| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix failed to find the peer with peer_id 0 when disconnected
It has a fail log which is ath11k_dbg in ath11k_dp_rx_process_mon_status(),
as below, it will not print when debug_mask is not set ATH11K_DBG_DATA.
ath11k_dbg(ab, ATH11K_DBG_DATA,
"failed to find the peer with peer_id %d\n",
ppdu_info.peer_id);
When run scan with station disconnected, the peer_id is 0 for case
HAL_RX_MPDU_START in ath11k_hal_rx_parse_mon_status_tlv() which called
from ath11k_dp_rx_process_mon_status(), and the peer_id of ppdu_info is
reset to 0 in the while loop, so it does not match condition of the
check "if (ppdu_info->peer_id == HAL_INVALID_PEERID" in the loop, and
then the log "failed to find the peer with peer_id 0" print after the
check in the loop, it is below call stack when debug_mask is set
ATH11K_DBG_DATA.
The reason is this commit 01d2f285e3e5 ("ath11k: decode HE status tlv")
add "memset(ppdu_info, 0, sizeof(struct hal_rx_mon_ppdu_info))" in
ath11k_dp_rx_process_mon_status(), but the commit does not initialize
the peer_id to HAL_INVALID_PEERID, then lead the check mis-match.
Callstack of the failed log:
[12335.689072] RIP: 0010:ath11k_dp_rx_process_mon_status+0x9ea/0x1020 [ath11k]
[12335.689157] Code: 89 ff e8 f9 10 00 00 be 01 00 00 00 4c 89 f7 e8 dc 4b 4e de 48 8b 85 38 ff ff ff c7 80 e4 07 00 00 01 00 00 00 e9 20 f8 ff ff <0f> 0b 41 0f b7 96 be 06 00 00 48 c7 c6 b8 50 44 c1 4c 89 ff e8 fd
[12335.689180] RSP: 0018:ffffb874001a4ca0 EFLAGS: 00010246
[12335.689210] RAX: 0000000000000000 RBX: ffff995642cbd100 RCX: 0000000000000000
[12335.689229] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff99564212cd18
[12335.689248] RBP: ffffb874001a4dc0 R08: 0000000000000001 R09: 0000000000000000
[12335.689268] R10: 0000000000000220 R11: ffffb874001a48e8 R12: ffff995642473d40
[12335.689286] R13: ffff99564212c5b8 R14: ffff9956424736a0 R15: ffff995642120000
[12335.689303] FS: 0000000000000000(0000) GS:ffff995739000000(0000) knlGS:0000000000000000
[12335.689323] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[12335.689341] CR2: 00007f43c5d5e039 CR3: 000000011c012005 CR4: 00000000000606e0
[12335.689360] Call Trace:
[12335.689377] <IRQ>
[12335.689418] ? rcu_read_lock_held_common+0x12/0x50
[12335.689447] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689471] ? rcu_read_lock_held_common+0x12/0x50
[12335.689504] ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689578] ? ath11k_dp_rx_process_mon_rings+0x8d/0x4f0 [ath11k]
[12335.689653] ? lock_acquire+0xef/0x360
[12335.689681] ? rcu_read_lock_sched_held+0x25/0x80
[12335.689713] ath11k_dp_service_mon_ring+0x38/0x60 [ath11k]
[12335.689784] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689860] call_timer_fn+0xb2/0x2f0
[12335.689897] ? ath11k_dp_rx_process_mon_rings+0x4f0/0x4f0 [ath11k]
[12335.689970] run_timer_softirq+0x21f/0x540
[12335.689999] ? ktime_get+0xad/0x160
[12335.690025] ? lapic_next_deadline+0x2c/0x40
[12335.690053] ? clockevents_program_event+0x82/0x100
[12335.690093] __do_softirq+0x151/0x4a8
[12335.690135] irq_exit_rcu+0xc9/0x100
[12335.690165] sysvec_apic_timer_interrupt+0xa8/0xd0
[12335.690189] </IRQ>
[12335.690204] <TASK>
[12335.690225] asm_sysvec_apic_timer_interrupt+0x12/0x20
Reset the default value to HAL_INVALID_PEERID each time after memset
of ppdu_info as well as others memset which existed in function
ath11k_dp_rx_process_mon_status(), then the failed log disappeared.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3 |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: IOMMUFD_DESTROY should not increase the refcount
syzkaller found a race where IOMMUFD_DESTROY increments the refcount:
obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY);
if (IS_ERR(obj))
return PTR_ERR(obj);
iommufd_ref_to_users(obj);
/* See iommufd_ref_to_users() */
if (!iommufd_object_destroy_user(ucmd->ictx, obj))
As part of the sequence to join the two existing primitives together.
Allowing the refcount the be elevated without holding the destroy_rwsem
violates the assumption that all temporary refcount elevations are
protected by destroy_rwsem. Racing IOMMUFD_DESTROY with
iommufd_object_destroy_user() will cause spurious failures:
WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478
Modules linked in:
CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023
RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477
Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41
RSP: 0018:ffffc90003067e08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff
RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500
R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88
R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe
FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0
Call Trace:
<TASK>
iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline]
iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813
iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:870 [inline]
__se_sys_ioctl fs/ioctl.c:856 [inline]
__x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The solution is to not increment the refcount on the IOMMUFD_DESTROY path
at all. Instead use the xa_lock to serialize everything. The refcount
check == 1 and xa_erase can be done under a single critical region. This
avoids the need for any refcount incrementing.
It has the downside that if userspace races destroy with other operations
it will get an EBUSY instead of waiting, but this is kind of racing is
already dangerous. |
| In the Linux kernel, the following vulnerability has been resolved:
uio: uio_dmem_genirq: Fix missing unlock in irq configuration
Commit b74351287d4b ("uio: fix a sleep-in-atomic-context bug in
uio_dmem_genirq_irqcontrol()") started calling disable_irq() without
holding the spinlock because it can sleep. However, that fix introduced
another bug: if interrupt is already disabled and a new disable request
comes in, then the spinlock is not unlocked:
root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0
root@localhost:~# printf '\x00\x00\x00\x00' > /dev/uio0
root@localhost:~# [ 14.851538] BUG: scheduling while atomic: bash/223/0x00000002
[ 14.851991] Modules linked in: uio_dmem_genirq uio myfpga(OE) bochs drm_vram_helper drm_ttm_helper ttm drm_kms_helper drm snd_pcm ppdev joydev psmouse snd_timer snd e1000fb_sys_fops syscopyarea parport sysfillrect soundcore sysimgblt input_leds pcspkr i2c_piix4 serio_raw floppy evbug qemu_fw_cfg mac_hid pata_acpi ip_tables x_tables autofs4 [last unloaded: parport_pc]
[ 14.854206] CPU: 0 PID: 223 Comm: bash Tainted: G OE 6.0.0-rc7 #21
[ 14.854786] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
[ 14.855664] Call Trace:
[ 14.855861] <TASK>
[ 14.856025] dump_stack_lvl+0x4d/0x67
[ 14.856325] dump_stack+0x14/0x1a
[ 14.856583] __schedule_bug.cold+0x4b/0x5c
[ 14.856915] __schedule+0xe81/0x13d0
[ 14.857199] ? idr_find+0x13/0x20
[ 14.857456] ? get_work_pool+0x2d/0x50
[ 14.857756] ? __flush_work+0x233/0x280
[ 14.858068] ? __schedule+0xa95/0x13d0
[ 14.858307] ? idr_find+0x13/0x20
[ 14.858519] ? get_work_pool+0x2d/0x50
[ 14.858798] schedule+0x6c/0x100
[ 14.859009] schedule_hrtimeout_range_clock+0xff/0x110
[ 14.859335] ? tty_write_room+0x1f/0x30
[ 14.859598] ? n_tty_poll+0x1ec/0x220
[ 14.859830] ? tty_ldisc_deref+0x1a/0x20
[ 14.860090] schedule_hrtimeout_range+0x17/0x20
[ 14.860373] do_select+0x596/0x840
[ 14.860627] ? __kernel_text_address+0x16/0x50
[ 14.860954] ? poll_freewait+0xb0/0xb0
[ 14.861235] ? poll_freewait+0xb0/0xb0
[ 14.861517] ? rpm_resume+0x49d/0x780
[ 14.861798] ? common_interrupt+0x59/0xa0
[ 14.862127] ? asm_common_interrupt+0x2b/0x40
[ 14.862511] ? __uart_start.isra.0+0x61/0x70
[ 14.862902] ? __check_object_size+0x61/0x280
[ 14.863255] core_sys_select+0x1c6/0x400
[ 14.863575] ? vfs_write+0x1c9/0x3d0
[ 14.863853] ? vfs_write+0x1c9/0x3d0
[ 14.864121] ? _copy_from_user+0x45/0x70
[ 14.864526] do_pselect.constprop.0+0xb3/0xf0
[ 14.864893] ? do_syscall_64+0x6d/0x90
[ 14.865228] ? do_syscall_64+0x6d/0x90
[ 14.865556] __x64_sys_pselect6+0x76/0xa0
[ 14.865906] do_syscall_64+0x60/0x90
[ 14.866214] ? syscall_exit_to_user_mode+0x2a/0x50
[ 14.866640] ? do_syscall_64+0x6d/0x90
[ 14.866972] ? do_syscall_64+0x6d/0x90
[ 14.867286] ? do_syscall_64+0x6d/0x90
[ 14.867626] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...] stripped
[ 14.872959] </TASK>
('myfpga' is a simple 'uio_dmem_genirq' driver I wrote to test this)
The implementation of "uio_dmem_genirq" was based on "uio_pdrv_genirq" and
it is used in a similar manner to the "uio_pdrv_genirq" driver with respect
to interrupt configuration and handling. At the time "uio_dmem_genirq" was
introduced, both had the same implementation of the 'uio_info' handlers
irqcontrol() and handler(). Then commit 34cb27528398 ("UIO: Fix concurrency
issue"), which was only applied to "uio_pdrv_genirq", ended up making them
a little different. That commit, among other things, changed disable_irq()
to disable_irq_nosync() in the implementation of irqcontrol(). The
motivation there was to avoid a deadlock between irqcontrol() and
handler(), since it added a spinlock in the irq handler, and disable_irq()
waits for the completion of the irq handler.
By changing disable_irq() to disable_irq_nosync() in irqcontrol(), we also
avoid the sleeping-whil
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix reference state management for synchronous callbacks
Currently, verifier verifies callback functions (sync and async) as if
they will be executed once, (i.e. it explores execution state as if the
function was being called once). The next insn to explore is set to
start of subprog and the exit from nested frame is handled using
curframe > 0 and prepare_func_exit. In case of async callback it uses a
customized variant of push_stack simulating a kind of branch to set up
custom state and execution context for the async callback.
While this approach is simple and works when callback really will be
executed only once, it is unsafe for all of our current helpers which
are for_each style, i.e. they execute the callback multiple times.
A callback releasing acquired references of the caller may do so
multiple times, but currently verifier sees it as one call inside the
frame, which then returns to caller. Hence, it thinks it released some
reference that the cb e.g. got access through callback_ctx (register
filled inside cb from spilled typed register on stack).
Similarly, it may see that an acquire call is unpaired inside the
callback, so the caller will copy the reference state of callback and
then will have to release the register with new ref_obj_ids. But again,
the callback may execute multiple times, but the verifier will only
account for acquired references for a single symbolic execution of the
callback, which will cause leaks.
Note that for async callback case, things are different. While currently
we have bpf_timer_set_callback which only executes it once, even for
multiple executions it would be safe, as reference state is NULL and
check_reference_leak would force program to release state before
BPF_EXIT. The state is also unaffected by analysis for the caller frame.
Hence async callback is safe.
Since we want the reference state to be accessible, e.g. for pointers
loaded from stack through callback_ctx's PTR_TO_STACK, we still have to
copy caller's reference_state to callback's bpf_func_state, but we
enforce that whatever references it adds to that reference_state has
been released before it hits BPF_EXIT. This requires introducing a new
callback_ref member in the reference state to distinguish between caller
vs callee references. Hence, check_reference_leak now errors out if it
sees we are in callback_fn and we have not released callback_ref refs.
Since there can be multiple nested callbacks, like frame 0 -> cb1 -> cb2
etc. we need to also distinguish between whether this particular ref
belongs to this callback frame or parent, and only error for our own, so
we store state->frameno (which is always non-zero for callbacks).
In short, callbacks can read parent reference_state, but cannot mutate
it, to be able to use pointers acquired by the caller. They must only
undo their changes (by releasing their own acquired_refs before
BPF_EXIT) on top of caller reference_state before returning (at which
point the caller and callback state will match anyway, so no need to
copy it back to caller). |
| In the Linux kernel, the following vulnerability has been resolved:
RISC-V: Make port I/O string accessors actually work
Fix port I/O string accessors such as `insb', `outsb', etc. which use
the physical PCI port I/O address rather than the corresponding memory
mapping to get at the requested location, which in turn breaks at least
accesses made by our parport driver to a PCIe parallel port such as:
PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20
parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP]
causing a memory access fault:
Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008
Oops [#1]
Modules linked in:
CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23
Hardware name: SiFive HiFive Unmatched A00 (DT)
epc : parport_pc_fifo_write_block_pio+0x266/0x416
ra : parport_pc_fifo_write_block_pio+0xb4/0x416
epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60
gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000
t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0
s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000
a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb
a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000
s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50
s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000
s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000
s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930
t5 : 0000000000001000 t6 : 0000000000040000
status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f
[<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200
[<ffffffff8053bbc0>] parport_write+0x46/0xf8
[<ffffffff8050530e>] lp_write+0x158/0x2d2
[<ffffffff80185716>] vfs_write+0x8e/0x2c2
[<ffffffff80185a74>] ksys_write+0x52/0xc2
[<ffffffff80185af2>] sys_write+0xe/0x16
[<ffffffff80003770>] ret_from_syscall+0x0/0x2
---[ end trace 0000000000000000 ]---
For simplicity address the problem by adding PCI_IOBASE to the physical
address requested in the respective wrapper macros only, observing that
the raw accessors such as `__insb', `__outsb', etc. are not supposed to
be used other than by said macros. Remove the cast to `long' that is no
longer needed on `addr' now that it is used as an offset from PCI_IOBASE
and add parentheses around `addr' needed for predictable evaluation in
macro expansion. No need to make said adjustments in separate changes
given that current code is gravely broken and does not ever work. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: don't attempt to queue IO under RCU protection
dm looks up the table for IO based on the request type, with an
assumption that if the request is marked REQ_NOWAIT, it's fine to
attempt to submit that IO while under RCU read lock protection. This
is not OK, as REQ_NOWAIT just means that we should not be sleeping
waiting on other IO, it does not mean that we can't potentially
schedule.
A simple test case demonstrates this quite nicely:
int main(int argc, char *argv[])
{
struct iovec iov;
int fd;
fd = open("/dev/dm-0", O_RDONLY | O_DIRECT);
posix_memalign(&iov.iov_base, 4096, 4096);
iov.iov_len = 4096;
preadv2(fd, &iov, 1, 0, RWF_NOWAIT);
return 0;
}
which will instantly spew:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:306
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 5580, name: dm-nowait
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
INFO: lockdep is turned off.
CPU: 7 PID: 5580 Comm: dm-nowait Not tainted 6.6.0-rc1-g39956d2dcd81 #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x11d/0x1b0
__might_resched+0x3c3/0x5e0
? preempt_count_sub+0x150/0x150
mempool_alloc+0x1e2/0x390
? mempool_resize+0x7d0/0x7d0
? lock_sync+0x190/0x190
? lock_release+0x4b7/0x670
? internal_get_user_pages_fast+0x868/0x2d40
bio_alloc_bioset+0x417/0x8c0
? bvec_alloc+0x200/0x200
? internal_get_user_pages_fast+0xb8c/0x2d40
bio_alloc_clone+0x53/0x100
dm_submit_bio+0x27f/0x1a20
? lock_release+0x4b7/0x670
? blk_try_enter_queue+0x1a0/0x4d0
? dm_dax_direct_access+0x260/0x260
? rcu_is_watching+0x12/0xb0
? blk_try_enter_queue+0x1cc/0x4d0
__submit_bio+0x239/0x310
? __bio_queue_enter+0x700/0x700
? kvm_clock_get_cycles+0x40/0x60
? ktime_get+0x285/0x470
submit_bio_noacct_nocheck+0x4d9/0xb80
? should_fail_request+0x80/0x80
? preempt_count_sub+0x150/0x150
? lock_release+0x4b7/0x670
? __bio_add_page+0x143/0x2d0
? iov_iter_revert+0x27/0x360
submit_bio_noacct+0x53e/0x1b30
submit_bio_wait+0x10a/0x230
? submit_bio_wait_endio+0x40/0x40
__blkdev_direct_IO_simple+0x4f8/0x780
? blkdev_bio_end_io+0x4c0/0x4c0
? stack_trace_save+0x90/0xc0
? __bio_clone+0x3c0/0x3c0
? lock_release+0x4b7/0x670
? lock_sync+0x190/0x190
? atime_needs_update+0x3bf/0x7e0
? timestamp_truncate+0x21b/0x2d0
? inode_owner_or_capable+0x240/0x240
blkdev_direct_IO.part.0+0x84a/0x1810
? rcu_is_watching+0x12/0xb0
? lock_release+0x4b7/0x670
? blkdev_read_iter+0x40d/0x530
? reacquire_held_locks+0x4e0/0x4e0
? __blkdev_direct_IO_simple+0x780/0x780
? rcu_is_watching+0x12/0xb0
? __mark_inode_dirty+0x297/0xd50
? preempt_count_add+0x72/0x140
blkdev_read_iter+0x2a4/0x530
do_iter_readv_writev+0x2f2/0x3c0
? generic_copy_file_range+0x1d0/0x1d0
? fsnotify_perm.part.0+0x25d/0x630
? security_file_permission+0xd8/0x100
do_iter_read+0x31b/0x880
? import_iovec+0x10b/0x140
vfs_readv+0x12d/0x1a0
? vfs_iter_read+0xb0/0xb0
? rcu_is_watching+0x12/0xb0
? rcu_is_watching+0x12/0xb0
? lock_release+0x4b7/0x670
do_preadv+0x1b3/0x260
? do_readv+0x370/0x370
__x64_sys_preadv2+0xef/0x150
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f5af41ad806
Code: 41 54 41 89 fc 55 44 89 c5 53 48 89 cb 48 83 ec 18 80 3d e4 dd 0d 00 00 74 7a 45 89 c1 49 89 ca 45 31 c0 b8 47 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 be 00 00 00 48 85 c0 79 4a 48 8b 0d da 55
RSP: 002b:00007ffd3145c7f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000147
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5af41ad806
RDX: 0000000000000001 RSI: 00007ffd3145c850 RDI: 0000000000000003
RBP: 0000000000000008 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003
R13: 00007ffd3145c850 R14: 000055f5f0431dd8 R15: 0000000000000001
</TASK>
where in fact it is
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: annotate accesses to nlk->cb_running
Both netlink_recvmsg() and netlink_native_seq_show() read
nlk->cb_running locklessly. Use READ_ONCE() there.
Add corresponding WRITE_ONCE() to netlink_dump() and
__netlink_dump_start()
syzbot reported:
BUG: KCSAN: data-race in __netlink_dump_start / netlink_recvmsg
write to 0xffff88813ea4db59 of 1 bytes by task 28219 on cpu 0:
__netlink_dump_start+0x3af/0x4d0 net/netlink/af_netlink.c:2399
netlink_dump_start include/linux/netlink.h:308 [inline]
rtnetlink_rcv_msg+0x70f/0x8c0 net/core/rtnetlink.c:6130
netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2577
rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6192
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
sock_write_iter+0x1aa/0x230 net/socket.c:1138
call_write_iter include/linux/fs.h:1851 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x463/0x760 fs/read_write.c:584
ksys_write+0xeb/0x1a0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x42/0x50 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff88813ea4db59 of 1 bytes by task 28222 on cpu 1:
netlink_recvmsg+0x3b4/0x730 net/netlink/af_netlink.c:2022
sock_recvmsg_nosec+0x4c/0x80 net/socket.c:1017
____sys_recvmsg+0x2db/0x310 net/socket.c:2718
___sys_recvmsg net/socket.c:2762 [inline]
do_recvmmsg+0x2e5/0x710 net/socket.c:2856
__sys_recvmmsg net/socket.c:2935 [inline]
__do_sys_recvmmsg net/socket.c:2958 [inline]
__se_sys_recvmmsg net/socket.c:2951 [inline]
__x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x00 -> 0x01 |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: reject negative ifindex
Recent changes in net-next (commit 759ab1edb56c ("net: store netdevs
in an xarray")) refactored the handling of pre-assigned ifindexes
and let syzbot surface a latent problem in ovs. ovs does not validate
ifindex, making it possible to create netdev ports with negative
ifindex values. It's easy to repro with YNL:
$ ./cli.py --spec netlink/specs/ovs_datapath.yaml \
--do new \
--json '{"upcall-pid": 1, "name":"my-dp"}'
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
$ ip link show
-65536: some-port0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default qlen 1000
link/ether 7a:48:21:ad:0b:fb brd ff:ff:ff:ff:ff:ff
...
Validate the inputs. Now the second command correctly returns:
$ ./cli.py --spec netlink/specs/ovs_vport.yaml \
--do new \
--json '{"upcall-pid": "00000001", "name": "some-port0", "dp-ifindex":3,"ifindex":4294901760,"type":2}'
lib.ynl.NlError: Netlink error: Numerical result out of range
nl_len = 108 (92) nl_flags = 0x300 nl_type = 2
error: -34 extack: {'msg': 'integer out of range', 'unknown': [[type:4 len:36] b'\x0c\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x03\x00\xff\xff\xff\x7f\x00\x00\x00\x00\x08\x00\x01\x00\x08\x00\x00\x00'], 'bad-attr': '.ifindex'}
Accept 0 since it used to be silently ignored. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: synchronize atomic write aborts
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix system hang caused by cpu-clock usage
cpu-clock usage by the async-profiler tool can trigger a system hang,
which got bisected back to the following commit by Octavia Togami:
18dbcbfabfff ("perf: Fix the POLL_HUP delivery breakage") causes this issue
The root cause of the hang is that cpu-clock is a special type of SW
event which relies on hrtimers. The __perf_event_overflow() callback
is invoked from the hrtimer handler for cpu-clock events, and
__perf_event_overflow() tries to call cpu_clock_event_stop()
to stop the event, which calls htimer_cancel() to cancel the hrtimer.
But that's a recursion into the hrtimer code from a hrtimer handler,
which (unsurprisingly) deadlocks.
To fix this bug, use hrtimer_try_to_cancel() instead, and set
the PERF_HES_STOPPED flag, which causes perf_swevent_hrtimer()
to stop the event once it sees the PERF_HES_STOPPED flag.
[ mingo: Fixed the comments and improved the changelog. ] |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: api - Use work queue in crypto_destroy_instance
The function crypto_drop_spawn expects to be called in process
context. However, when an instance is unregistered while it still
has active users, the last user may cause the instance to be freed
in atomic context.
Fix this by delaying the freeing to a work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix warning for holder mismatch from export_rdev()
Commit a1d767191096 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().
However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:
New file: mdadm/tests/23rdev-lifetime
devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2
clean_up_test() {
pill -9 $pid
echo clear > /sys/block/md0/md/array_state
}
trap 'clean_up_test' EXIT
add_by_sysfs() {
while true; do
echo $devt > /sys/block/md0/md/new_dev
done
}
remove_by_sysfs(){
while true; do
echo remove > /sys/block/md0/md/dev-${devname}/state
done
}
echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"
add_by_sysfs &
pid="$pid $!"
remove_by_sysfs &
pid="$pid $!"
sleep $runtime
exit 0
Test cmd:
./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime
Test result:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
<TASK>
export_rdev.isra.23+0x50/0xa0 [md_mod]
mddev_unlock+0x19d/0x300 [md_mod]
rdev_attr_store+0xec/0x190 [md_mod]
sysfs_kf_write+0x52/0x70
kernfs_fop_write_iter+0x19a/0x2a0
vfs_write+0x3b5/0x770
ksys_write+0x74/0x150
__x64_sys_write+0x22/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fix the problem by recording if 'rdev' is used as holder. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: dw_hdmi: fix connector access for scdc
Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc
interface to pick up an i2c adapter from a connector instead. However, in
the case of dw-hdmi, the wrong connector was being used to pass i2c adapter
information, since dw-hdmi's embedded connector structure is only populated
when the bridge attachment callback explicitly asks for it.
drm-meson is handling connector creation, so this won't happen, leading to
a NULL pointer dereference.
Fix it by having scdc functions access dw-hdmi's current connector pointer
instead, which is assigned during the bridge enablement stage.
[narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag] |
| In the Linux kernel, the following vulnerability has been resolved:
net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks()
syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for
commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in
rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section
protected by lock_sock() without realizing that rds_send_xmit() might call
lock_sock().
We don't need to protect cancel_delayed_work_sync() using lock_sock(), for
even if rds_{send,recv}_worker() re-queued this work while __flush_work()
from cancel_delayed_work_sync() was waiting for this work to complete,
retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP
bit. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: zynq-ipi: fix error handling while device_register() fails
If device_register() fails, it has two issues:
1. The name allocated by dev_set_name() is leaked.
2. The parent of device is not NULL, device_unregister() is called
in zynqmp_ipi_free_mboxes(), it will lead a kernel crash because
of removing not added device.
Call put_device() to give up the reference, so the name is freed in
kobject_cleanup(). Add device registered check in zynqmp_ipi_free_mboxes()
to avoid null-ptr-deref. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock due to mbcache entry corruption
When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.
The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.
This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr
blocks"). |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix QP destroy to wait for all references dropped.
Delay QP destroy completion until all siw references to QP are
dropped. The calling RDMA core will free QP structure after
successful return from siw_qp_destroy() call, so siw must not
hold any remaining reference to the QP upon return.
A use-after-free was encountered in xfstest generic/460, while
testing NFSoRDMA. Here, after a TCP connection drop by peer,
the triggered siw_cm_work_handler got delayed until after
QP destroy call, referencing a QP which has already freed. |