Search Results (16708 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53856 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: of: overlay: Call of_changeset_init() early When of_overlay_fdt_apply() fails, the changeset may be partially applied, and the caller is still expected to call of_overlay_remove() to clean up this partial state. However, of_overlay_apply() calls of_resolve_phandles() before init_overlay_changeset(). Hence if the overlay fails to apply due to an unresolved symbol, the overlay_changeset.cset.entries list is still uninitialized, and cleanup will crash with a NULL-pointer dereference in overlay_removal_is_ok(). Fix this by moving the call to of_changeset_init() from init_overlay_changeset() to of_overlay_fdt_apply(), where all other early initialization is done.
CVE-2023-53855 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: ocelot: call dsa_tag_8021q_unregister() under rtnl_lock() on driver remove When the tagging protocol in current use is "ocelot-8021q" and we unbind the driver, we see this splat: $ echo '0000:00:00.2' > /sys/bus/pci/drivers/fsl_enetc/unbind mscc_felix 0000:00:00.5 swp0: left promiscuous mode sja1105 spi2.0: Link is Down DSA: tree 1 torn down mscc_felix 0000:00:00.5 swp2: left promiscuous mode sja1105 spi2.2: Link is Down DSA: tree 3 torn down fsl_enetc 0000:00:00.2 eno2: left promiscuous mode mscc_felix 0000:00:00.5: Link is Down ------------[ cut here ]------------ RTNL: assertion failed at net/dsa/tag_8021q.c (409) WARNING: CPU: 1 PID: 329 at net/dsa/tag_8021q.c:409 dsa_tag_8021q_unregister+0x12c/0x1a0 Modules linked in: CPU: 1 PID: 329 Comm: bash Not tainted 6.5.0-rc3+ #771 pc : dsa_tag_8021q_unregister+0x12c/0x1a0 lr : dsa_tag_8021q_unregister+0x12c/0x1a0 Call trace: dsa_tag_8021q_unregister+0x12c/0x1a0 felix_tag_8021q_teardown+0x130/0x150 felix_teardown+0x3c/0xd8 dsa_tree_teardown_switches+0xbc/0xe0 dsa_unregister_switch+0x168/0x260 felix_pci_remove+0x30/0x60 pci_device_remove+0x4c/0x100 device_release_driver_internal+0x188/0x288 device_links_unbind_consumers+0xfc/0x138 device_release_driver_internal+0xe0/0x288 device_driver_detach+0x24/0x38 unbind_store+0xd8/0x108 drv_attr_store+0x30/0x50 ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ RTNL: assertion failed at net/8021q/vlan_core.c (376) WARNING: CPU: 1 PID: 329 at net/8021q/vlan_core.c:376 vlan_vid_del+0x1b8/0x1f0 CPU: 1 PID: 329 Comm: bash Tainted: G W 6.5.0-rc3+ #771 pc : vlan_vid_del+0x1b8/0x1f0 lr : vlan_vid_del+0x1b8/0x1f0 dsa_tag_8021q_unregister+0x8c/0x1a0 felix_tag_8021q_teardown+0x130/0x150 felix_teardown+0x3c/0xd8 dsa_tree_teardown_switches+0xbc/0xe0 dsa_unregister_switch+0x168/0x260 felix_pci_remove+0x30/0x60 pci_device_remove+0x4c/0x100 device_release_driver_internal+0x188/0x288 device_links_unbind_consumers+0xfc/0x138 device_release_driver_internal+0xe0/0x288 device_driver_detach+0x24/0x38 unbind_store+0xd8/0x108 drv_attr_store+0x30/0x50 DSA: tree 0 torn down This was somewhat not so easy to spot, because "ocelot-8021q" is not the default tagging protocol, and thus, not everyone who tests the unbinding path may have switched to it beforehand. The default felix_tag_npi_teardown() does not require rtnl_lock() to be held.
CVE-2023-53852 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvme-core: fix memory leak in dhchap_secret_store Free dhchap_secret in nvme_ctrl_dhchap_secret_store() before we return fix following kmemleack:- unreferenced object 0xffff8886376ea800 (size 64): comm "check", pid 22048, jiffies 4344316705 (age 92.199s) hex dump (first 32 bytes): 44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg 75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL backtrace: [<0000000030ce5d4b>] __kmalloc+0x4b/0x130 [<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core] [<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0 [<00000000437e7ced>] vfs_write+0x2ba/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc unreferenced object 0xffff8886376eaf00 (size 64): comm "check", pid 22048, jiffies 4344316736 (age 92.168s) hex dump (first 32 bytes): 44 48 48 43 2d 31 3a 30 30 3a 6e 78 72 35 4b 67 DHHC-1:00:nxr5Kg 75 58 34 75 6f 41 78 73 4a 61 34 63 2f 68 75 4c uX4uoAxsJa4c/huL backtrace: [<0000000030ce5d4b>] __kmalloc+0x4b/0x130 [<000000009be1cdc1>] nvme_ctrl_dhchap_secret_store+0x8f/0x160 [nvme_core] [<00000000ac06c96a>] kernfs_fop_write_iter+0x12b/0x1c0 [<00000000437e7ced>] vfs_write+0x2ba/0x3c0 [<00000000f9491baf>] ksys_write+0x5f/0xe0 [<000000001c46513d>] do_syscall_64+0x3b/0x90 [<00000000ecf348fe>] entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53851 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dp: Drop aux devices together with DP controller Using devres to depopulate the aux bus made sure that upon a probe deferral the EDP panel device would be destroyed and recreated upon next attempt. But the struct device which the devres is tied to is the DPUs (drm_dev->dev), which may be happen after the DP controller is torn down. Indications of this can be seen in the commonly seen EDID-hexdump full of zeros in the log, or the occasional/rare KASAN fault where the panel's attempt to read the EDID information causes a use after free on DP resources. It's tempting to move the devres to the DP controller's struct device, but the resources used by the device(s) on the aux bus are explicitly torn down in the error path. The KASAN-reported use-after-free also remains, as the DP aux "module" explicitly frees its devres-allocated memory in this code path. As such, explicitly depopulate the aux bus in the error path, and in the component unbind path, to avoid these issues. Patchwork: https://patchwork.freedesktop.org/patch/542163/
CVE-2023-53848 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md/raid5-cache: fix a deadlock in r5l_exit_log() Commit b13015af94cf ("md/raid5-cache: Clear conf->log after finishing work") introduce a new problem: // caller hold reconfig_mutex r5l_exit_log flush_work(&log->disable_writeback_work) r5c_disable_writeback_async wait_event /* * conf->log is not NULL, and mddev_trylock() * will fail, wait_event() can never pass. */ conf->log = NULL Fix this problem by setting 'config->log' to NULL before wake_up() as it used to be, so that wait_event() from r5c_disable_writeback_async() can exist. In the meantime, move forward md_unregister_thread() so that null-ptr-deref this commit fixed can still be fixed.
CVE-2023-53847 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: usb-storage: alauda: Fix uninit-value in alauda_check_media() Syzbot got KMSAN to complain about access to an uninitialized value in the alauda subdriver of usb-storage: BUG: KMSAN: uninit-value in alauda_transport+0x462/0x57f0 drivers/usb/storage/alauda.c:1137 CPU: 0 PID: 12279 Comm: usb-storage Not tainted 5.3.0-rc7+ #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x191/0x1f0 lib/dump_stack.c:113 kmsan_report+0x13a/0x2b0 mm/kmsan/kmsan_report.c:108 __msan_warning+0x73/0xe0 mm/kmsan/kmsan_instr.c:250 alauda_check_media+0x344/0x3310 drivers/usb/storage/alauda.c:460 The problem is that alauda_check_media() doesn't verify that its USB transfer succeeded before trying to use the received data. What should happen if the transfer fails isn't entirely clear, but a reasonably conservative approach is to pretend that no media is present. A similar problem exists in a usb_stor_dbg() call in alauda_get_media_status(). In this case, when an error occurs the call is redundant, because usb_stor_ctrl_transfer() already will print a debugging message. Finally, unrelated to the uninitialized memory access, is the fact that alauda_check_media() performs DMA to a buffer on the stack. Fortunately usb-storage provides a general purpose DMA-able buffer for uses like this. We'll use it instead.
CVE-2023-53844 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/ttm: Don't leak a resource on swapout move error If moving the bo to system for swapout failed, we were leaking a resource. Fix.
CVE-2023-53842 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: codecs: wcd-mbhc-v2: fix resource leaks on component remove The MBHC resources must be released on component probe failure and removal so can not be tied to the lifetime of the component device. This is specifically needed to allow probe deferrals of the sound card which otherwise fails when reprobing the codec component: snd-sc8280xp sound: ASoC: failed to instantiate card -517 genirq: Flags mismatch irq 299. 00002001 (mbhc sw intr) vs. 00002001 (mbhc sw intr) wcd938x_codec audio-codec: Failed to request mbhc interrupts -16 wcd938x_codec audio-codec: mbhc initialization failed wcd938x_codec audio-codec: ASoC: error at snd_soc_component_probe on audio-codec: -16 snd-sc8280xp sound: ASoC: failed to instantiate card -16
CVE-2023-53839 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dccp: fix data-race around dp->dccps_mss_cache dccp_sendmsg() reads dp->dccps_mss_cache before locking the socket. Same thing in do_dccp_getsockopt(). Add READ_ONCE()/WRITE_ONCE() annotations, and change dccp_sendmsg() to check again dccps_mss_cache after socket is locked.
CVE-2023-53837 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix NULL-deref on snapshot tear down In case of early initialisation errors and on platforms that do not use the DPU controller, the deinitilisation code can be called with the kms pointer set to NULL. Patchwork: https://patchwork.freedesktop.org/patch/525099/
CVE-2023-53834 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iio: adc: ina2xx: avoid NULL pointer dereference on OF device match The affected lines were resulting in a NULL pointer dereference on our platform because the device tree contained the following list of compatible strings: power-sensor@40 { compatible = "ti,ina232", "ti,ina231"; ... }; Since the driver doesn't declare a compatible string "ti,ina232", the OF matching succeeds on "ti,ina231". But the I2C device ID info is populated via the first compatible string, cf. modalias population in of_i2c_get_board_info(). Since there is no "ina232" entry in the legacy I2C device ID table either, the struct i2c_device_id *id pointer in the probe function is NULL. Fix this by using the already populated type variable instead, which points to the proper driver data. Since the name is also wanted, add a generic one to the ina2xx_config table.
CVE-2023-53833 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/i915: Fix NULL ptr deref by checking new_crtc_state intel_atomic_get_new_crtc_state can return NULL, unless crtc state wasn't obtained previously with intel_atomic_get_crtc_state, so we must check it for NULLness here, just as in many other places, where we can't guarantee that intel_atomic_get_crtc_state was called. We are currently getting NULL ptr deref because of that, so this fix was confirmed to help. (cherry picked from commit 1d5b09f8daf859247a1ea65b0d732a24d88980d8)
CVE-2023-53832 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix null-ptr-deref in raid10_sync_request init_resync() inits mempool and sets conf->have_replacemnt at the beginning of sync, close_sync() frees the mempool when sync is completed. After [1] recovery might be skipped and init_resync() is called but close_sync() is not. null-ptr-deref occurs with r10bio->dev[i].repl_bio. The following is one way to reproduce the issue. 1) create a array, wait for resync to complete, mddev->recovery_cp is set to MaxSector. 2) recovery is woken and it is skipped. conf->have_replacement is set to 0 in init_resync(). close_sync() not called. 3) some io errors and rdev A is set to WantReplacement. 4) a new device is added and set to A's replacement. 5) recovery is woken, A have replacement, but conf->have_replacemnt is 0. r10bio->dev[i].repl_bio will not be alloced and null-ptr-deref occurs. Fix it by not calling init_resync() if recovery skipped. [1] commit 7e83ccbecd60 ("md/raid10: Allow skipping recovery when clean arrays are assembled")
CVE-2023-53831 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: read sk->sk_family once in sk_mc_loop() syzbot is playing with IPV6_ADDRFORM quite a lot these days, and managed to hit the WARN_ON_ONCE(1) in sk_mc_loop() We have many more similar issues to fix. WARNING: CPU: 1 PID: 1593 at net/core/sock.c:782 sk_mc_loop+0x165/0x260 Modules linked in: CPU: 1 PID: 1593 Comm: kworker/1:3 Not tainted 6.1.40-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/26/2023 Workqueue: events_power_efficient gc_worker RIP: 0010:sk_mc_loop+0x165/0x260 net/core/sock.c:782 Code: 34 1b fd 49 81 c7 18 05 00 00 4c 89 f8 48 c1 e8 03 42 80 3c 20 00 74 08 4c 89 ff e8 25 36 6d fd 4d 8b 37 eb 13 e8 db 33 1b fd <0f> 0b b3 01 eb 34 e8 d0 33 1b fd 45 31 f6 49 83 c6 38 4c 89 f0 48 RSP: 0018:ffffc90000388530 EFLAGS: 00010246 RAX: ffffffff846d9b55 RBX: 0000000000000011 RCX: ffff88814f884980 RDX: 0000000000000102 RSI: ffffffff87ae5160 RDI: 0000000000000011 RBP: ffffc90000388550 R08: 0000000000000003 R09: ffffffff846d9a65 R10: 0000000000000002 R11: ffff88814f884980 R12: dffffc0000000000 R13: ffff88810dbee000 R14: 0000000000000010 R15: ffff888150084000 FS: 0000000000000000(0000) GS:ffff8881f6b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000180 CR3: 000000014ee5b000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> [<ffffffff8507734f>] ip6_finish_output2+0x33f/0x1ae0 net/ipv6/ip6_output.c:83 [<ffffffff85062766>] __ip6_finish_output net/ipv6/ip6_output.c:200 [inline] [<ffffffff85062766>] ip6_finish_output+0x6c6/0xb10 net/ipv6/ip6_output.c:211 [<ffffffff85061f8c>] NF_HOOK_COND include/linux/netfilter.h:298 [inline] [<ffffffff85061f8c>] ip6_output+0x2bc/0x3d0 net/ipv6/ip6_output.c:232 [<ffffffff852071cf>] dst_output include/net/dst.h:444 [inline] [<ffffffff852071cf>] ip6_local_out+0x10f/0x140 net/ipv6/output_core.c:161 [<ffffffff83618fb4>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:483 [inline] [<ffffffff83618fb4>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline] [<ffffffff83618fb4>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline] [<ffffffff83618fb4>] ipvlan_queue_xmit+0x1174/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677 [<ffffffff8361ddd9>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229 [<ffffffff84763fc0>] netdev_start_xmit include/linux/netdevice.h:4925 [inline] [<ffffffff84763fc0>] xmit_one net/core/dev.c:3644 [inline] [<ffffffff84763fc0>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660 [<ffffffff8494c650>] sch_direct_xmit+0x2a0/0x9c0 net/sched/sch_generic.c:342 [<ffffffff8494d883>] qdisc_restart net/sched/sch_generic.c:407 [inline] [<ffffffff8494d883>] __qdisc_run+0xb13/0x1e70 net/sched/sch_generic.c:415 [<ffffffff8478c426>] qdisc_run+0xd6/0x260 include/net/pkt_sched.h:125 [<ffffffff84796eac>] net_tx_action+0x7ac/0x940 net/core/dev.c:5247 [<ffffffff858002bd>] __do_softirq+0x2bd/0x9bd kernel/softirq.c:599 [<ffffffff814c3fe8>] invoke_softirq kernel/softirq.c:430 [inline] [<ffffffff814c3fe8>] __irq_exit_rcu+0xc8/0x170 kernel/softirq.c:683 [<ffffffff814c3f09>] irq_exit_rcu+0x9/0x20 kernel/softirq.c:695
CVE-2023-53830 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix memory leak when showing current settings When retriving a item string with tlmi_setting(), the result has to be freed using kfree(). In current_value_show() however, malformed item strings are not freed, causing a memory leak. Fix this by eliminating the early return responsible for this.
CVE-2023-53828 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_sync: Avoid use-after-free in dbg for hci_add_adv_monitor() KSAN reports use-after-free in hci_add_adv_monitor(). While adding an adv monitor, hci_add_adv_monitor() calls -> msft_add_monitor_pattern() calls -> msft_add_monitor_sync() calls -> msft_le_monitor_advertisement_cb() calls in an error case -> hci_free_adv_monitor() which frees the *moniter. This is referenced by bt_dev_dbg() in hci_add_adv_monitor(). Fix the bt_dev_dbg() by using handle instead of monitor->handle.
CVE-2023-53826 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix UAF wear-leveling entry in eraseblk_count_seq_show() Wear-leveling entry could be freed in error path, which may be accessed again in eraseblk_count_seq_show(), for example: __erase_worker eraseblk_count_seq_show wl = ubi->lookuptbl[*block_number] if (wl) wl_entry_destroy ubi->lookuptbl[e->pnum] = NULL kmem_cache_free(ubi_wl_entry_slab, e) erase_count = wl->ec // UAF! Wear-leveling entry updating/accessing in ubi->lookuptbl should be protected by ubi->wl_lock, fix it by adding ubi->wl_lock to serialize wl entry accessing between wl_entry_destroy() and eraseblk_count_seq_show(). Fetch a reproducer in [Link].
CVE-2023-53825 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kcm: Fix error handling for SOCK_DGRAM in kcm_sendmsg(). syzkaller found a memory leak in kcm_sendmsg(), and commit c821a88bd720 ("kcm: Fix memory leak in error path of kcm_sendmsg()") suppressed it by updating kcm_tx_msg(head)->last_skb if partial data is copied so that the following sendmsg() will resume from the skb. However, we cannot know how many bytes were copied when we get the error. Thus, we could mess up the MSG_MORE queue. When kcm_sendmsg() fails for SOCK_DGRAM, we should purge the queue as we do so for UDP by udp_flush_pending_frames(). Even without this change, when the error occurred, the following sendmsg() resumed from a wrong skb and the queue was messed up. However, we have yet to get such a report, and only syzkaller stumbled on it. So, this can be changed safely. Note this does not change SOCK_SEQPACKET behaviour.
CVE-2023-53824 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netlink: annotate lockless accesses to nlk->max_recvmsg_len syzbot reported a data-race in data-race in netlink_recvmsg() [1] Indeed, netlink_recvmsg() can be run concurrently, and netlink_dump() also needs protection. [1] BUG: KCSAN: data-race in netlink_recvmsg / netlink_recvmsg read to 0xffff888141840b38 of 8 bytes by task 23057 on cpu 0: netlink_recvmsg+0xea/0x730 net/netlink/af_netlink.c:1988 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg net/socket.c:1038 [inline] __sys_recvfrom+0x1ee/0x2e0 net/socket.c:2194 __do_sys_recvfrom net/socket.c:2212 [inline] __se_sys_recvfrom net/socket.c:2208 [inline] __x64_sys_recvfrom+0x78/0x90 net/socket.c:2208 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd write to 0xffff888141840b38 of 8 bytes by task 23037 on cpu 1: netlink_recvmsg+0x114/0x730 net/netlink/af_netlink.c:1989 sock_recvmsg_nosec net/socket.c:1017 [inline] sock_recvmsg net/socket.c:1038 [inline] ____sys_recvmsg+0x156/0x310 net/socket.c:2720 ___sys_recvmsg net/socket.c:2762 [inline] do_recvmmsg+0x2e5/0x710 net/socket.c:2856 __sys_recvmmsg net/socket.c:2935 [inline] __do_sys_recvmmsg net/socket.c:2958 [inline] __se_sys_recvmmsg net/socket.c:2951 [inline] __x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd value changed: 0x0000000000000000 -> 0x0000000000001000 Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 23037 Comm: syz-executor.2 Not tainted 6.3.0-rc4-syzkaller-00195-g5a57b48fdfcb #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/02/2023
CVE-2023-53823 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block/rq_qos: protect rq_qos apis with a new lock commit 50e34d78815e ("block: disable the elevator int del_gendisk") move rq_qos_exit() from disk_release() to del_gendisk(), this will introduce some problems: 1) If rq_qos_add() is triggered by enabling iocost/iolatency through cgroupfs, then it can concurrent with del_gendisk(), it's not safe to write 'q->rq_qos' concurrently. 2) Activate cgroup policy that is relied on rq_qos will call rq_qos_add() and blkcg_activate_policy(), and if rq_qos_exit() is called in the middle, null-ptr-dereference will be triggered in blkcg_activate_policy(). 3) blkg_conf_open_bdev() can call blkdev_get_no_open() first to find the disk, then if rq_qos_exit() from del_gendisk() is done before rq_qos_add(), then memory will be leaked. This patch add a new disk level mutex 'rq_qos_mutex': 1) The lock will protect rq_qos_exit() directly. 2) For wbt that doesn't relied on blk-cgroup, rq_qos_add() can only be called from disk initialization for now because wbt can't be destructed until rq_qos_exit(), so it's safe not to protect wbt for now. Hoever, in case that rq_qos dynamically destruction is supported in the furture, this patch also protect rq_qos_add() from wbt_init() directly, this is enough because blk-sysfs already synchronize writers with disk removal. 3) For iocost and iolatency, in order to synchronize disk removal and cgroup configuration, the lock is held after blkdev_get_no_open() from blkg_conf_open_bdev(), and is released in blkg_conf_exit(). In order to fix the above memory leak, disk_live() is checked after holding the new lock.