| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix workqueue leak on bind errors
Make sure to destroy the workqueue also in case of early errors during
bind (e.g. a subcomponent failing to bind).
Since commit c3b790ea07a1 ("drm: Manage drm_mode_config_init with
drmm_") the mode config will be freed when the drm device is released
also when using the legacy interface, but add an explicit cleanup for
consistency and to facilitate backporting.
Patchwork: https://patchwork.freedesktop.org/patch/525093/ |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: api - Use work queue in crypto_destroy_instance
The function crypto_drop_spawn expects to be called in process
context. However, when an instance is unregistered while it still
has active users, the last user may cause the instance to be freed
in atomic context.
Fix this by delaying the freeing to a work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix deadlock due to mbcache entry corruption
When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.
The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.
This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053a1 ("ext4: fix race when reusing xattr
blocks"). |
| In the Linux kernel, the following vulnerability has been resolved:
usb: early: xhci-dbc: Fix a potential out-of-bound memory access
If xdbc_bulk_write() fails, the values in 'buf' can be anything. So the
string is not guaranteed to be NULL terminated when xdbc_trace() is called.
Reserve an extra byte, which will be zeroed automatically because 'buf' is
a static variable, in order to avoid troubles, should it happen. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix QP destroy to wait for all references dropped.
Delay QP destroy completion until all siw references to QP are
dropped. The calling RDMA core will free QP structure after
successful return from siw_qp_destroy() call, so siw must not
hold any remaining reference to the QP upon return.
A use-after-free was encountered in xfstest generic/460, while
testing NFSoRDMA. Here, after a TCP connection drop by peer,
the triggered siw_cm_work_handler got delayed until after
QP destroy call, referencing a QP which has already freed. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: synchronize atomic write aborts
To fix a race condition between atomic write aborts, I use the inode
lock and make COW inode to be re-usable thoroughout the whole
atomic file inode lifetime. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: cw2015: Fix potential null-ptr-deref in cw_bat_probe()
cw_bat_probe() calls create_singlethread_workqueue() and not checked the
ret value, which may return NULL. And a null-ptr-deref may happen:
cw_bat_probe()
create_singlethread_workqueue() # failed, cw_bat->wq is NULL
queue_delayed_work()
queue_delayed_work_on()
__queue_delayed_work() # warning here, but continue
__queue_work() # access wq->flags, null-ptr-deref
Check the ret value and return -ENOMEM if it is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
hwrng: geode - Fix PCI device refcount leak
for_each_pci_dev() is implemented by pci_get_device(). The comment of
pci_get_device() says that it will increase the reference count for the
returned pci_dev and also decrease the reference count for the input
pci_dev @from if it is not NULL.
If we break for_each_pci_dev() loop with pdev not NULL, we need to call
pci_dev_put() to decrease the reference count. We add a new struct
'amd_geode_priv' to record pointer of the pci_dev and membase, and then
add missing pci_dev_put() for the normal and error path. |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: pn533: Clear nfc_target before being used
Fix a slab-out-of-bounds read that occurs in nla_put() called from
nfc_genl_send_target() when target->sensb_res_len, which is duplicated
from an nfc_target in pn533, is too large as the nfc_target is not
properly initialized and retains garbage values. Clear nfc_targets with
memset() before they are used.
Found by a modified version of syzkaller.
BUG: KASAN: slab-out-of-bounds in nla_put
Call Trace:
memcpy
nla_put
nfc_genl_dump_targets
genl_lock_dumpit
netlink_dump
__netlink_dump_start
genl_family_rcv_msg_dumpit
genl_rcv_msg
netlink_rcv_skb
genl_rcv
netlink_unicast
netlink_sendmsg
sock_sendmsg
____sys_sendmsg
___sys_sendmsg
__sys_sendmsg
do_syscall_64 |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix warning for holder mismatch from export_rdev()
Commit a1d767191096 ("md: use mddev->external to select holder in
export_rdev()") fix the problem that 'claim_rdev' is used for
blkdev_get_by_dev() while 'rdev' is used for blkdev_put().
However, if mddev->external is changed from 0 to 1, then 'rdev' is used
for blkdev_get_by_dev() while 'claim_rdev' is used for blkdev_put(). And
this problem can be reporduced reliably by following:
New file: mdadm/tests/23rdev-lifetime
devname=${dev0##*/}
devt=`cat /sys/block/$devname/dev`
pid=""
runtime=2
clean_up_test() {
pill -9 $pid
echo clear > /sys/block/md0/md/array_state
}
trap 'clean_up_test' EXIT
add_by_sysfs() {
while true; do
echo $devt > /sys/block/md0/md/new_dev
done
}
remove_by_sysfs(){
while true; do
echo remove > /sys/block/md0/md/dev-${devname}/state
done
}
echo md0 > /sys/module/md_mod/parameters/new_array || die "create md0 failed"
add_by_sysfs &
pid="$pid $!"
remove_by_sysfs &
pid="$pid $!"
sleep $runtime
exit 0
Test cmd:
./test --save-logs --logdir=/tmp/ --keep-going --dev=loop --tests=23rdev-lifetime
Test result:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 960 at block/bdev.c:618 blkdev_put+0x27c/0x330
Modules linked in: multipath md_mod loop
CPU: 0 PID: 960 Comm: test Not tainted 6.5.0-rc2-00121-g01e55c376936-dirty #50
RIP: 0010:blkdev_put+0x27c/0x330
Call Trace:
<TASK>
export_rdev.isra.23+0x50/0xa0 [md_mod]
mddev_unlock+0x19d/0x300 [md_mod]
rdev_attr_store+0xec/0x190 [md_mod]
sysfs_kf_write+0x52/0x70
kernfs_fop_write_iter+0x19a/0x2a0
vfs_write+0x3b5/0x770
ksys_write+0x74/0x150
__x64_sys_write+0x22/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Fix the problem by recording if 'rdev' is used as holder. |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: atmel-mci: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value,
it will lead two issues:
1. The memory that allocated in mmc_alloc_host() is leaked.
2. In the remove() path, mmc_remove_host() will be called to
delete device, but it's not added yet, it will lead a kernel
crash because of null-ptr-deref in device_del().
So fix this by checking the return value and calling mmc_free_host()
in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
HSI: omap_ssi: Fix refcount leak in ssi_probe
When returning or breaking early from a
for_each_available_child_of_node() loop, we need to explicitly call
of_node_put() on the child node to possibly release the node. |
| In the Linux kernel, the following vulnerability has been resolved:
platform/chrome: cros_ec_typec: zero out stale pointers
`cros_typec_get_switch_handles` allocates four pointers when obtaining
type-c switch handles. These pointers are all freed if failing to obtain
any of them; therefore, pointers in `port` become stale. The stale
pointers eventually cause use-after-free or double free in later code
paths. Zeroing out all pointer fields after freeing to eliminate these
stale pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: ti: dra7-atl: Fix reference leak in of_dra7_atl_clk_probe
pm_runtime_get_sync() will increment pm usage counter.
Forgetting to putting operation will result in reference leak.
Add missing pm_runtime_put_sync in some error paths. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: fix refcount leak in pci_get_dev_wrapper()
As the comment of pci_get_domain_bus_and_slot() says, it returns
a PCI device with refcount incremented, so it doesn't need to
call an extra pci_dev_get() in pci_get_dev_wrapper(), and the PCI
device needs to be put in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: don't attempt to queue IO under RCU protection
dm looks up the table for IO based on the request type, with an
assumption that if the request is marked REQ_NOWAIT, it's fine to
attempt to submit that IO while under RCU read lock protection. This
is not OK, as REQ_NOWAIT just means that we should not be sleeping
waiting on other IO, it does not mean that we can't potentially
schedule.
A simple test case demonstrates this quite nicely:
int main(int argc, char *argv[])
{
struct iovec iov;
int fd;
fd = open("/dev/dm-0", O_RDONLY | O_DIRECT);
posix_memalign(&iov.iov_base, 4096, 4096);
iov.iov_len = 4096;
preadv2(fd, &iov, 1, 0, RWF_NOWAIT);
return 0;
}
which will instantly spew:
BUG: sleeping function called from invalid context at include/linux/sched/mm.h:306
in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 5580, name: dm-nowait
preempt_count: 0, expected: 0
RCU nest depth: 1, expected: 0
INFO: lockdep is turned off.
CPU: 7 PID: 5580 Comm: dm-nowait Not tainted 6.6.0-rc1-g39956d2dcd81 #132
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x11d/0x1b0
__might_resched+0x3c3/0x5e0
? preempt_count_sub+0x150/0x150
mempool_alloc+0x1e2/0x390
? mempool_resize+0x7d0/0x7d0
? lock_sync+0x190/0x190
? lock_release+0x4b7/0x670
? internal_get_user_pages_fast+0x868/0x2d40
bio_alloc_bioset+0x417/0x8c0
? bvec_alloc+0x200/0x200
? internal_get_user_pages_fast+0xb8c/0x2d40
bio_alloc_clone+0x53/0x100
dm_submit_bio+0x27f/0x1a20
? lock_release+0x4b7/0x670
? blk_try_enter_queue+0x1a0/0x4d0
? dm_dax_direct_access+0x260/0x260
? rcu_is_watching+0x12/0xb0
? blk_try_enter_queue+0x1cc/0x4d0
__submit_bio+0x239/0x310
? __bio_queue_enter+0x700/0x700
? kvm_clock_get_cycles+0x40/0x60
? ktime_get+0x285/0x470
submit_bio_noacct_nocheck+0x4d9/0xb80
? should_fail_request+0x80/0x80
? preempt_count_sub+0x150/0x150
? lock_release+0x4b7/0x670
? __bio_add_page+0x143/0x2d0
? iov_iter_revert+0x27/0x360
submit_bio_noacct+0x53e/0x1b30
submit_bio_wait+0x10a/0x230
? submit_bio_wait_endio+0x40/0x40
__blkdev_direct_IO_simple+0x4f8/0x780
? blkdev_bio_end_io+0x4c0/0x4c0
? stack_trace_save+0x90/0xc0
? __bio_clone+0x3c0/0x3c0
? lock_release+0x4b7/0x670
? lock_sync+0x190/0x190
? atime_needs_update+0x3bf/0x7e0
? timestamp_truncate+0x21b/0x2d0
? inode_owner_or_capable+0x240/0x240
blkdev_direct_IO.part.0+0x84a/0x1810
? rcu_is_watching+0x12/0xb0
? lock_release+0x4b7/0x670
? blkdev_read_iter+0x40d/0x530
? reacquire_held_locks+0x4e0/0x4e0
? __blkdev_direct_IO_simple+0x780/0x780
? rcu_is_watching+0x12/0xb0
? __mark_inode_dirty+0x297/0xd50
? preempt_count_add+0x72/0x140
blkdev_read_iter+0x2a4/0x530
do_iter_readv_writev+0x2f2/0x3c0
? generic_copy_file_range+0x1d0/0x1d0
? fsnotify_perm.part.0+0x25d/0x630
? security_file_permission+0xd8/0x100
do_iter_read+0x31b/0x880
? import_iovec+0x10b/0x140
vfs_readv+0x12d/0x1a0
? vfs_iter_read+0xb0/0xb0
? rcu_is_watching+0x12/0xb0
? rcu_is_watching+0x12/0xb0
? lock_release+0x4b7/0x670
do_preadv+0x1b3/0x260
? do_readv+0x370/0x370
__x64_sys_preadv2+0xef/0x150
do_syscall_64+0x39/0xb0
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f5af41ad806
Code: 41 54 41 89 fc 55 44 89 c5 53 48 89 cb 48 83 ec 18 80 3d e4 dd 0d 00 00 74 7a 45 89 c1 49 89 ca 45 31 c0 b8 47 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 be 00 00 00 48 85 c0 79 4a 48 8b 0d da 55
RSP: 002b:00007ffd3145c7f0 EFLAGS: 00000246 ORIG_RAX: 0000000000000147
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5af41ad806
RDX: 0000000000000001 RSI: 00007ffd3145c850 RDI: 0000000000000003
RBP: 0000000000000008 R08: 0000000000000000 R09: 0000000000000008
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000003
R13: 00007ffd3145c850 R14: 000055f5f0431dd8 R15: 0000000000000001
</TASK>
where in fact it is
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
netlink: annotate accesses to nlk->cb_running
Both netlink_recvmsg() and netlink_native_seq_show() read
nlk->cb_running locklessly. Use READ_ONCE() there.
Add corresponding WRITE_ONCE() to netlink_dump() and
__netlink_dump_start()
syzbot reported:
BUG: KCSAN: data-race in __netlink_dump_start / netlink_recvmsg
write to 0xffff88813ea4db59 of 1 bytes by task 28219 on cpu 0:
__netlink_dump_start+0x3af/0x4d0 net/netlink/af_netlink.c:2399
netlink_dump_start include/linux/netlink.h:308 [inline]
rtnetlink_rcv_msg+0x70f/0x8c0 net/core/rtnetlink.c:6130
netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2577
rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6192
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1942
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
sock_write_iter+0x1aa/0x230 net/socket.c:1138
call_write_iter include/linux/fs.h:1851 [inline]
new_sync_write fs/read_write.c:491 [inline]
vfs_write+0x463/0x760 fs/read_write.c:584
ksys_write+0xeb/0x1a0 fs/read_write.c:637
__do_sys_write fs/read_write.c:649 [inline]
__se_sys_write fs/read_write.c:646 [inline]
__x64_sys_write+0x42/0x50 fs/read_write.c:646
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
read to 0xffff88813ea4db59 of 1 bytes by task 28222 on cpu 1:
netlink_recvmsg+0x3b4/0x730 net/netlink/af_netlink.c:2022
sock_recvmsg_nosec+0x4c/0x80 net/socket.c:1017
____sys_recvmsg+0x2db/0x310 net/socket.c:2718
___sys_recvmsg net/socket.c:2762 [inline]
do_recvmmsg+0x2e5/0x710 net/socket.c:2856
__sys_recvmmsg net/socket.c:2935 [inline]
__do_sys_recvmmsg net/socket.c:2958 [inline]
__se_sys_recvmmsg net/socket.c:2951 [inline]
__x64_sys_recvmmsg+0xe2/0x160 net/socket.c:2951
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
value changed: 0x00 -> 0x01 |
| In the Linux kernel, the following vulnerability has been resolved:
drm: bridge: dw_hdmi: fix connector access for scdc
Commit 5d844091f237 ("drm/scdc-helper: Pimp SCDC debugs") changed the scdc
interface to pick up an i2c adapter from a connector instead. However, in
the case of dw-hdmi, the wrong connector was being used to pass i2c adapter
information, since dw-hdmi's embedded connector structure is only populated
when the bridge attachment callback explicitly asks for it.
drm-meson is handling connector creation, so this won't happen, leading to
a NULL pointer dereference.
Fix it by having scdc functions access dw-hdmi's current connector pointer
instead, which is assigned during the bridge enablement stage.
[narmstrong: moved Fixes tag before first S-o-b and added Reported-by tag] |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: use internal state to free traffic IRQs
If the system tries to close the netdev while iavf_reset_task() is
running, __LINK_STATE_START will be cleared and netif_running() will
return false in iavf_reinit_interrupt_scheme(). This will result in
iavf_free_traffic_irqs() not being called and a leak as follows:
[7632.489326] remove_proc_entry: removing non-empty directory 'irq/999', leaking at least 'iavf-enp24s0f0v0-TxRx-0'
[7632.490214] WARNING: CPU: 0 PID: 10 at fs/proc/generic.c:718 remove_proc_entry+0x19b/0x1b0
is shown when pci_disable_msix() is later called. Fix by using the
internal adapter state. The traffic IRQs will always exist if
state == __IAVF_RUNNING. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rds: don't hold sock lock when cancelling work from rds_tcp_reset_callbacks()
syzbot is reporting lockdep warning at rds_tcp_reset_callbacks() [1], for
commit ac3615e7f3cffe2a ("RDS: TCP: Reduce code duplication in
rds_tcp_reset_callbacks()") added cancel_delayed_work_sync() into a section
protected by lock_sock() without realizing that rds_send_xmit() might call
lock_sock().
We don't need to protect cancel_delayed_work_sync() using lock_sock(), for
even if rds_{send,recv}_worker() re-queued this work while __flush_work()
from cancel_delayed_work_sync() was waiting for this work to complete,
retried rds_{send,recv}_worker() is no-op due to the absence of RDS_CONN_UP
bit. |