| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: sar: drop lockdep assertion in rtw89_set_sar_from_acpi
The following assertion is triggered on the rtw89 driver startup. It
looks meaningless to hold wiphy lock on the early init stage so drop the
assertion.
WARNING: CPU: 7 PID: 629 at drivers/net/wireless/realtek/rtw89/sar.c:502 rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core]
CPU: 7 UID: 0 PID: 629 Comm: (udev-worker) Not tainted 6.15.0+ #29 PREEMPT(lazy)
Hardware name: LENOVO 21D0/LNVNB161216, BIOS J6CN50WW 09/27/2024
RIP: 0010:rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core]
Call Trace:
<TASK>
rtw89_sar_init+0x68/0x2c0 [rtw89_core]
rtw89_core_init+0x188e/0x1e50 [rtw89_core]
rtw89_pci_probe+0x530/0xb50 [rtw89_pci]
local_pci_probe+0xd9/0x190
pci_call_probe+0x183/0x540
pci_device_probe+0x171/0x2c0
really_probe+0x1e1/0x890
__driver_probe_device+0x18c/0x390
driver_probe_device+0x4a/0x120
__driver_attach+0x1a0/0x530
bus_for_each_dev+0x10b/0x190
bus_add_driver+0x2eb/0x540
driver_register+0x1a3/0x3a0
do_one_initcall+0xd5/0x450
do_init_module+0x2cc/0x8f0
init_module_from_file+0xe1/0x150
idempotent_init_module+0x226/0x760
__x64_sys_finit_module+0xcd/0x150
do_syscall_64+0x94/0x380
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Found by Linux Verification Center (linuxtesting.org). |
| Transmission of Private Resources into a New Sphere ('Resource Leak') vulnerability in CrafterCMS Engine on Linux, MacOS, x86, Windows, 64 bit, ARM allows Directory Indexing, Resource Leak Exposure.This issue affects CrafterCMS: from 4.0.0 before 4.0.8, from 4.1.0 before 4.1.6. |
| In the Linux kernel, the following vulnerability has been resolved:
media: atomisp: Add check for rgby_data memory allocation failure
In ia_css_3a_statistics_allocate(), there is no check on the allocation
result of the rgby_data memory. If rgby_data is not successfully
allocated, it may trigger the assert(host_stats->rgby_data) assertion in
ia_css_s3a_hmem_decode(). Adding a check to fix this potential issue. |
| IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow could an authenticated user to change the password of another user without prior knowledge of that password. |
| IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to cause a denial of service in the email service due to improper control of interaction frequency. |
| IBM Aspera Orchestrator 4.0.0 through 4.1.0 is vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify, or delete information in the back-end database. |
| IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to execute arbitrary commands with elevated privileges on the system due to improper validation of user supplied input. |
| Improper Limitation of a Pathname 'Path Traversal') vulnerability in Algosec Firewall Analyzer on Linux, 64 bit allows an authenticated user to upload files to a restricted directory leading to code injection. This issue affects Algosec Firewall Analyzer: A33.0 (up to build 320), A33.10 (up to build 210). |
| In the Linux kernel, the following vulnerability has been resolved:
tls: fix use-after-free on failed backlog decryption
When the decrypt request goes to the backlog and crypto_aead_decrypt
returns -EBUSY, tls_do_decryption will wait until all async
decryptions have completed. If one of them fails, tls_do_decryption
will return -EBADMSG and tls_decrypt_sg jumps to the error path,
releasing all the pages. But the pages have been passed to the async
callback, and have already been released by tls_decrypt_done.
The only true async case is when crypto_aead_decrypt returns
-EINPROGRESS. With -EBUSY, we already waited so we can tell
tls_sw_recvmsg that the data is available for immediate copy, but we
need to notify tls_decrypt_sg (via the new ->async_done flag) that the
memory has already been released. |
| A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation.
Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free.
We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325. |
| Path Traversal in the log file retrieval function in Canonical LXD 5.0 LTS on Linux allows authenticated remote attackers to read arbitrary files on the host system via crafted log file names or symbolic links. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: ocp: Fix a resource leak in an error handling path
If an error occurs after a successful 'pci_ioremap_bar()' call, it must be
undone by a corresponding 'pci_iounmap()' call, as already done in the
remove function. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix warning when putting transaction with qgroups enabled after abort
If we have a transaction abort with qgroups enabled we get a warning
triggered when doing the final put on the transaction, like this:
[552.6789] ------------[ cut here ]------------
[552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6817] Modules linked in: btrfs blake2b_generic xor (...)
[552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1
[552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
[552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6821] Code: bd a0 01 00 (...)
[552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286
[552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000
[552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010
[552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20
[552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70
[552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028
[552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000
[552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0
[552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[552.6822] Call Trace:
[552.6822] <TASK>
[552.6822] ? __warn+0x80/0x130
[552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6824] ? report_bug+0x1f4/0x200
[552.6824] ? handle_bug+0x42/0x70
[552.6824] ? exc_invalid_op+0x14/0x70
[552.6824] ? asm_exc_invalid_op+0x16/0x20
[552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs]
[552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs]
[552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40
[552.6828] ? try_to_wake_up+0x94/0x5e0
[552.6828] ? __pfx_process_timeout+0x10/0x10
[552.6828] transaction_kthread+0x103/0x1d0 [btrfs]
[552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs]
[552.6832] kthread+0xee/0x120
[552.6832] ? __pfx_kthread+0x10/0x10
[552.6832] ret_from_fork+0x29/0x50
[552.6832] </TASK>
[552.6832] ---[ end trace 0000000000000000 ]---
This corresponds to this line of code:
void btrfs_put_transaction(struct btrfs_transaction *transaction)
{
(...)
WARN_ON(!RB_EMPTY_ROOT(
&transaction->delayed_refs.dirty_extent_root));
(...)
}
The warning happens because btrfs_qgroup_destroy_extent_records(), called
in the transaction abort path, we free all entries from the rbtree
"dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we
don't actually empty the rbtree - it's still pointing to nodes that were
freed.
So set the rbtree's root node to NULL to avoid this warning (assign
RB_ROOT). |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: da9063: fix null pointer deref with partial DT config
When some of the da9063 regulators do not have corresponding DT nodes
a null pointer dereference occurs on boot because such regulators have
no init_data causing the pointers calculated in
da9063_check_xvp_constraints() to be invalid.
Do not dereference them in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix xid leak in cifs_copy_file_range()
If the file is used by swap, before return -EOPNOTSUPP, should
free the xid, otherwise, the xid will be leaked. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: correct grp validation in ext4_mb_good_group
Group corruption check will access memory of grp and will trigger kernel
crash if grp is NULL. So do NULL check before corruption check. |
| In the Linux kernel, the following vulnerability has been resolved:
tty: serial: samsung_tty: Fix a memory leak in s3c24xx_serial_getclk() in case of error
If clk_get_rate() fails, the clk that has just been allocated needs to be
freed. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: bpf_sk_storage: Fix invalid wait context lockdep report
'./test_progs -t test_local_storage' reported a splat:
[ 27.137569] =============================
[ 27.138122] [ BUG: Invalid wait context ]
[ 27.138650] 6.5.0-03980-gd11ae1b16b0a #247 Tainted: G O
[ 27.139542] -----------------------------
[ 27.140106] test_progs/1729 is trying to lock:
[ 27.140713] ffff8883ef047b88 (stock_lock){-.-.}-{3:3}, at: local_lock_acquire+0x9/0x130
[ 27.141834] other info that might help us debug this:
[ 27.142437] context-{5:5}
[ 27.142856] 2 locks held by test_progs/1729:
[ 27.143352] #0: ffffffff84bcd9c0 (rcu_read_lock){....}-{1:3}, at: rcu_lock_acquire+0x4/0x40
[ 27.144492] #1: ffff888107deb2c0 (&storage->lock){..-.}-{2:2}, at: bpf_local_storage_update+0x39e/0x8e0
[ 27.145855] stack backtrace:
[ 27.146274] CPU: 0 PID: 1729 Comm: test_progs Tainted: G O 6.5.0-03980-gd11ae1b16b0a #247
[ 27.147550] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[ 27.149127] Call Trace:
[ 27.149490] <TASK>
[ 27.149867] dump_stack_lvl+0x130/0x1d0
[ 27.152609] dump_stack+0x14/0x20
[ 27.153131] __lock_acquire+0x1657/0x2220
[ 27.153677] lock_acquire+0x1b8/0x510
[ 27.157908] local_lock_acquire+0x29/0x130
[ 27.159048] obj_cgroup_charge+0xf4/0x3c0
[ 27.160794] slab_pre_alloc_hook+0x28e/0x2b0
[ 27.161931] __kmem_cache_alloc_node+0x51/0x210
[ 27.163557] __kmalloc+0xaa/0x210
[ 27.164593] bpf_map_kzalloc+0xbc/0x170
[ 27.165147] bpf_selem_alloc+0x130/0x510
[ 27.166295] bpf_local_storage_update+0x5aa/0x8e0
[ 27.167042] bpf_fd_sk_storage_update_elem+0xdb/0x1a0
[ 27.169199] bpf_map_update_value+0x415/0x4f0
[ 27.169871] map_update_elem+0x413/0x550
[ 27.170330] __sys_bpf+0x5e9/0x640
[ 27.174065] __x64_sys_bpf+0x80/0x90
[ 27.174568] do_syscall_64+0x48/0xa0
[ 27.175201] entry_SYSCALL_64_after_hwframe+0x6e/0xd8
[ 27.175932] RIP: 0033:0x7effb40e41ad
[ 27.176357] Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d8
[ 27.179028] RSP: 002b:00007ffe64c21fc8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141
[ 27.180088] RAX: ffffffffffffffda RBX: 00007ffe64c22768 RCX: 00007effb40e41ad
[ 27.181082] RDX: 0000000000000020 RSI: 00007ffe64c22008 RDI: 0000000000000002
[ 27.182030] RBP: 00007ffe64c21ff0 R08: 0000000000000000 R09: 00007ffe64c22788
[ 27.183038] R10: 0000000000000064 R11: 0000000000000202 R12: 0000000000000000
[ 27.184006] R13: 00007ffe64c22788 R14: 00007effb42a1000 R15: 0000000000000000
[ 27.184958] </TASK>
It complains about acquiring a local_lock while holding a raw_spin_lock.
It means it should not allocate memory while holding a raw_spin_lock
since it is not safe for RT.
raw_spin_lock is needed because bpf_local_storage supports tracing
context. In particular for task local storage, it is easy to
get a "current" task PTR_TO_BTF_ID in tracing bpf prog.
However, task (and cgroup) local storage has already been moved to
bpf mem allocator which can be used after raw_spin_lock.
The splat is for the sk storage. For sk (and inode) storage,
it has not been moved to bpf mem allocator. Using raw_spin_lock or not,
kzalloc(GFP_ATOMIC) could theoretically be unsafe in tracing context.
However, the local storage helper requires a verifier accepted
sk pointer (PTR_TO_BTF_ID), it is hypothetical if that (mean running
a bpf prog in a kzalloc unsafe context and also able to hold a verifier
accepted sk pointer) could happen.
This patch avoids kzalloc after raw_spin_lock to silent the splat.
There is an existing kzalloc before the raw_spin_lock. At that point,
a kzalloc is very likely required because a lookup has just been done
before. Thus, this patch always does the kzalloc before acq
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix skb refcnt race after locking changes
There is a race where skb's from the sk_psock_backlog can be referenced
after userspace side has already skb_consumed() the sk_buff and its refcnt
dropped to zer0 causing use after free.
The flow is the following:
while ((skb = skb_peek(&psock->ingress_skb))
sk_psock_handle_Skb(psock, skb, ..., ingress)
if (!ingress) ...
sk_psock_skb_ingress
sk_psock_skb_ingress_enqueue(skb)
msg->skb = skb
sk_psock_queue_msg(psock, msg)
skb_dequeue(&psock->ingress_skb)
The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is
what the application reads when recvmsg() is called. An application can
read this anytime after the msg is placed on the queue. The recvmsg hook
will also read msg->skb and then after user space reads the msg will call
consume_skb(skb) on it effectively free'ing it.
But, the race is in above where backlog queue still has a reference to
the skb and calls skb_dequeue(). If the skb_dequeue happens after the
user reads and free's the skb we have a use after free.
The !ingress case does not suffer from this problem because it uses
sendmsg_*(sk, msg) which does not pass the sk_buff further down the
stack.
The following splat was observed with 'test_progs -t sockmap_listen':
[ 1022.710250][ T2556] general protection fault, ...
[...]
[ 1022.712830][ T2556] Workqueue: events sk_psock_backlog
[ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80
[ 1022.713653][ T2556] Code: ...
[...]
[ 1022.720699][ T2556] Call Trace:
[ 1022.720984][ T2556] <TASK>
[ 1022.721254][ T2556] ? die_addr+0x32/0x80^M
[ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0
[ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30
[ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80
[ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300
[ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0
[ 1022.723633][ T2556] worker_thread+0x4f/0x3a0
[ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10
[ 1022.724386][ T2556] kthread+0xfd/0x130
[ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725066][ T2556] ret_from_fork+0x2d/0x50
[ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10
[ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30
[ 1022.726201][ T2556] </TASK>
To fix we add an skb_get() before passing the skb to be enqueued in the
engress queue. This bumps the skb->users refcnt so that consume_skb()
and kfree_skb will not immediately free the sk_buff. With this we can
be sure the skb is still around when we do the dequeue. Then we just
need to decrement the refcnt or free the skb in the backlog case which
we do by calling kfree_skb() on the ingress case as well as the sendmsg
case.
Before locking change from fixes tag we had the sock locked so we
couldn't race with user and there was no issue here. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: zynq: Fix refcount leak in zynq_early_slcr_init
of_find_compatible_node() returns a node pointer with refcount incremented,
we should use of_node_put() on error path.
Add missing of_node_put() to avoid refcount leak. |