Search Results (16708 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40248 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: vsock: Ignore signal/timeout on connect() if already established During connect(), acting on a signal/timeout by disconnecting an already established socket leads to several issues: 1. connect() invoking vsock_transport_cancel_pkt() -> virtio_transport_purge_skbs() may race with sendmsg() invoking virtio_transport_get_credit(). This results in a permanently elevated `vvs->bytes_unsent`. Which, in turn, confuses the SOCK_LINGER handling. 2. connect() resetting a connected socket's state may race with socket being placed in a sockmap. A disconnected socket remaining in a sockmap breaks sockmap's assumptions. And gives rise to WARNs. 3. connect() transitioning SS_CONNECTED -> SS_UNCONNECTED allows for a transport change/drop after TCP_ESTABLISHED. Which poses a problem for any simultaneous sendmsg() or connect() and may result in a use-after-free/null-ptr-deref. Do not disconnect socket on signal/timeout. Keep the logic for unconnected sockets: they don't linger, can't be placed in a sockmap, are rejected by sendmsg(). [1]: https://lore.kernel.org/netdev/[email protected]/ [2]: https://lore.kernel.org/netdev/[email protected]/ [3]: https://lore.kernel.org/netdev/[email protected]/
CVE-2025-40214 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: af_unix: Initialise scc_index in unix_add_edge(). Quang Le reported that the AF_UNIX GC could garbage-collect a receive queue of an alive in-flight socket, with a nice repro. The repro consists of three stages. 1) 1-a. Create a single cyclic reference with many sockets 1-b. close() all sockets 1-c. Trigger GC 2) 2-a. Pass sk-A to an embryo sk-B 2-b. Pass sk-X to sk-X 2-c. Trigger GC 3) 3-a. accept() the embryo sk-B 3-b. Pass sk-B to sk-C 3-c. close() the in-flight sk-A 3-d. Trigger GC As of 2-c, sk-A and sk-X are linked to unix_unvisited_vertices, and unix_walk_scc() groups them into two different SCCs: unix_sk(sk-A)->vertex->scc_index = 2 (UNIX_VERTEX_INDEX_START) unix_sk(sk-X)->vertex->scc_index = 3 Once GC completes, unix_graph_grouped is set to true. Also, unix_graph_maybe_cyclic is set to true due to sk-X's cyclic self-reference, which makes close() trigger GC. At 3-b, unix_add_edge() allocates unix_sk(sk-B)->vertex and links it to unix_unvisited_vertices. unix_update_graph() is called at 3-a. and 3-b., but neither unix_graph_grouped nor unix_graph_maybe_cyclic is changed because both sk-B's listener and sk-C are not in-flight. 3-c decrements sk-A's file refcnt to 1. Since unix_graph_grouped is true at 3-d, unix_walk_scc_fast() is finally called and iterates 3 sockets sk-A, sk-B, and sk-X: sk-A -> sk-B (-> sk-C) sk-X -> sk-X This is totally fine. All of them are not yet close()d and should be grouped into different SCCs. However, unix_vertex_dead() misjudges that sk-A and sk-B are in the same SCC and sk-A is dead. unix_sk(sk-A)->scc_index == unix_sk(sk-B)->scc_index <-- Wrong! && sk-A's file refcnt == unix_sk(sk-A)->vertex->out_degree ^-- 1 in-flight count for sk-B -> sk-A is dead !? The problem is that unix_add_edge() does not initialise scc_index. Stage 1) is used for heap spraying, making a newly allocated vertex have vertex->scc_index == 2 (UNIX_VERTEX_INDEX_START) set by unix_walk_scc() at 1-c. Let's track the max SCC index from the previous unix_walk_scc() call and assign the max + 1 to a new vertex's scc_index. This way, we can continue to avoid Tarjan's algorithm while preventing misjudgments.
CVE-2025-40211 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ACPI: video: Fix use-after-free in acpi_video_switch_brightness() The switch_brightness_work delayed work accesses device->brightness and device->backlight, freed by acpi_video_dev_unregister_backlight() during device removal. If the work executes after acpi_video_bus_unregister_backlight() frees these resources, it causes a use-after-free when acpi_video_switch_brightness() dereferences device->brightness or device->backlight. Fix this by calling cancel_delayed_work_sync() for each device's switch_brightness_work in acpi_video_bus_remove_notify_handler() after removing the notify handler that queues the work. This ensures the work completes before the memory is freed. [ rjw: Changelog edit ]
CVE-2025-40040 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mm/ksm: fix flag-dropping behavior in ksm_madvise syzkaller discovered the following crash: (kernel BUG) [ 44.607039] ------------[ cut here ]------------ [ 44.607422] kernel BUG at mm/userfaultfd.c:2067! [ 44.608148] Oops: invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC KASAN NOPTI [ 44.608814] CPU: 1 UID: 0 PID: 2475 Comm: reproducer Not tainted 6.16.0-rc6 #1 PREEMPT(none) [ 44.609635] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014 [ 44.610695] RIP: 0010:userfaultfd_release_all+0x3a8/0x460 <snip other registers, drop unreliable trace> [ 44.617726] Call Trace: [ 44.617926] <TASK> [ 44.619284] userfaultfd_release+0xef/0x1b0 [ 44.620976] __fput+0x3f9/0xb60 [ 44.621240] fput_close_sync+0x110/0x210 [ 44.622222] __x64_sys_close+0x8f/0x120 [ 44.622530] do_syscall_64+0x5b/0x2f0 [ 44.622840] entry_SYSCALL_64_after_hwframe+0x76/0x7e [ 44.623244] RIP: 0033:0x7f365bb3f227 Kernel panics because it detects UFFD inconsistency during userfaultfd_release_all(). Specifically, a VMA which has a valid pointer to vma->vm_userfaultfd_ctx, but no UFFD flags in vma->vm_flags. The inconsistency is caused in ksm_madvise(): when user calls madvise() with MADV_UNMEARGEABLE on a VMA that is registered for UFFD in MINOR mode, it accidentally clears all flags stored in the upper 32 bits of vma->vm_flags. Assuming x86_64 kernel build, unsigned long is 64-bit and unsigned int and int are 32-bit wide. This setup causes the following mishap during the &= ~VM_MERGEABLE assignment. VM_MERGEABLE is a 32-bit constant of type unsigned int, 0x8000'0000. After ~ is applied, it becomes 0x7fff'ffff unsigned int, which is then promoted to unsigned long before the & operation. This promotion fills upper 32 bits with leading 0s, as we're doing unsigned conversion (and even for a signed conversion, this wouldn't help as the leading bit is 0). & operation thus ends up AND-ing vm_flags with 0x0000'0000'7fff'ffff instead of intended 0xffff'ffff'7fff'ffff and hence accidentally clears the upper 32-bits of its value. Fix it by changing `VM_MERGEABLE` constant to unsigned long, using the BIT() macro. Note: other VM_* flags are not affected: This only happens to the VM_MERGEABLE flag, as the other VM_* flags are all constants of type int and after ~ operation, they end up with leading 1 and are thus converted to unsigned long with leading 1s. Note 2: After commit 31defc3b01d9 ("userfaultfd: remove (VM_)BUG_ON()s"), this is no longer a kernel BUG, but a WARNING at the same place: [ 45.595973] WARNING: CPU: 1 PID: 2474 at mm/userfaultfd.c:2067 but the root-cause (flag-drop) remains the same. [[email protected]: rust bindgen wasn't able to handle BIT(), from Miguel]
CVE-2025-39805 1 Linux 1 Linux Kernel 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: macb: fix unregister_netdev call order in macb_remove() When removing a macb device, the driver calls phy_exit() before unregister_netdev(). This leads to a WARN from kernfs: ------------[ cut here ]------------ kernfs: can not remove 'attached_dev', no directory WARNING: CPU: 1 PID: 27146 at fs/kernfs/dir.c:1683 Call trace: kernfs_remove_by_name_ns+0xd8/0xf0 sysfs_remove_link+0x24/0x58 phy_detach+0x5c/0x168 phy_disconnect+0x4c/0x70 phylink_disconnect_phy+0x6c/0xc0 [phylink] macb_close+0x6c/0x170 [macb] ... macb_remove+0x60/0x168 [macb] platform_remove+0x5c/0x80 ... The warning happens because the PHY is being exited while the netdev is still registered. The correct order is to unregister the netdev before shutting down the PHY and cleaning up the MDIO bus. Fix this by moving unregister_netdev() ahead of phy_exit() in macb_remove().
CVE-2025-38678 1 Linux 1 Linux Kernel 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: reject duplicate device on updates A chain/flowtable update with duplicated devices in the same batch is possible. Unfortunately, netdev event path only removes the first device that is found, leaving unregistered the hook of the duplicated device. Check if a duplicated device exists in the transaction batch, bail out with EEXIST in such case. WARNING is hit when unregistering the hook: [49042.221275] WARNING: CPU: 4 PID: 8425 at net/netfilter/core.c:340 nf_hook_entry_head+0xaa/0x150 [49042.221375] CPU: 4 UID: 0 PID: 8425 Comm: nft Tainted: G S 6.16.0+ #170 PREEMPT(full) [...] [49042.221382] RIP: 0010:nf_hook_entry_head+0xaa/0x150
CVE-2025-38593 1 Linux 1 Linux Kernel 2025-12-06 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix double free in 'hci_discovery_filter_clear()' Function 'hci_discovery_filter_clear()' frees 'uuids' array and then sets it to NULL. There is a tiny chance of the following race: 'hci_cmd_sync_work()' 'update_passive_scan_sync()' 'hci_update_passive_scan_sync()' 'hci_discovery_filter_clear()' kfree(uuids); <-------------------------preempted--------------------------------> 'start_service_discovery()' 'hci_discovery_filter_clear()' kfree(uuids); // DOUBLE FREE <-------------------------preempted--------------------------------> uuids = NULL; To fix it let's add locking around 'kfree()' call and NULL pointer assignment. Otherwise the following backtrace fires: [ ] ------------[ cut here ]------------ [ ] kernel BUG at mm/slub.c:547! [ ] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP [ ] CPU: 3 UID: 0 PID: 246 Comm: bluetoothd Tainted: G O 6.12.19-kernel #1 [ ] Tainted: [O]=OOT_MODULE [ ] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ ] pc : __slab_free+0xf8/0x348 [ ] lr : __slab_free+0x48/0x348 ... [ ] Call trace: [ ] __slab_free+0xf8/0x348 [ ] kfree+0x164/0x27c [ ] start_service_discovery+0x1d0/0x2c0 [ ] hci_sock_sendmsg+0x518/0x924 [ ] __sock_sendmsg+0x54/0x60 [ ] sock_write_iter+0x98/0xf8 [ ] do_iter_readv_writev+0xe4/0x1c8 [ ] vfs_writev+0x128/0x2b0 [ ] do_writev+0xfc/0x118 [ ] __arm64_sys_writev+0x20/0x2c [ ] invoke_syscall+0x68/0xf0 [ ] el0_svc_common.constprop.0+0x40/0xe0 [ ] do_el0_svc+0x1c/0x28 [ ] el0_svc+0x30/0xd0 [ ] el0t_64_sync_handler+0x100/0x12c [ ] el0t_64_sync+0x194/0x198 [ ] Code: 8b0002e6 eb17031f 54fffbe1 d503201f (d4210000) [ ] ---[ end trace 0000000000000000 ]---
CVE-2025-38057 1 Linux 1 Linux Kernel 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: espintcp: fix skb leaks A few error paths are missing a kfree_skb.
CVE-2025-37899 1 Linux 1 Linux Kernel 2025-12-06 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix use-after-free in session logoff The sess->user object can currently be in use by another thread, for example if another connection has sent a session setup request to bind to the session being free'd. The handler for that connection could be in the smb2_sess_setup function which makes use of sess->user.
CVE-2025-22105 1 Linux 1 Linux Kernel 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: check xdp prog when set bond mode Following operations can trigger a warning[1]: ip netns add ns1 ip netns exec ns1 ip link add bond0 type bond mode balance-rr ip netns exec ns1 ip link set dev bond0 xdp obj af_xdp_kern.o sec xdp ip netns exec ns1 ip link set bond0 type bond mode broadcast ip netns del ns1 When delete the namespace, dev_xdp_uninstall() is called to remove xdp program on bond dev, and bond_xdp_set() will check the bond mode. If bond mode is changed after attaching xdp program, the warning may occur. Some bond modes (broadcast, etc.) do not support native xdp. Set bond mode with xdp program attached is not good. Add check for xdp program when set bond mode. [1] ------------[ cut here ]------------ WARNING: CPU: 0 PID: 11 at net/core/dev.c:9912 unregister_netdevice_many_notify+0x8d9/0x930 Modules linked in: CPU: 0 UID: 0 PID: 11 Comm: kworker/u4:0 Not tainted 6.14.0-rc4 #107 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 Workqueue: netns cleanup_net RIP: 0010:unregister_netdevice_many_notify+0x8d9/0x930 Code: 00 00 48 c7 c6 6f e3 a2 82 48 c7 c7 d0 b3 96 82 e8 9c 10 3e ... RSP: 0018:ffffc90000063d80 EFLAGS: 00000282 RAX: 00000000ffffffa1 RBX: ffff888004959000 RCX: 00000000ffffdfff RDX: 0000000000000000 RSI: 00000000ffffffea RDI: ffffc90000063b48 RBP: ffffc90000063e28 R08: ffffffff82d39b28 R09: 0000000000009ffb R10: 0000000000000175 R11: ffffffff82d09b40 R12: ffff8880049598e8 R13: 0000000000000001 R14: dead000000000100 R15: ffffc90000045000 FS: 0000000000000000(0000) GS:ffff888007a00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000000d406b60 CR3: 000000000483e000 CR4: 00000000000006f0 Call Trace: <TASK> ? __warn+0x83/0x130 ? unregister_netdevice_many_notify+0x8d9/0x930 ? report_bug+0x18e/0x1a0 ? handle_bug+0x54/0x90 ? exc_invalid_op+0x18/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? unregister_netdevice_many_notify+0x8d9/0x930 ? bond_net_exit_batch_rtnl+0x5c/0x90 cleanup_net+0x237/0x3d0 process_one_work+0x163/0x390 worker_thread+0x293/0x3b0 ? __pfx_worker_thread+0x10/0x10 kthread+0xec/0x1e0 ? __pfx_kthread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2f/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> ---[ end trace 0000000000000000 ]---
CVE-2025-21887 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-06 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ovl: fix UAF in ovl_dentry_update_reval by moving dput() in ovl_link_up The issue was caused by dput(upper) being called before ovl_dentry_update_reval(), while upper->d_flags was still accessed in ovl_dentry_remote(). Move dput(upper) after its last use to prevent use-after-free. BUG: KASAN: slab-use-after-free in ovl_dentry_remote fs/overlayfs/util.c:162 [inline] BUG: KASAN: slab-use-after-free in ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0xc3/0x620 mm/kasan/report.c:488 kasan_report+0xd9/0x110 mm/kasan/report.c:601 ovl_dentry_remote fs/overlayfs/util.c:162 [inline] ovl_dentry_update_reval+0xd2/0xf0 fs/overlayfs/util.c:167 ovl_link_up fs/overlayfs/copy_up.c:610 [inline] ovl_copy_up_one+0x2105/0x3490 fs/overlayfs/copy_up.c:1170 ovl_copy_up_flags+0x18d/0x200 fs/overlayfs/copy_up.c:1223 ovl_rename+0x39e/0x18c0 fs/overlayfs/dir.c:1136 vfs_rename+0xf84/0x20a0 fs/namei.c:4893 ... </TASK>
CVE-2024-57947 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_set_pipapo: fix initial map fill The initial buffer has to be inited to all-ones, but it must restrict it to the size of the first field, not the total field size. After each round in the map search step, the result and the fill map are swapped, so if we have a set where f->bsize of the first element is smaller than m->bsize_max, those one-bits are leaked into future rounds result map. This makes pipapo find an incorrect matching results for sets where first field size is not the largest. Followup patch adds a test case to nft_concat_range.sh selftest script. Thanks to Stefano Brivio for pointing out that we need to zero out the remainder explicitly, only correcting memset() argument isn't enough.
CVE-2021-47295 1 Linux 1 Linux Kernel 2025-12-06 7.5 High
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_partial_destroy_work Syzbot reported memory leak in tcindex_set_parms(). The problem was in non-freed perfect hash in tcindex_partial_destroy_work(). In tcindex_set_parms() new tcindex_data is allocated and some fields from old one are copied to new one, but not the perfect hash. Since tcindex_partial_destroy_work() is the destroy function for old tcindex_data, we need to free perfect hash to avoid memory leak.
CVE-2025-40217 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: pidfs: validate extensible ioctls Validate extensible ioctls stricter than we do now.
CVE-2025-40195 1 Linux 1 Linux Kernel 2025-12-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mount: handle NULL values in mnt_ns_release() When calling in listmount() mnt_ns_release() may be passed a NULL pointer. Handle that case gracefully.
CVE-2024-42130 1 Linux 1 Linux Kernel 2025-12-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nfc/nci: Add the inconsistency check between the input data length and count write$nci(r0, &(0x7f0000000740)=ANY=[@ANYBLOB="610501"], 0xf) Syzbot constructed a write() call with a data length of 3 bytes but a count value of 15, which passed too little data to meet the basic requirements of the function nci_rf_intf_activated_ntf_packet(). Therefore, increasing the comparison between data length and count value to avoid problems caused by inconsistent data length and count.
CVE-2024-35929 1 Linux 1 Linux Kernel 2025-12-06 7.8 High
In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix WARN_ON_ONCE() in the rcu_nocb_bypass_lock() For the kernels built with CONFIG_RCU_NOCB_CPU_DEFAULT_ALL=y and CONFIG_RCU_LAZY=y, the following scenarios will trigger WARN_ON_ONCE() in the rcu_nocb_bypass_lock() and rcu_nocb_wait_contended() functions: CPU2 CPU11 kthread rcu_nocb_cb_kthread ksys_write rcu_do_batch vfs_write rcu_torture_timer_cb proc_sys_write __kmem_cache_free proc_sys_call_handler kmemleak_free drop_caches_sysctl_handler delete_object_full drop_slab __delete_object shrink_slab put_object lazy_rcu_shrink_scan call_rcu rcu_nocb_flush_bypass __call_rcu_commn rcu_nocb_bypass_lock raw_spin_trylock(&rdp->nocb_bypass_lock) fail atomic_inc(&rdp->nocb_lock_contended); rcu_nocb_wait_contended WARN_ON_ONCE(smp_processor_id() != rdp->cpu); WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)) | |_ _ _ _ _ _ _ _ _ _same rdp and rdp->cpu != 11_ _ _ _ _ _ _ _ _ __| Reproduce this bug with "echo 3 > /proc/sys/vm/drop_caches". This commit therefore uses rcu_nocb_try_flush_bypass() instead of rcu_nocb_flush_bypass() in lazy_rcu_shrink_scan(). If the nocb_bypass queue is being flushed, then rcu_nocb_try_flush_bypass will return directly.
CVE-2022-49129 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-06 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix crash when startup fails. If the nic fails to start, it is possible that the reset_work has already been scheduled. Ensure the work item is canceled so we do not have use-after-free crash in case cleanup is called before the work item is executed. This fixes crash on my x86_64 apu2 when mt7921k radio fails to work. Radio still fails, but OS does not crash.
CVE-2025-33201 2 Linux, Nvidia 2 Linux Kernel, Triton Inference Server 2025-12-05 7.5 High
NVIDIA Triton Inference Server contains a vulnerability where an attacker may cause an improper check for unusual or exceptional conditions issue by sending extra large payloads. A successful exploit of this vulnerability may lead to denial of service.
CVE-2025-33211 2 Linux, Nvidia 3 Linux, Linux Kernel, Triton Inference Server 2025-12-05 7.5 High
NVIDIA Triton Server for Linux contains a vulnerability where an attacker may cause an improper validation of specified quantity in input. A successful exploit of this vulnerability may lead to denial of service.