| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to invalidate dcc->f2fs_issue_discard in error path
Syzbot reports a NULL pointer dereference issue as below:
__refcount_add include/linux/refcount.h:193 [inline]
__refcount_inc include/linux/refcount.h:250 [inline]
refcount_inc include/linux/refcount.h:267 [inline]
get_task_struct include/linux/sched/task.h:110 [inline]
kthread_stop+0x34/0x1c0 kernel/kthread.c:703
f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638
kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522
deactivate_locked_super+0x70/0xe8 fs/super.c:332
deactivate_super+0xd0/0xd4 fs/super.c:363
cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186
__cleanup_mnt+0x20/0x30 fs/namespace.c:1193
task_work_run+0xc4/0x14c kernel/task_work.c:177
exit_task_work include/linux/task_work.h:38 [inline]
do_exit+0x26c/0xbe0 kernel/exit.c:795
do_group_exit+0x60/0xe8 kernel/exit.c:925
__do_sys_exit_group kernel/exit.c:936 [inline]
__se_sys_exit_group kernel/exit.c:934 [inline]
__wake_up_parent+0x0/0x40 kernel/exit.c:934
__invoke_syscall arch/arm64/kernel/syscall.c:38 [inline]
invoke_syscall arch/arm64/kernel/syscall.c:52 [inline]
el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142
do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206
el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636
el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654
el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581
The root cause of this issue is in error path of f2fs_start_discard_thread(),
it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may
access invalid pointer. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr()
If the number of pages from the userptr BO differs from the SG BO then the
allocated memory for the SG table doesn't get freed before returning
-EINVAL, which may lead to a memory leak in some error paths. Fix this by
checking the number of pages before allocating memory for the SG table. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: meson-gx: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
Fix this by checking the return value and goto error path which
will call mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
virt/coco/sev-guest: Double-buffer messages
The encryption algorithms read and write directly to shared unencrypted
memory, which may leak information as well as permit the host to tamper
with the message integrity. Instead, copy whole messages in or out as
needed before doing any computation on them. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential cfid UAF in smb2_query_info_compound
When smb2_query_info_compound() retries, a previously allocated cfid may
have been freed in the first attempt.
Because cfid wasn't reset on replay, later cleanup could act on a stale
pointer, leading to a potential use-after-free.
Reinitialize cfid to NULL under the replay label.
Example trace (trimmed):
refcount_t: underflow; use-after-free.
WARNING: CPU: 1 PID: 11224 at ../lib/refcount.c:28 refcount_warn_saturate+0x9c/0x110
[...]
RIP: 0010:refcount_warn_saturate+0x9c/0x110
[...]
Call Trace:
<TASK>
smb2_query_info_compound+0x29c/0x5c0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
? step_into+0x10d/0x690
? __legitimize_path+0x28/0x60
smb2_queryfs+0x6a/0xf0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
smb311_queryfs+0x12d/0x140 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
? kmem_cache_alloc+0x18a/0x340
? getname_flags+0x46/0x1e0
cifs_statfs+0x9f/0x2b0 [cifs f90b72658819bd21c94769b6a652029a07a7172f]
statfs_by_dentry+0x67/0x90
vfs_statfs+0x16/0xd0
user_statfs+0x54/0xa0
__do_sys_statfs+0x20/0x50
do_syscall_64+0x58/0x80 |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: Define actions for the new time_deleg FATTR4 attributes
NFSv4 clients won't send legitimate GETATTR requests for these new
attributes because they are intended to be used only with CB_GETATTR
and SETATTR. But NFSD has to do something besides crashing if it
ever sees a GETATTR request that queries these attributes.
RFC 8881 Section 18.7.3 states:
> The server MUST return a value for each attribute that the client
> requests if the attribute is supported by the server for the
> target file system. If the server does not support a particular
> attribute on the target file system, then it MUST NOT return the
> attribute value and MUST NOT set the attribute bit in the result
> bitmap. The server MUST return an error if it supports an
> attribute on the target but cannot obtain its value. In that case,
> no attribute values will be returned.
Further, RFC 9754 Section 5 states:
> These new attributes are invalid to be used with GETATTR, VERIFY,
> and NVERIFY, and they can only be used with CB_GETATTR and SETATTR
> by a client holding an appropriate delegation.
Thus there does not appear to be a specific server response mandated
by specification. Taking the guidance that querying these attributes
via GETATTR is "invalid", NFSD will return nfserr_inval, failing the
request entirely. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu/powerplay/psm: Fix memory leak in power state init
Commit 902bc65de0b3 ("drm/amdgpu/powerplay/psm: return an error in power
state init") made the power state init function return early in case of
failure to get an entry from the powerplay table, but it missed to clean up
the allocated memory for the current power state before returning. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/uncore: Fix reference count leak in snr_uncore_mmio_map()
pci_get_device() will increase the reference count for the returned
pci_dev, so snr_uncore_get_mc_dev() will return a pci_dev with its
reference count increased. We need to call pci_dev_put() to decrease the
reference count. Let's add the missing pci_dev_put(). |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once
hci_cmd_sync_dequeue_once() does lookup and then cancel
the entry under two separate lock sections. Meanwhile,
hci_cmd_sync_work() can also delete the same entry,
leading to double list_del() and "UAF".
Fix this by holding cmd_sync_work_lock across both
lookup and cancel, so that the entry cannot be removed
concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/mediatek: Fix device use-after-free on unbind
A recent change fixed device reference leaks when looking up drm
platform device driver data during bind() but failed to remove a partial
fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix
kobject put for component sub-drivers").
This results in a reference imbalance on component bind() failures and
on unbind() which could lead to a user-after-free.
Make sure to only drop the references after retrieving the driver data
by effectively reverting the previous partial fix.
Note that holding a reference to a device does not prevent its driver
data from going away so there is no point in keeping the reference. |
| NVIDIA Triton Inference Server for Linux and Windows contains a vulnerability where an attacker could cause a stack overflow by sending extra-large payloads. A successful exploit of this vulnerability might lead to denial of service. |
| With TLS 1.3 pre-shared key (PSK) a malicious or faulty server could ignore the request for PFS (perfect forward secrecy) and the client would continue on with the connection using PSK without PFS. This happened when a server responded to a ClientHello containing psk_dhe_ke without a key_share extension. The re-use of an authenticated PSK connection that on the clients side unexpectedly did not have PFS, reduces the security of the connection. |
| Improper input validation in the TLS 1.3 CertificateVerify signature algorithm negotiation in wolfSSL 5.8.2 and earlier on multiple platforms allows for downgrading the signature algorithm used. For example when a client sends ECDSA P521 as the supported signature algorithm the server previously could respond as ECDSA P256 being the accepted signature algorithm and the connection would continue with using ECDSA P256, if the client supports ECDSA P256. |
| Improper Input Validation in the TLS 1.3 CKS extension parsing in wolfSSL 5.8.2 and earlier on multiple platforms allows a remote unauthenticated attacker to potentially cause a denial-of-service via a crafted ClientHello message with duplicate CKS extensions. |
| In the Linux kernel, the following vulnerability has been resolved:
be2net: pass wrb_params in case of OS2BMC
be_insert_vlan_in_pkt() is called with the wrb_params argument being NULL
at be_send_pkt_to_bmc() call site. This may lead to dereferencing a NULL
pointer when processing a workaround for specific packet, as commit
bc0c3405abbb ("be2net: fix a Tx stall bug caused by a specific ipv6
packet") states.
The correct way would be to pass the wrb_params from be_xmit(). |
| In the Linux kernel, the following vulnerability has been resolved:
Input: imx_sc_key - fix memory corruption on unload
This is supposed to be "priv" but we accidentally pass "&priv" which is
an address in the stack and so it will lead to memory corruption when
the imx_sc_key_action() function is called. Remove the &. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: nvme-fc: Ensure ->ioerr_work is cancelled in nvme_fc_delete_ctrl()
nvme_fc_delete_assocation() waits for pending I/O to complete before
returning, and an error can cause ->ioerr_work to be queued after
cancel_work_sync() had been called. Move the call to cancel_work_sync() to
be after nvme_fc_delete_association() to ensure ->ioerr_work is not running
when the nvme_fc_ctrl object is freed. Otherwise the following can occur:
[ 1135.911754] list_del corruption, ff2d24c8093f31f8->next is NULL
[ 1135.917705] ------------[ cut here ]------------
[ 1135.922336] kernel BUG at lib/list_debug.c:52!
[ 1135.926784] Oops: invalid opcode: 0000 [#1] SMP NOPTI
[ 1135.931851] CPU: 48 UID: 0 PID: 726 Comm: kworker/u449:23 Kdump: loaded Not tainted 6.12.0 #1 PREEMPT(voluntary)
[ 1135.943490] Hardware name: Dell Inc. PowerEdge R660/0HGTK9, BIOS 2.5.4 01/16/2025
[ 1135.950969] Workqueue: 0x0 (nvme-wq)
[ 1135.954673] RIP: 0010:__list_del_entry_valid_or_report.cold+0xf/0x6f
[ 1135.961041] Code: c7 c7 98 68 72 94 e8 26 45 fe ff 0f 0b 48 c7 c7 70 68 72 94 e8 18 45 fe ff 0f 0b 48 89 fe 48 c7 c7 80 69 72 94 e8 07 45 fe ff <0f> 0b 48 89 d1 48 c7 c7 a0 6a 72 94 48 89 c2 e8 f3 44 fe ff 0f 0b
[ 1135.979788] RSP: 0018:ff579b19482d3e50 EFLAGS: 00010046
[ 1135.985015] RAX: 0000000000000033 RBX: ff2d24c8093f31f0 RCX: 0000000000000000
[ 1135.992148] RDX: 0000000000000000 RSI: ff2d24d6bfa1d0c0 RDI: ff2d24d6bfa1d0c0
[ 1135.999278] RBP: ff2d24c8093f31f8 R08: 0000000000000000 R09: ffffffff951e2b08
[ 1136.006413] R10: ffffffff95122ac8 R11: 0000000000000003 R12: ff2d24c78697c100
[ 1136.013546] R13: fffffffffffffff8 R14: 0000000000000000 R15: ff2d24c78697c0c0
[ 1136.020677] FS: 0000000000000000(0000) GS:ff2d24d6bfa00000(0000) knlGS:0000000000000000
[ 1136.028765] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1136.034510] CR2: 00007fd207f90b80 CR3: 000000163ea22003 CR4: 0000000000f73ef0
[ 1136.041641] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 1136.048776] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[ 1136.055910] PKRU: 55555554
[ 1136.058623] Call Trace:
[ 1136.061074] <TASK>
[ 1136.063179] ? show_trace_log_lvl+0x1b0/0x2f0
[ 1136.067540] ? show_trace_log_lvl+0x1b0/0x2f0
[ 1136.071898] ? move_linked_works+0x4a/0xa0
[ 1136.075998] ? __list_del_entry_valid_or_report.cold+0xf/0x6f
[ 1136.081744] ? __die_body.cold+0x8/0x12
[ 1136.085584] ? die+0x2e/0x50
[ 1136.088469] ? do_trap+0xca/0x110
[ 1136.091789] ? do_error_trap+0x65/0x80
[ 1136.095543] ? __list_del_entry_valid_or_report.cold+0xf/0x6f
[ 1136.101289] ? exc_invalid_op+0x50/0x70
[ 1136.105127] ? __list_del_entry_valid_or_report.cold+0xf/0x6f
[ 1136.110874] ? asm_exc_invalid_op+0x1a/0x20
[ 1136.115059] ? __list_del_entry_valid_or_report.cold+0xf/0x6f
[ 1136.120806] move_linked_works+0x4a/0xa0
[ 1136.124733] worker_thread+0x216/0x3a0
[ 1136.128485] ? __pfx_worker_thread+0x10/0x10
[ 1136.132758] kthread+0xfa/0x240
[ 1136.135904] ? __pfx_kthread+0x10/0x10
[ 1136.139657] ret_from_fork+0x31/0x50
[ 1136.143236] ? __pfx_kthread+0x10/0x10
[ 1136.146988] ret_from_fork_asm+0x1a/0x30
[ 1136.150915] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: sg: Do not sleep in atomic context
sg_finish_rem_req() calls blk_rq_unmap_user(). The latter function may
sleep. Hence, call sg_finish_rem_req() with interrupts enabled instead
of disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix race condition in mptcp_schedule_work()
syzbot reported use-after-free in mptcp_schedule_work() [1]
Issue here is that mptcp_schedule_work() schedules a work,
then gets a refcount on sk->sk_refcnt if the work was scheduled.
This refcount will be released by mptcp_worker().
[A] if (schedule_work(...)) {
[B] sock_hold(sk);
return true;
}
Problem is that mptcp_worker() can run immediately and complete before [B]
We need instead :
sock_hold(sk);
if (schedule_work(...))
return true;
sock_put(sk);
[1]
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 29 at lib/refcount.c:25 refcount_warn_saturate+0xfa/0x1d0 lib/refcount.c:25
Call Trace:
<TASK>
__refcount_add include/linux/refcount.h:-1 [inline]
__refcount_inc include/linux/refcount.h:366 [inline]
refcount_inc include/linux/refcount.h:383 [inline]
sock_hold include/net/sock.h:816 [inline]
mptcp_schedule_work+0x164/0x1a0 net/mptcp/protocol.c:943
mptcp_tout_timer+0x21/0xa0 net/mptcp/protocol.c:2316
call_timer_fn+0x17e/0x5f0 kernel/time/timer.c:1747
expire_timers kernel/time/timer.c:1798 [inline]
__run_timers kernel/time/timer.c:2372 [inline]
__run_timer_base+0x648/0x970 kernel/time/timer.c:2384
run_timer_base kernel/time/timer.c:2393 [inline]
run_timer_softirq+0xb7/0x180 kernel/time/timer.c:2403
handle_softirqs+0x22f/0x710 kernel/softirq.c:622
__do_softirq kernel/softirq.c:656 [inline]
run_ktimerd+0xcf/0x190 kernel/softirq.c:1138
smpboot_thread_fn+0x542/0xa60 kernel/smpboot.c:160
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix a race in mptcp_pm_del_add_timer()
mptcp_pm_del_add_timer() can call sk_stop_timer_sync(sk, &entry->add_timer)
while another might have free entry already, as reported by syzbot.
Add RCU protection to fix this issue.
Also change confusing add_timer variable with stop_timer boolean.
syzbot report:
BUG: KASAN: slab-use-after-free in __timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616
Read of size 4 at addr ffff8880311e4150 by task kworker/1:1/44
CPU: 1 UID: 0 PID: 44 Comm: kworker/1:1 Not tainted syzkaller #0 PREEMPT_{RT,(full)}
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/02/2025
Workqueue: events mptcp_worker
Call Trace:
<TASK>
dump_stack_lvl+0x189/0x250 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xca/0x240 mm/kasan/report.c:482
kasan_report+0x118/0x150 mm/kasan/report.c:595
__timer_delete_sync+0x372/0x3f0 kernel/time/timer.c:1616
sk_stop_timer_sync+0x1b/0x90 net/core/sock.c:3631
mptcp_pm_del_add_timer+0x283/0x310 net/mptcp/pm.c:362
mptcp_incoming_options+0x1357/0x1f60 net/mptcp/options.c:1174
tcp_data_queue+0xca/0x6450 net/ipv4/tcp_input.c:5361
tcp_rcv_established+0x1335/0x2670 net/ipv4/tcp_input.c:6441
tcp_v4_do_rcv+0x98b/0xbf0 net/ipv4/tcp_ipv4.c:1931
tcp_v4_rcv+0x252a/0x2dc0 net/ipv4/tcp_ipv4.c:2374
ip_protocol_deliver_rcu+0x221/0x440 net/ipv4/ip_input.c:205
ip_local_deliver_finish+0x3bb/0x6f0 net/ipv4/ip_input.c:239
NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318
NF_HOOK+0x30c/0x3a0 include/linux/netfilter.h:318
__netif_receive_skb_one_core net/core/dev.c:6079 [inline]
__netif_receive_skb+0x143/0x380 net/core/dev.c:6192
process_backlog+0x31e/0x900 net/core/dev.c:6544
__napi_poll+0xb6/0x540 net/core/dev.c:7594
napi_poll net/core/dev.c:7657 [inline]
net_rx_action+0x5f7/0xda0 net/core/dev.c:7784
handle_softirqs+0x22f/0x710 kernel/softirq.c:622
__do_softirq kernel/softirq.c:656 [inline]
__local_bh_enable_ip+0x1a0/0x2e0 kernel/softirq.c:302
mptcp_pm_send_ack net/mptcp/pm.c:210 [inline]
mptcp_pm_addr_send_ack+0x41f/0x500 net/mptcp/pm.c:-1
mptcp_pm_worker+0x174/0x320 net/mptcp/pm.c:1002
mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762
process_one_work kernel/workqueue.c:3263 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
</TASK>
Allocated by task 44:
kasan_save_stack mm/kasan/common.c:56 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:77
poison_kmalloc_redzone mm/kasan/common.c:400 [inline]
__kasan_kmalloc+0x93/0xb0 mm/kasan/common.c:417
kasan_kmalloc include/linux/kasan.h:262 [inline]
__kmalloc_cache_noprof+0x1ef/0x6c0 mm/slub.c:5748
kmalloc_noprof include/linux/slab.h:957 [inline]
mptcp_pm_alloc_anno_list+0x104/0x460 net/mptcp/pm.c:385
mptcp_pm_create_subflow_or_signal_addr+0xf9d/0x1360 net/mptcp/pm_kernel.c:355
mptcp_pm_nl_fully_established net/mptcp/pm_kernel.c:409 [inline]
__mptcp_pm_kernel_worker+0x417/0x1ef0 net/mptcp/pm_kernel.c:1529
mptcp_pm_worker+0x1ee/0x320 net/mptcp/pm.c:1008
mptcp_worker+0xd5/0x1170 net/mptcp/protocol.c:2762
process_one_work kernel/workqueue.c:3263 [inline]
process_scheduled_works+0xae1/0x17b0 kernel/workqueue.c:3346
worker_thread+0x8a0/0xda0 kernel/workqueue.c:3427
kthread+0x711/0x8a0 kernel/kthread.c:463
ret_from_fork+0x4bc/0x870 arch/x86/kernel/process.c:158
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:245
Freed by task 6630:
kasan_save_stack mm/kasan/common.c:56 [inline]
kasan_save_track+0x3e/0x80 mm/kasan/common.c:77
__kasan_save_free_info+0x46/0x50 mm/kasan/generic.c:587
kasan_save_free_info mm/kasan/kasan.h:406 [inline]
poison_slab_object m
---truncated--- |