| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: fix program check interrupt emergency stack path
Emergency stack path was jumping into a 3: label inside the
__GEN_COMMON_BODY macro for the normal path after it had finished,
rather than jumping over it. By a small miracle this is the correct
place to build up a new interrupt frame with the existing stack
pointer, so things basically worked okay with an added weird looking
700 trap frame on top (which had the wrong ->nip so it didn't decode
bug messages either).
Fix this by avoiding using numeric labels when jumping over non-trivial
macros.
Before:
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 88 Comm: sh Not tainted 5.15.0-rc2-00034-ge057cdade6e5 #2637
NIP: 7265677368657265 LR: c00000000006c0c8 CTR: c0000000000097f0
REGS: c0000000fffb3a50 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 00000700 XER: 20040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006c964 c0000000fffb3cf0 c000000001513800 0000000000000000
GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299
GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8
GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001
GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8
GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158
GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300
GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80
NIP [7265677368657265] 0x7265677368657265
LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10
Call Trace:
[c0000000fffb3cf0] [c00000000000bdac] soft_nmi_common+0x13c/0x1d0 (unreliable)
--- interrupt: 700 at decrementer_common_virt+0xb8/0x230
NIP: c0000000000098b8 LR: c00000000006c0c8 CTR: c0000000000097f0
REGS: c0000000fffb3d60 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 22424282 XER: 20040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006c964 0000000000002400 c000000001513800 0000000000000000
GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299
GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8
GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001
GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8
GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158
GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300
GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80
NIP [c0000000000098b8] decrementer_common_virt+0xb8/0x230
LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10
--- interrupt: 700
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
---[ end trace 6d28218e0cc3c949 ]---
After:
------------[ cut here ]------------
kernel BUG at arch/powerpc/kernel/exceptions-64s.S:491!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 88 Comm: login Not tainted 5.15.0-rc2-00034-ge057cdade6e5-dirty #2638
NIP: c0000000000098b8 LR: c00000000006bf04 CTR: c0000000000097f0
REGS: c0000000fffb3d60 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 24482227 XER: 00040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006bf04 0000000000002400 c000000001513800 c000000001271868
GPR04: 00000000100f0d29 0000000042000000 0000000000000007 0000000000000009
GPR08: 00000000100f0d29 0000000024482227 0000000000002710 c000000000181b3c
GPR12: 9000000000009033 c0000000016b0000 00000000100f0d29 c000000005b22f00
GPR16: 00000000ffff0000 0000000000000001 0000000000000009 00000000100eed90
GPR20: 00000000100eed90 00000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix unrecoverable MCE calling async handler from NMI
The machine check handler is not considered NMI on 64s. The early
handler is the true NMI handler, and then it schedules the
machine_check_exception handler to run when interrupts are enabled.
This works fine except the case of an unrecoverable MCE, where the true
NMI is taken when MSR[RI] is clear, it can not recover, so it calls
machine_check_exception directly so something might be done about it.
Calling an async handler from NMI context can result in irq state and
other things getting corrupted. This can also trigger the BUG at
arch/powerpc/include/asm/interrupt.h:168
BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE));
Fix this by making an _async version of the handler which is called
in the normal case, and a NMI version that is called for unrecoverable
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Ensure input to pfn_to_kaddr() is treated as a 64-bit type
On 64-bit platforms, the pfn_to_kaddr() macro requires that the input
value is 64 bits in order to ensure that valid address bits don't get
lost when shifting that input by PAGE_SHIFT to calculate the physical
address to provide a virtual address for.
One such example is in pvalidate_pages() (used by SEV-SNP guests), where
the GFN in the struct used for page-state change requests is a 40-bit
bit-field, so attempts to pass this GFN field directly into
pfn_to_kaddr() ends up causing guest crashes when dealing with addresses
above the 1TB range due to the above.
Fix this issue with SEV-SNP guests, as well as any similar cases that
might cause issues in current/future code, by using an inline function,
instead of a macro, so that the input is implicitly cast to the
expected 64-bit input type prior to performing the shift operation.
While it might be argued that the issue is on the caller side, other
archs/macros have taken similar approaches to deal with instances like
this, such as ARM explicitly casting the input to phys_addr_t:
e48866647b48 ("ARM: 8396/1: use phys_addr_t in pfn_to_kaddr()")
A C inline function is even better though.
[ mingo: Refined the changelog some more & added __always_inline. ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: do not allow call hns3_nic_net_open repeatedly
hns3_nic_net_open() is not allowed to called repeatly, but there
is no checking for this. When doing device reset and setup tc
concurrently, there is a small oppotunity to call hns3_nic_net_open
repeatedly, and cause kernel bug by calling napi_enable twice.
The calltrace information is like below:
[ 3078.222780] ------------[ cut here ]------------
[ 3078.230255] kernel BUG at net/core/dev.c:6991!
[ 3078.236224] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[ 3078.243431] Modules linked in: hns3 hclgevf hclge hnae3 vfio_iommu_type1 vfio_pci vfio_virqfd vfio pv680_mii(O)
[ 3078.258880] CPU: 0 PID: 295 Comm: kworker/u8:5 Tainted: G O 5.14.0-rc4+ #1
[ 3078.269102] Hardware name: , BIOS KpxxxFPGA 1P B600 V181 08/12/2021
[ 3078.276801] Workqueue: hclge hclge_service_task [hclge]
[ 3078.288774] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--)
[ 3078.296168] pc : napi_enable+0x80/0x84
tc qdisc sho[w 3d0e7v8 .e3t0h218 79] lr : hns3_nic_net_open+0x138/0x510 [hns3]
[ 3078.314771] sp : ffff8000108abb20
[ 3078.319099] x29: ffff8000108abb20 x28: 0000000000000000 x27: ffff0820a8490300
[ 3078.329121] x26: 0000000000000001 x25: ffff08209cfc6200 x24: 0000000000000000
[ 3078.339044] x23: ffff0820a8490300 x22: ffff08209cd76000 x21: ffff0820abfe3880
[ 3078.349018] x20: 0000000000000000 x19: ffff08209cd76900 x18: 0000000000000000
[ 3078.358620] x17: 0000000000000000 x16: ffffc816e1727a50 x15: 0000ffff8f4ff930
[ 3078.368895] x14: 0000000000000000 x13: 0000000000000000 x12: 0000259e9dbeb6b4
[ 3078.377987] x11: 0096a8f7e764eb40 x10: 634615ad28d3eab5 x9 : ffffc816ad8885b8
[ 3078.387091] x8 : ffff08209cfc6fb8 x7 : ffff0820ac0da058 x6 : ffff0820a8490344
[ 3078.396356] x5 : 0000000000000140 x4 : 0000000000000003 x3 : ffff08209cd76938
[ 3078.405365] x2 : 0000000000000000 x1 : 0000000000000010 x0 : ffff0820abfe38a0
[ 3078.414657] Call trace:
[ 3078.418517] napi_enable+0x80/0x84
[ 3078.424626] hns3_reset_notify_up_enet+0x78/0xd0 [hns3]
[ 3078.433469] hns3_reset_notify+0x64/0x80 [hns3]
[ 3078.441430] hclge_notify_client+0x68/0xb0 [hclge]
[ 3078.450511] hclge_reset_rebuild+0x524/0x884 [hclge]
[ 3078.458879] hclge_reset_service_task+0x3c4/0x680 [hclge]
[ 3078.467470] hclge_service_task+0xb0/0xb54 [hclge]
[ 3078.475675] process_one_work+0x1dc/0x48c
[ 3078.481888] worker_thread+0x15c/0x464
[ 3078.487104] kthread+0x160/0x170
[ 3078.492479] ret_from_fork+0x10/0x18
[ 3078.498785] Code: c8027c81 35ffffa2 d50323bf d65f03c0 (d4210000)
[ 3078.506889] ---[ end trace 8ebe0340a1b0fb44 ]---
Once hns3_nic_net_open() is excute success, the flag
HNS3_NIC_STATE_DOWN will be cleared. So add checking for this
flag, directly return when HNS3_NIC_STATE_DOWN is no set. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/secretmem: fix GUP-fast succeeding on secretmem folios
folio_is_secretmem() currently relies on secretmem folios being LRU
folios, to save some cycles.
However, folios might reside in a folio batch without the LRU flag set, or
temporarily have their LRU flag cleared. Consequently, the LRU flag is
unreliable for this purpose.
In particular, this is the case when secretmem_fault() allocates a fresh
page and calls filemap_add_folio()->folio_add_lru(). The folio might be
added to the per-cpu folio batch and won't get the LRU flag set until the
batch was drained using e.g., lru_add_drain().
Consequently, folio_is_secretmem() might not detect secretmem folios and
GUP-fast can succeed in grabbing a secretmem folio, crashing the kernel
when we would later try reading/writing to the folio, because the folio
has been unmapped from the directmap.
Fix it by removing that unreliable check. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: hold io_buffer_list reference over mmap
If we look up the kbuf, ensure that it doesn't get unregistered until
after we're done with it. Since we're inside mmap, we cannot safely use
the io_uring lock. Rely on the fact that we can lookup the buffer list
under RCU now and grab a reference to it, preventing it from being
unregistered until we're done with it. The lookup returns the
io_buffer_list directly with it referenced. |
| In the Linux kernel, the following vulnerability has been resolved:
gro: fix ownership transfer
If packets are GROed with fraglist they might be segmented later on and
continue their journey in the stack. In skb_segment_list those skbs can
be reused as-is. This is an issue as their destructor was removed in
skb_gro_receive_list but not the reference to their socket, and then
they can't be orphaned. Fix this by also removing the reference to the
socket.
For example this could be observed,
kernel BUG at include/linux/skbuff.h:3131! (skb_orphan)
RIP: 0010:ip6_rcv_core+0x11bc/0x19a0
Call Trace:
ipv6_list_rcv+0x250/0x3f0
__netif_receive_skb_list_core+0x49d/0x8f0
netif_receive_skb_list_internal+0x634/0xd40
napi_complete_done+0x1d2/0x7d0
gro_cell_poll+0x118/0x1f0
A similar construction is found in skb_gro_receive, apply the same
change there. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: bridge: replace physindev with physinif in nf_bridge_info
An skb can be added to a neigh->arp_queue while waiting for an arp
reply. Where original skb's skb->dev can be different to neigh's
neigh->dev. For instance in case of bridging dnated skb from one veth to
another, the skb would be added to a neigh->arp_queue of the bridge.
As skb->dev can be reset back to nf_bridge->physindev and used, and as
there is no explicit mechanism that prevents this physindev from been
freed under us (for instance neigh_flush_dev doesn't cleanup skbs from
different device's neigh queue) we can crash on e.g. this stack:
arp_process
neigh_update
skb = __skb_dequeue(&neigh->arp_queue)
neigh_resolve_output(..., skb)
...
br_nf_dev_xmit
br_nf_pre_routing_finish_bridge_slow
skb->dev = nf_bridge->physindev
br_handle_frame_finish
Let's use plain ifindex instead of net_device link. To peek into the
original net_device we will use dev_get_by_index_rcu(). Thus either we
get device and are safe to use it or we don't get it and drop skb. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: use OPTION_MPTCP_MPJ_SYNACK in subflow_finish_connect()
subflow_finish_connect() uses four fields (backup, join_id, thmac, none)
that may contain garbage unless OPTION_MPTCP_MPJ_SYNACK has been set
in mptcp_parse_option() |
| In the Linux kernel, the following vulnerability has been resolved:
serial: core: fix transmit-buffer reset and memleak
Commit 761ed4a94582 ("tty: serial_core: convert uart_close to use
tty_port_close") converted serial core to use tty_port_close() but
failed to notice that the transmit buffer still needs to be freed on
final close.
Not freeing the transmit buffer means that the buffer is no longer
cleared on next open so that any ioctl() waiting for the buffer to drain
might wait indefinitely (e.g. on termios changes) or that stale data can
end up being transmitted in case tx is restarted.
Furthermore, the buffer of any port that has been opened would leak on
driver unbind.
Note that the port lock is held when clearing the buffer pointer due to
the ldisc race worked around by commit a5ba1d95e46e ("uart: fix race
between uart_put_char() and uart_shutdown()").
Also note that the tty-port shutdown() callback is not called for
console ports so it is not strictly necessary to free the buffer page
after releasing the lock (cf. d72402145ace ("tty/serial: do not free
trasnmit buffer page under port lock")). |
| A flaw was found in Red Hat Process Automation Manager 7 where an attacker can benefit from a brute force attack against Administration Console as the application does not limit the number of unsuccessful login attempts. |
| In the Linux kernel, the following vulnerability has been resolved:
seg6: fix the iif in the IPv6 socket control block
When an IPv4 packet is received, the ip_rcv_core(...) sets the receiving
interface index into the IPv4 socket control block (v5.16-rc4,
net/ipv4/ip_input.c line 510):
IPCB(skb)->iif = skb->skb_iif;
If that IPv4 packet is meant to be encapsulated in an outer IPv6+SRH
header, the seg6_do_srh_encap(...) performs the required encapsulation.
In this case, the seg6_do_srh_encap function clears the IPv6 socket control
block (v5.16-rc4 net/ipv6/seg6_iptunnel.c line 163):
memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
The memset(...) was introduced in commit ef489749aae5 ("ipv6: sr: clear
IP6CB(skb) on SRH ip4ip6 encapsulation") a long time ago (2019-01-29).
Since the IPv6 socket control block and the IPv4 socket control block share
the same memory area (skb->cb), the receiving interface index info is lost
(IP6CB(skb)->iif is set to zero).
As a side effect, that condition triggers a NULL pointer dereference if
commit 0857d6f8c759 ("ipv6: When forwarding count rx stats on the orig
netdev") is applied.
To fix that issue, we set the IP6CB(skb)->iif with the index of the
receiving interface once again. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmem: Fix shift-out-of-bound (UBSAN) with byte size cells
If a cell has 'nbits' equal to a multiple of BITS_PER_BYTE the logic
*p &= GENMASK((cell->nbits%BITS_PER_BYTE) - 1, 0);
will become undefined behavior because nbits modulo BITS_PER_BYTE is 0, and we
subtract one from that making a large number that is then shifted more than the
number of bits that fit into an unsigned long.
UBSAN reports this problem:
UBSAN: shift-out-of-bounds in drivers/nvmem/core.c:1386:8
shift exponent 64 is too large for 64-bit type 'unsigned long'
CPU: 6 PID: 7 Comm: kworker/u16:0 Not tainted 5.15.0-rc3+ #9
Hardware name: Google Lazor (rev3+) with KB Backlight (DT)
Workqueue: events_unbound deferred_probe_work_func
Call trace:
dump_backtrace+0x0/0x170
show_stack+0x24/0x30
dump_stack_lvl+0x64/0x7c
dump_stack+0x18/0x38
ubsan_epilogue+0x10/0x54
__ubsan_handle_shift_out_of_bounds+0x180/0x194
__nvmem_cell_read+0x1ec/0x21c
nvmem_cell_read+0x58/0x94
nvmem_cell_read_variable_common+0x4c/0xb0
nvmem_cell_read_variable_le_u32+0x40/0x100
a6xx_gpu_init+0x170/0x2f4
adreno_bind+0x174/0x284
component_bind_all+0xf0/0x264
msm_drm_bind+0x1d8/0x7a0
try_to_bring_up_master+0x164/0x1ac
__component_add+0xbc/0x13c
component_add+0x20/0x2c
dp_display_probe+0x340/0x384
platform_probe+0xc0/0x100
really_probe+0x110/0x304
__driver_probe_device+0xb8/0x120
driver_probe_device+0x4c/0xfc
__device_attach_driver+0xb0/0x128
bus_for_each_drv+0x90/0xdc
__device_attach+0xc8/0x174
device_initial_probe+0x20/0x2c
bus_probe_device+0x40/0xa4
deferred_probe_work_func+0x7c/0xb8
process_one_work+0x128/0x21c
process_scheduled_works+0x40/0x54
worker_thread+0x1ec/0x2a8
kthread+0x138/0x158
ret_from_fork+0x10/0x20
Fix it by making sure there are any bits to mask out. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8mp-blk-ctrl: imx8mp_blk: Add fdcc clock to hdmimix domain
According to i.MX8MP RM and HDMI ADD, the fdcc clock is part of
hdmi rx verification IP that should not enable for HDMI TX.
But actually if the clock is disabled before HDMI/LCDIF probe,
LCDIF will not get pixel clock from HDMI PHY and print the error
logs:
[CRTC:39:crtc-2] vblank wait timed out
WARNING: CPU: 2 PID: 9 at drivers/gpu/drm/drm_atomic_helper.c:1634 drm_atomic_helper_wait_for_vblanks.part.0+0x23c/0x260
Add fdcc clock to LCDIF and HDMI TX power domains to fix the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
tls: get psock ref after taking rxlock to avoid leak
At the start of tls_sw_recvmsg, we take a reference on the psock, and
then call tls_rx_reader_lock. If that fails, we return directly
without releasing the reference.
Instead of adding a new label, just take the reference after locking
has succeeded, since we don't need it before. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: pick the version of SESSION_PROTECTION_NOTIF
When we want to know whether we should look for the mac_id or the
link_id in struct iwl_mvm_session_prot_notif, we should look at the
version of SESSION_PROTECTION_NOTIF.
This causes WARNINGs:
WARNING: CPU: 0 PID: 11403 at drivers/net/wireless/intel/iwlwifi/mvm/time-event.c:959 iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
RIP: 0010:iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
Code: 00 49 c7 84 24 48 07 00 00 00 00 00 00 41 c6 84 24 78 07 00 00 ff 4c 89 f7 e8 e9 71 54 d9 e9 7d fd ff ff 0f 0b e9 23 fe ff ff <0f> 0b e9 1c fe ff ff 66 0f 1f 44 00 00 90 90 90 90 90 90 90 90 90
RSP: 0018:ffffb4bb00003d40 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffff9ae63a361000 RCX: ffff9ae4a98b60d4
RDX: ffff9ae4588499c0 RSI: 0000000000000305 RDI: ffff9ae4a98b6358
RBP: ffffb4bb00003d68 R08: 0000000000000003 R09: 0000000000000010
R10: ffffb4bb00003d00 R11: 000000000000000f R12: ffff9ae441399050
R13: ffff9ae4761329e8 R14: 0000000000000001 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff9ae7af400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055fb75680018 CR3: 00000003dae32006 CR4: 0000000000f70ef0
PKRU: 55555554
Call Trace:
<IRQ>
? show_regs+0x69/0x80
? __warn+0x8d/0x150
? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
? report_bug+0x196/0x1c0
? handle_bug+0x45/0x80
? exc_invalid_op+0x1c/0xb0
? asm_exc_invalid_op+0x1f/0x30
? iwl_mvm_rx_session_protect_notif+0x333/0x340 [iwlmvm]
iwl_mvm_rx_common+0x115/0x340 [iwlmvm]
iwl_mvm_rx_mq+0xa6/0x100 [iwlmvm]
iwl_pcie_rx_handle+0x263/0xa10 [iwlwifi]
iwl_pcie_napi_poll_msix+0x32/0xd0 [iwlwifi] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: Limit read size on v1.2
Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was
increased from 16 to 256. In order to avoid overflowing reads for older
systems, add a mechanism to use the read UCSI version to truncate read
sizes on UCSI v1.2. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Check output polling initialized before disabling
In drm_kms_helper_poll_disable() check if output polling
support is initialized before disabling polling. If not flag
this as a warning.
Additionally in drm_mode_config_helper_suspend() and
drm_mode_config_helper_resume() calls, that re the callers of these
functions, avoid invoking them if polling is not initialized.
For drivers like hyperv-drm, that do not initialize connector
polling, if suspend is called without this check, it leads to
suspend failure with following stack
[ 770.719392] Freezing remaining freezable tasks ... (elapsed 0.001 seconds) done.
[ 770.720592] printk: Suspending console(s) (use no_console_suspend to debug)
[ 770.948823] ------------[ cut here ]------------
[ 770.948824] WARNING: CPU: 1 PID: 17197 at kernel/workqueue.c:3162 __flush_work.isra.0+0x212/0x230
[ 770.948831] Modules linked in: rfkill nft_counter xt_conntrack xt_owner udf nft_compat crc_itu_t nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables nfnetlink vfat fat mlx5_ib ib_uverbs ib_core mlx5_core intel_rapl_msr intel_rapl_common kvm_amd ccp mlxfw kvm psample hyperv_drm tls drm_shmem_helper drm_kms_helper irqbypass pcspkr syscopyarea sysfillrect sysimgblt hv_balloon hv_utils joydev drm fuse xfs libcrc32c pci_hyperv pci_hyperv_intf sr_mod sd_mod cdrom t10_pi sg hv_storvsc scsi_transport_fc hv_netvsc serio_raw hyperv_keyboard hid_hyperv crct10dif_pclmul crc32_pclmul crc32c_intel hv_vmbus ghash_clmulni_intel dm_mirror dm_region_hash dm_log dm_mod
[ 770.948863] CPU: 1 PID: 17197 Comm: systemd-sleep Not tainted 5.14.0-362.2.1.el9_3.x86_64 #1
[ 770.948865] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022
[ 770.948866] RIP: 0010:__flush_work.isra.0+0x212/0x230
[ 770.948869] Code: 8b 4d 00 4c 8b 45 08 89 ca 48 c1 e9 04 83 e2 08 83 e1 0f 83 ca 02 89 c8 48 0f ba 6d 00 03 e9 25 ff ff ff 0f 0b e9 4e ff ff ff <0f> 0b 45 31 ed e9 44 ff ff ff e8 8f 89 b2 00 66 66 2e 0f 1f 84 00
[ 770.948870] RSP: 0018:ffffaf4ac213fb10 EFLAGS: 00010246
[ 770.948871] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8c992857
[ 770.948872] RDX: 0000000000000001 RSI: 0000000000000001 RDI: ffff9aad82b00330
[ 770.948873] RBP: ffff9aad82b00330 R08: 0000000000000000 R09: ffff9aad87ee3d10
[ 770.948874] R10: 0000000000000200 R11: 0000000000000000 R12: ffff9aad82b00330
[ 770.948874] R13: 0000000000000001 R14: 0000000000000000 R15: 0000000000000001
[ 770.948875] FS: 00007ff1b2f6bb40(0000) GS:ffff9aaf37d00000(0000) knlGS:0000000000000000
[ 770.948878] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 770.948878] CR2: 0000555f345cb666 CR3: 00000001462dc005 CR4: 0000000000370ee0
[ 770.948879] Call Trace:
[ 770.948880] <TASK>
[ 770.948881] ? show_trace_log_lvl+0x1c4/0x2df
[ 770.948884] ? show_trace_log_lvl+0x1c4/0x2df
[ 770.948886] ? __cancel_work_timer+0x103/0x190
[ 770.948887] ? __flush_work.isra.0+0x212/0x230
[ 770.948889] ? __warn+0x81/0x110
[ 770.948891] ? __flush_work.isra.0+0x212/0x230
[ 770.948892] ? report_bug+0x10a/0x140
[ 770.948895] ? handle_bug+0x3c/0x70
[ 770.948898] ? exc_invalid_op+0x14/0x70
[ 770.948899] ? asm_exc_invalid_op+0x16/0x20
[ 770.948903] ? __flush_work.isra.0+0x212/0x230
[ 770.948905] __cancel_work_timer+0x103/0x190
[ 770.948907] ? _raw_spin_unlock_irqrestore+0xa/0x30
[ 770.948910] drm_kms_helper_poll_disable+0x1e/0x40 [drm_kms_helper]
[ 770.948923] drm_mode_config_helper_suspend+0x1c/0x80 [drm_kms_helper]
[ 770.948933] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus]
[ 770.948942] hyperv_vmbus_suspend+0x17/0x40 [hyperv_drm]
[ 770.948944] ? __pfx_vmbus_suspend+0x10/0x10 [hv_vmbus]
[ 770.948951] dpm_run_callback+0x4c/0x140
[ 770.948954] __device_suspend_noir
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Skip do PCI error slot reset during RAS recovery
Why:
The PCI error slot reset maybe triggered after inject ue to UMC multi times, this
caused system hang.
[ 557.371857] amdgpu 0000:af:00.0: amdgpu: GPU reset succeeded, trying to resume
[ 557.373718] [drm] PCIE GART of 512M enabled.
[ 557.373722] [drm] PTB located at 0x0000031FED700000
[ 557.373788] [drm] VRAM is lost due to GPU reset!
[ 557.373789] [drm] PSP is resuming...
[ 557.547012] mlx5_core 0000:55:00.0: mlx5_pci_err_detected Device state = 1 pci_status: 0. Exit, result = 3, need reset
[ 557.547067] [drm] PCI error: detected callback, state(1)!!
[ 557.547069] [drm] No support for XGMI hive yet...
[ 557.548125] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 0. Enter
[ 557.607763] mlx5_core 0000:55:00.0: wait vital counter value 0x16b5b after 1 iterations
[ 557.607777] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 1. Exit, err = 0, result = 5, recovered
[ 557.610492] [drm] PCI error: slot reset callback!!
...
[ 560.689382] amdgpu 0000:3f:00.0: amdgpu: GPU reset(2) succeeded!
[ 560.689546] amdgpu 0000:5a:00.0: amdgpu: GPU reset(2) succeeded!
[ 560.689562] general protection fault, probably for non-canonical address 0x5f080b54534f611f: 0000 [#1] SMP NOPTI
[ 560.701008] CPU: 16 PID: 2361 Comm: kworker/u448:9 Tainted: G OE 5.15.0-91-generic #101-Ubuntu
[ 560.712057] Hardware name: Microsoft C278A/C278A, BIOS C2789.5.BS.1C11.AG.1 11/08/2023
[ 560.720959] Workqueue: amdgpu-reset-hive amdgpu_ras_do_recovery [amdgpu]
[ 560.728887] RIP: 0010:amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu]
[ 560.736891] Code: ff 41 89 c6 e9 1b ff ff ff 44 0f b6 45 b0 e9 4f ff ff ff be 01 00 00 00 4c 89 e7 e8 76 c9 8b ff 44 0f b6 45 b0 e9 3c fd ff ff <48> 83 ba 18 02 00 00 00 0f 84 6a f8 ff ff 48 8d 7a 78 be 01 00 00
[ 560.757967] RSP: 0018:ffa0000032e53d80 EFLAGS: 00010202
[ 560.763848] RAX: ffa00000001dfd10 RBX: ffa0000000197090 RCX: ffa0000032e53db0
[ 560.771856] RDX: 5f080b54534f5f07 RSI: 0000000000000000 RDI: ff11000128100010
[ 560.779867] RBP: ffa0000032e53df0 R08: 0000000000000000 R09: ffffffffffe77f08
[ 560.787879] R10: 0000000000ffff0a R11: 0000000000000001 R12: 0000000000000000
[ 560.795889] R13: ffa0000032e53e00 R14: 0000000000000000 R15: 0000000000000000
[ 560.803889] FS: 0000000000000000(0000) GS:ff11007e7e800000(0000) knlGS:0000000000000000
[ 560.812973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 560.819422] CR2: 000055a04c118e68 CR3: 0000000007410005 CR4: 0000000000771ee0
[ 560.827433] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 560.835433] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400
[ 560.843444] PKRU: 55555554
[ 560.846480] Call Trace:
[ 560.849225] <TASK>
[ 560.851580] ? show_trace_log_lvl+0x1d6/0x2ea
[ 560.856488] ? show_trace_log_lvl+0x1d6/0x2ea
[ 560.861379] ? amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu]
[ 560.867778] ? show_regs.part.0+0x23/0x29
[ 560.872293] ? __die_body.cold+0x8/0xd
[ 560.876502] ? die_addr+0x3e/0x60
[ 560.880238] ? exc_general_protection+0x1c5/0x410
[ 560.885532] ? asm_exc_general_protection+0x27/0x30
[ 560.891025] ? amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu]
[ 560.898323] amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu]
[ 560.904520] process_one_work+0x228/0x3d0
How:
In RAS recovery, mode-1 reset is issued from RAS fatal error handling and expected
all the nodes in a hive to be reset. no need to issue another mode-1 during this procedure. |
| In the Linux kernel, the following vulnerability has been resolved:
dpll: fix dpll_pin_on_pin_register() for multiple parent pins
In scenario where pin is registered with multiple parent pins via
dpll_pin_on_pin_register(..), all belonging to the same dpll device.
A second call to dpll_pin_on_pin_unregister(..) would cause a call trace,
as it tries to use already released registration resources (due to fix
introduced in b446631f355e). In this scenario pin was registered twice,
so resources are not yet expected to be release until each registered
pin/pin pair is unregistered.
Currently, the following crash/call trace is produced when ice driver is
removed on the system with installed E810T NIC which includes dpll device:
WARNING: CPU: 51 PID: 9155 at drivers/dpll/dpll_core.c:809 dpll_pin_ops+0x20/0x30
RIP: 0010:dpll_pin_ops+0x20/0x30
Call Trace:
? __warn+0x7f/0x130
? dpll_pin_ops+0x20/0x30
dpll_msg_add_pin_freq+0x37/0x1d0
dpll_cmd_pin_get_one+0x1c0/0x400
? __nlmsg_put+0x63/0x80
dpll_pin_event_send+0x93/0x140
dpll_pin_on_pin_unregister+0x3f/0x100
ice_dpll_deinit_pins+0xa1/0x230 [ice]
ice_remove+0xf1/0x210 [ice]
Fix by adding a parent pointer as a cookie when creating a registration,
also when searching for it. For the regular pins pass NULL, this allows to
create separated registration for each parent the pin is registered with. |