Search Results (16708 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-40320 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential cfid UAF in smb2_query_info_compound When smb2_query_info_compound() retries, a previously allocated cfid may have been freed in the first attempt. Because cfid wasn't reset on replay, later cleanup could act on a stale pointer, leading to a potential use-after-free. Reinitialize cfid to NULL under the replay label. Example trace (trimmed): refcount_t: underflow; use-after-free. WARNING: CPU: 1 PID: 11224 at ../lib/refcount.c:28 refcount_warn_saturate+0x9c/0x110 [...] RIP: 0010:refcount_warn_saturate+0x9c/0x110 [...] Call Trace: <TASK> smb2_query_info_compound+0x29c/0x5c0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] ? step_into+0x10d/0x690 ? __legitimize_path+0x28/0x60 smb2_queryfs+0x6a/0xf0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] smb311_queryfs+0x12d/0x140 [cifs f90b72658819bd21c94769b6a652029a07a7172f] ? kmem_cache_alloc+0x18a/0x340 ? getname_flags+0x46/0x1e0 cifs_statfs+0x9f/0x2b0 [cifs f90b72658819bd21c94769b6a652029a07a7172f] statfs_by_dentry+0x67/0x90 vfs_statfs+0x16/0xd0 user_statfs+0x54/0xa0 __do_sys_statfs+0x20/0x50 do_syscall_64+0x58/0x80
CVE-2022-50618 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mmc: meson-gx: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, it will lead two issues: 1. The memory that allocated in mmc_alloc_host() is leaked. 2. In the remove() path, mmc_remove_host() will be called to delete device, but it's not added yet, it will lead a kernel crash because of null-ptr-deref in device_del(). Fix this by checking the return value and goto error path which will call mmc_free_host().
CVE-2022-50619 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix memory leak in kfd_mem_dmamap_userptr() If the number of pages from the userptr BO differs from the SG BO then the allocated memory for the SG table doesn't get freed before returning -EINVAL, which may lead to a memory leak in some error paths. Fix this by checking the number of pages before allocating memory for the SG table.
CVE-2023-53745 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: um: vector: Fix memory leak in vector_config If the return value of the uml_parse_vector_ifspec function is NULL, we should call kfree(params) to prevent memory leak.
CVE-2022-50620 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to invalidate dcc->f2fs_issue_discard in error path Syzbot reports a NULL pointer dereference issue as below: __refcount_add include/linux/refcount.h:193 [inline] __refcount_inc include/linux/refcount.h:250 [inline] refcount_inc include/linux/refcount.h:267 [inline] get_task_struct include/linux/sched/task.h:110 [inline] kthread_stop+0x34/0x1c0 kernel/kthread.c:703 f2fs_stop_discard_thread+0x3c/0x5c fs/f2fs/segment.c:1638 kill_f2fs_super+0x5c/0x194 fs/f2fs/super.c:4522 deactivate_locked_super+0x70/0xe8 fs/super.c:332 deactivate_super+0xd0/0xd4 fs/super.c:363 cleanup_mnt+0x1f8/0x234 fs/namespace.c:1186 __cleanup_mnt+0x20/0x30 fs/namespace.c:1193 task_work_run+0xc4/0x14c kernel/task_work.c:177 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0x26c/0xbe0 kernel/exit.c:795 do_group_exit+0x60/0xe8 kernel/exit.c:925 __do_sys_exit_group kernel/exit.c:936 [inline] __se_sys_exit_group kernel/exit.c:934 [inline] __wake_up_parent+0x0/0x40 kernel/exit.c:934 __invoke_syscall arch/arm64/kernel/syscall.c:38 [inline] invoke_syscall arch/arm64/kernel/syscall.c:52 [inline] el0_svc_common+0x138/0x220 arch/arm64/kernel/syscall.c:142 do_el0_svc+0x48/0x164 arch/arm64/kernel/syscall.c:206 el0_svc+0x58/0x150 arch/arm64/kernel/entry-common.c:636 el0t_64_sync_handler+0x84/0xf0 arch/arm64/kernel/entry-common.c:654 el0t_64_sync+0x18c/0x190 arch/arm64/kernel/entry.S:581 The root cause of this issue is in error path of f2fs_start_discard_thread(), it missed to invalidate dcc->f2fs_issue_discard, later kthread_stop() may access invalid pointer.
CVE-2022-50621 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dm: verity-loadpin: Only trust verity targets with enforcement Verity targets can be configured to ignore corrupted data blocks. LoadPin must only trust verity targets that are configured to perform some kind of enforcement when data corruption is detected, like returning an error, restarting the system or triggering a panic.
CVE-2022-50624 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: netsec: fix error handling in netsec_register_mdio() If phy_device_register() fails, phy_device_free() need be called to put refcount, so memory of phy device and device name can be freed in callback function. If get_phy_device() fails, mdiobus_unregister() need be called, or it will cause warning in mdiobus_free() and kobject is leaked.
CVE-2023-53747 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: vc_screen: reload load of struct vc_data pointer in vcs_write() to avoid UAF After a call to console_unlock() in vcs_write() the vc_data struct can be freed by vc_port_destruct(). Because of that, the struct vc_data pointer must be reloaded in the while loop in vcs_write() after console_lock() to avoid a UAF when vcs_size() is called. Syzkaller reported a UAF in vcs_size(). BUG: KASAN: slab-use-after-free in vcs_size (drivers/tty/vt/vc_screen.c:215) Read of size 4 at addr ffff8880beab89a8 by task repro_vcs_size/4119 Call Trace: <TASK> __asan_report_load4_noabort (mm/kasan/report_generic.c:380) vcs_size (drivers/tty/vt/vc_screen.c:215) vcs_write (drivers/tty/vt/vc_screen.c:664) vfs_write (fs/read_write.c:582 fs/read_write.c:564) ... <TASK> Allocated by task 1213: kmalloc_trace (mm/slab_common.c:1064) vc_allocate (./include/linux/slab.h:559 ./include/linux/slab.h:680 drivers/tty/vt/vt.c:1078 drivers/tty/vt/vt.c:1058) con_install (drivers/tty/vt/vt.c:3334) tty_init_dev (drivers/tty/tty_io.c:1303 drivers/tty/tty_io.c:1415 drivers/tty/tty_io.c:1392) tty_open (drivers/tty/tty_io.c:2082 drivers/tty/tty_io.c:2128) chrdev_open (fs/char_dev.c:415) do_dentry_open (fs/open.c:921) vfs_open (fs/open.c:1052) ... Freed by task 4116: kfree (mm/slab_common.c:1016) vc_port_destruct (drivers/tty/vt/vt.c:1044) tty_port_destructor (drivers/tty/tty_port.c:296) tty_port_put (drivers/tty/tty_port.c:312) vt_disallocate_all (drivers/tty/vt/vt_ioctl.c:662 (discriminator 2)) vt_ioctl (drivers/tty/vt/vt_ioctl.c:903) tty_ioctl (drivers/tty/tty_io.c:2778) ... The buggy address belongs to the object at ffff8880beab8800 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 424 bytes inside of freed 1024-byte region [ffff8880beab8800, ffff8880beab8c00) The buggy address belongs to the physical page: page:00000000afc77580 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xbeab8 head:00000000afc77580 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0xfffffc0010200(slab|head|node=0|zone=1|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 000fffffc0010200 ffff888100042dc0 ffffea000426de00 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8880beab8880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880beab8900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff8880beab8980: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8880beab8a00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8880beab8a80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== Disabling lock debugging due to kernel taint
CVE-2025-40321 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix crash while sending Action Frames in standalone AP Mode Currently, whenever there is a need to transmit an Action frame, the brcmfmac driver always uses the P2P vif to send the "actframe" IOVAR to firmware. The P2P interfaces were available when wpa_supplicant is managing the wlan interface. However, the P2P interfaces are not created/initialized when only hostapd is managing the wlan interface. And if hostapd receives an ANQP Query REQ Action frame even from an un-associated STA, the brcmfmac driver tries to use an uninitialized P2P vif pointer for sending the IOVAR to firmware. This NULL pointer dereferencing triggers a driver crash. [ 1417.074538] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000 [...] [ 1417.075188] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT) [...] [ 1417.075653] Call trace: [ 1417.075662] brcmf_p2p_send_action_frame+0x23c/0xc58 [brcmfmac] [ 1417.075738] brcmf_cfg80211_mgmt_tx+0x304/0x5c0 [brcmfmac] [ 1417.075810] cfg80211_mlme_mgmt_tx+0x1b0/0x428 [cfg80211] [ 1417.076067] nl80211_tx_mgmt+0x238/0x388 [cfg80211] [ 1417.076281] genl_family_rcv_msg_doit+0xe0/0x158 [ 1417.076302] genl_rcv_msg+0x220/0x2a0 [ 1417.076317] netlink_rcv_skb+0x68/0x140 [ 1417.076330] genl_rcv+0x40/0x60 [ 1417.076343] netlink_unicast+0x330/0x3b8 [ 1417.076357] netlink_sendmsg+0x19c/0x3f8 [ 1417.076370] __sock_sendmsg+0x64/0xc0 [ 1417.076391] ____sys_sendmsg+0x268/0x2a0 [ 1417.076408] ___sys_sendmsg+0xb8/0x118 [ 1417.076427] __sys_sendmsg+0x90/0xf8 [ 1417.076445] __arm64_sys_sendmsg+0x2c/0x40 [ 1417.076465] invoke_syscall+0x50/0x120 [ 1417.076486] el0_svc_common.constprop.0+0x48/0xf0 [ 1417.076506] do_el0_svc+0x24/0x38 [ 1417.076525] el0_svc+0x30/0x100 [ 1417.076548] el0t_64_sync_handler+0x100/0x130 [ 1417.076569] el0t_64_sync+0x190/0x198 [ 1417.076589] Code: f9401e80 aa1603e2 f9403be1 5280e483 (f9400000) Fix this, by always using the vif corresponding to the wdev on which the Action frame Transmission request was initiated by the userspace. This way, even if P2P vif is not available, the IOVAR is sent to firmware on AP vif and the ANQP Query RESP Action frame is transmitted without crashing the driver. Move init_completion() for "send_af_done" from brcmf_p2p_create_p2pdev() to brcmf_p2p_attach(). Because the former function would not get executed when only hostapd is managing wlan interface, and it is not safe to do reinit_completion() later in brcmf_p2p_tx_action_frame(), without any prior init_completion(). And in the brcmf_p2p_tx_action_frame() function, the condition check for P2P Presence response frame is not needed, since the wpa_supplicant is properly sending the P2P Presense Response frame on the P2P-GO vif instead of the P2P-Device vif. [Cc stable]
CVE-2023-53762 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: Fix UAF in hci_disconnect_all_sync Use-after-free can occur in hci_disconnect_all_sync if a connection is deleted by concurrent processing of a controller event. To prevent this the code now tries to iterate over the list backwards to ensure the links are cleanup before its parents, also it no longer relies on a cursor, instead it always uses the last element since hci_abort_conn_sync is guaranteed to call hci_conn_del. UAF crash log: ================================================================== BUG: KASAN: slab-use-after-free in hci_set_powered_sync (net/bluetooth/hci_sync.c:5424) [bluetooth] Read of size 8 at addr ffff888009d9c000 by task kworker/u9:0/124 CPU: 0 PID: 124 Comm: kworker/u9:0 Tainted: G W 6.5.0-rc1+ #10 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.2-1.fc38 04/01/2014 Workqueue: hci0 hci_cmd_sync_work [bluetooth] Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0xdd/0x160 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] kasan_report+0xa6/0xe0 ? hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] ? __pfx_set_powered_sync+0x10/0x10 [bluetooth] hci_set_powered_sync+0x2c9/0x4a0 [bluetooth] ? __pfx_hci_set_powered_sync+0x10/0x10 [bluetooth] ? __pfx_lock_release+0x10/0x10 ? __pfx_set_powered_sync+0x10/0x10 [bluetooth] hci_cmd_sync_work+0x137/0x220 [bluetooth] process_one_work+0x526/0x9d0 ? __pfx_process_one_work+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? mark_held_locks+0x1a/0x90 worker_thread+0x92/0x630 ? __pfx_worker_thread+0x10/0x10 kthread+0x196/0x1e0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> Allocated by task 1782: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 __kasan_kmalloc+0x8f/0xa0 hci_conn_add+0xa5/0xa80 [bluetooth] hci_bind_cis+0x881/0x9b0 [bluetooth] iso_connect_cis+0x121/0x520 [bluetooth] iso_sock_connect+0x3f6/0x790 [bluetooth] __sys_connect+0x109/0x130 __x64_sys_connect+0x40/0x50 do_syscall_64+0x60/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Freed by task 695: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 __kasan_slab_free+0x10a/0x180 __kmem_cache_free+0x14d/0x2e0 device_release+0x5d/0xf0 kobject_put+0xdf/0x270 hci_disconn_complete_evt+0x274/0x3a0 [bluetooth] hci_event_packet+0x579/0x7e0 [bluetooth] hci_rx_work+0x287/0xaa0 [bluetooth] process_one_work+0x526/0x9d0 worker_thread+0x92/0x630 kthread+0x196/0x1e0 ret_from_fork+0x2c/0x50 ==================================================================
CVE-2025-40316 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix device use-after-free on unbind A recent change fixed device reference leaks when looking up drm platform device driver data during bind() but failed to remove a partial fix which had been added by commit 80805b62ea5b ("drm/mediatek: Fix kobject put for component sub-drivers"). This results in a reference imbalance on component bind() failures and on unbind() which could lead to a user-after-free. Make sure to only drop the references after retrieving the driver data by effectively reverting the previous partial fix. Note that holding a reference to a device does not prevent its driver data from going away so there is no point in keeping the reference.
CVE-2025-40318 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: fix race in hci_cmd_sync_dequeue_once hci_cmd_sync_dequeue_once() does lookup and then cancel the entry under two separate lock sections. Meanwhile, hci_cmd_sync_work() can also delete the same entry, leading to double list_del() and "UAF". Fix this by holding cmd_sync_work_lock across both lookup and cancel, so that the entry cannot be removed concurrently.
CVE-2025-40324 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: NFSD: Fix crash in nfsd4_read_release() When tracing is enabled, the trace_nfsd_read_done trace point crashes during the pynfs read.testNoFh test.
CVE-2023-53759 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: HID: hidraw: fix data race on device refcount The hidraw_open() function increments the hidraw device reference counter. The counter has no dedicated synchronization mechanism, resulting in a potential data race when concurrently opening a device. The race is a regression introduced by commit 8590222e4b02 ("HID: hidraw: Replace hidraw device table mutex with a rwsem"). While minors_rwsem is intended to protect the hidraw_table itself, by instead acquiring the lock for writing, the reference counter is also protected. This is symmetrical to hidraw_release().
CVE-2023-53758 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spi: atmel-quadspi: Free resources even if runtime resume failed in .remove() An early error exit in atmel_qspi_remove() doesn't prevent the device unbind. So this results in an spi controller with an unbound parent and unmapped register space (because devm_ioremap_resource() is undone). So using the remaining spi controller probably results in an oops. Instead unregister the controller unconditionally and only skip hardware access and clk disable. Also add a warning about resume failing and return zero unconditionally. The latter has the only effect to suppress a less helpful error message by the spi core.
CVE-2023-53757 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: irqchip/irq-mvebu-gicp: Fix refcount leak in mvebu_gicp_probe of_irq_find_parent() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak.
CVE-2023-53756 1 Linux 1 Linux Kernel 2025-12-08 7.0 High
In the Linux kernel, the following vulnerability has been resolved: KVM: VMX: Fix crash due to uninitialized current_vmcs KVM enables 'Enlightened VMCS' and 'Enlightened MSR Bitmap' when running as a nested hypervisor on top of Hyper-V. When MSR bitmap is updated, evmcs_touch_msr_bitmap function uses current_vmcs per-cpu variable to mark that the msr bitmap was changed. vmx_vcpu_create() modifies the msr bitmap via vmx_disable_intercept_for_msr -> vmx_msr_bitmap_l01_changed which in the end calls this function. The function checks for current_vmcs if it is null but the check is insufficient because current_vmcs is not initialized. Because of this, the code might incorrectly write to the structure pointed by current_vmcs value left by another task. Preemption is not disabled, the current task can be preempted and moved to another CPU while current_vmcs is accessed multiple times from evmcs_touch_msr_bitmap() which leads to crash. The manipulation of MSR bitmaps by callers happens only for vmcs01 so the solution is to use vmx->vmcs01.vmcs instead of current_vmcs. BUG: kernel NULL pointer dereference, address: 0000000000000338 PGD 4e1775067 P4D 0 Oops: 0002 [#1] PREEMPT SMP NOPTI ... RIP: 0010:vmx_msr_bitmap_l01_changed+0x39/0x50 [kvm_intel] ... Call Trace: vmx_disable_intercept_for_msr+0x36/0x260 [kvm_intel] vmx_vcpu_create+0xe6/0x540 [kvm_intel] kvm_arch_vcpu_create+0x1d1/0x2e0 [kvm] kvm_vm_ioctl_create_vcpu+0x178/0x430 [kvm] kvm_vm_ioctl+0x53f/0x790 [kvm] __x64_sys_ioctl+0x8a/0xc0 do_syscall_64+0x5c/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVE-2023-53754 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix ioremap issues in lpfc_sli4_pci_mem_setup() When if_type equals zero and pci_resource_start(pdev, PCI_64BIT_BAR4) returns false, drbl_regs_memmap_p is not remapped. This passes a NULL pointer to iounmap(), which can trigger a WARN() on certain arches. When if_type equals six and pci_resource_start(pdev, PCI_64BIT_BAR4) returns true, drbl_regs_memmap_p may has been remapped and ctrl_regs_memmap_p is not remapped. This is a resource leak and passes a NULL pointer to iounmap(). To fix these issues, we need to add null checks before iounmap(), and change some goto labels.
CVE-2023-53768 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regmap-irq: Fix out-of-bounds access when allocating config buffers When allocating the 2D array for handling IRQ type registers in regmap_add_irq_chip_fwnode(), the intent is to allocate a matrix with num_config_bases rows and num_config_regs columns. This is currently handled by allocating a buffer to hold a pointer for each row (i.e. num_config_bases). After that, the logic attempts to allocate the memory required to hold the register configuration for each row. However, instead of doing this allocation for each row (i.e. num_config_bases allocations), the logic erroneously does this allocation num_config_regs number of times. This scenario can lead to out-of-bounds accesses when num_config_regs is greater than num_config_bases. Fix this by updating the terminating condition of the loop that allocates the memory for holding the register configuration to allocate memory only for each row in the matrix. Amit Pundir reported a crash that was occurring on his db845c device due to memory corruption (see "Closes" tag for Amit's report). The KASAN report below helped narrow it down to this issue: [ 14.033877][ T1] ================================================================== [ 14.042507][ T1] BUG: KASAN: invalid-access in regmap_add_irq_chip_fwnode+0x594/0x1364 [ 14.050796][ T1] Write of size 8 at addr 06ffff8081021850 by task init/1 [ 14.242004][ T1] The buggy address belongs to the object at ffffff8081021850 [ 14.242004][ T1] which belongs to the cache kmalloc-8 of size 8 [ 14.255669][ T1] The buggy address is located 0 bytes inside of [ 14.255669][ T1] 8-byte region [ffffff8081021850, ffffff8081021858)
CVE-2023-53744 1 Linux 1 Linux Kernel 2025-12-08 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: ti: pm33xx: Fix refcount leak in am33xx_pm_probe wkup_m3_ipc_get() takes refcount, which should be freed by wkup_m3_ipc_put(). Add missing refcount release in the error paths.