensures both filter and ops_filter are properly freed in
damon_destroy_scheme(), preventing potential memory leaks. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: zero unused hash fields
When GSO tunnel is negotiated virtio_net_hdr_tnl_from_skb() tries to
initialize the tunnel metadata but forget to zero unused rxhash
fields. This may leak information to another side. Fixing this by
zeroing the unused hash fields. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix IPsec cleanup over MPV device
When we do mlx5e_detach_netdev() we eventually disable blocking events
notifier, among those events are IPsec MPV events from IB to core.
So before disabling those blocking events, make sure to also unregister
the devcom device and mark all this device operations as complete,
in order to prevent the other device from using invalid netdev
during future devcom events which could cause the trace below.
BUG: kernel NULL pointer dereference, address: 0000000000000010
PGD 146427067 P4D 146427067 PUD 146488067 PMD 0
Oops: Oops: 0000 [#1] SMP
CPU: 1 UID: 0 PID: 7735 Comm: devlink Tainted: GW 6.12.0-rc6_for_upstream_min_debug_2024_11_08_00_46 #1
Tainted: [W]=WARN
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
Code: 00 01 48 83 05 23 32 1e 00 01 41 b8 ed ff ff ff e9 60 ff ff ff 48 83 05 00 32 1e 00 01 eb e3 66 0f 1f 44 00 00 0f 1f 44 00 00 <48> 8b 47 10 48 83 05 5f 32 1e 00 01 48 8b 50 40 48 85 d2 74 05 40
RSP: 0018:ffff88811a5c35f8 EFLAGS: 00010206
RAX: ffff888106e8ab80 RBX: ffff888107d7e200 RCX: ffff88810d6f0a00
RDX: ffff88810d6f0a00 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffff88811a17e620 R08: 0000000000000040 R09: 0000000000000000
R10: ffff88811a5c3618 R11: 0000000de85d51bd R12: ffff88811a17e600
R13: ffff88810d6f0a00 R14: 0000000000000000 R15: ffff8881034bda80
FS: 00007f27bdf89180(0000) GS:ffff88852c880000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000010 CR3: 000000010f159005 CR4: 0000000000372eb0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? __die+0x20/0x60
? page_fault_oops+0x150/0x3e0
? exc_page_fault+0x74/0x130
? asm_exc_page_fault+0x22/0x30
? mlx5_devcom_comp_set_ready+0x5/0x40 [mlx5_core]
mlx5e_devcom_event_mpv+0x42/0x60 [mlx5_core]
mlx5_devcom_send_event+0x8c/0x170 [mlx5_core]
blocking_event+0x17b/0x230 [mlx5_core]
notifier_call_chain+0x35/0xa0
blocking_notifier_call_chain+0x3d/0x60
mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core]
mlx5_core_mp_event_replay+0x12/0x20 [mlx5_core]
mlx5_ib_bind_slave_port+0x228/0x2c0 [mlx5_ib]
mlx5_ib_stage_init_init+0x664/0x9d0 [mlx5_ib]
? idr_alloc_cyclic+0x50/0xb0
? __kmalloc_cache_noprof+0x167/0x340
? __kmalloc_noprof+0x1a7/0x430
__mlx5_ib_add+0x34/0xd0 [mlx5_ib]
mlx5r_probe+0xe9/0x310 [mlx5_ib]
? kernfs_add_one+0x107/0x150
? __mlx5_ib_add+0xd0/0xd0 [mlx5_ib]
auxiliary_bus_probe+0x3e/0x90
really_probe+0xc5/0x3a0
? driver_probe_device+0x90/0x90
__driver_probe_device+0x80/0x160
driver_probe_device+0x1e/0x90
__device_attach_driver+0x7d/0x100
bus_for_each_drv+0x80/0xd0
__device_attach+0xbc/0x1f0
bus_probe_device+0x86/0xa0
device_add+0x62d/0x830
__auxiliary_device_add+0x3b/0xa0
? auxiliary_device_init+0x41/0x90
add_adev+0xd1/0x150 [mlx5_core]
mlx5_rescan_drivers_locked+0x21c/0x300 [mlx5_core]
esw_mode_change+0x6c/0xc0 [mlx5_core]
mlx5_devlink_eswitch_mode_set+0x21e/0x640 [mlx5_core]
devlink_nl_eswitch_set_doit+0x60/0xe0
genl_family_rcv_msg_doit+0xd0/0x120
genl_rcv_msg+0x180/0x2b0
? devlink_get_from_attrs_lock+0x170/0x170
? devlink_nl_eswitch_get_doit+0x290/0x290
? devlink_nl_pre_doit_port_optional+0x50/0x50
? genl_family_rcv_msg_dumpit+0xf0/0xf0
netlink_rcv_skb+0x54/0x100
genl_rcv+0x24/0x40
netlink_unicast+0x1fc/0x2d0
netlink_sendmsg+0x1e4/0x410
__sock_sendmsg+0x38/0x60
? sockfd_lookup_light+0x12/0x60
__sys_sendto+0x105/0x160
? __sys_recvmsg+0x4e/0x90
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x4c/0x100
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7f27bc91b13a
Code: bb 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 8b 05 fa 96 2c 00 45 89 c9 4c 63 d1 48 63 ff 85 c0 75 15 b8 2c 00 00 00 0f 05 <48> 3d 00 f0 ff ff
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: micrel: always set shared->phydev for LAN8814
Currently, during the LAN8814 PTP probe shared->phydev is only set if PTP
clock gets actually set, otherwise the function will return before setting
it.
This is an issue as shared->phydev is unconditionally being used when IRQ
is being handled, especially in lan8814_gpio_process_cap and since it was
not set it will cause a NULL pointer exception and crash the kernel.
So, simply always set shared->phydev to avoid the NULL pointer exception. |