Search Results (16620 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-14174 4 Apple, Google, Linux and 1 more 11 Ipados, Iphone Os, Macos and 8 more 2025-12-16 8.8 High
Out of bounds memory access in ANGLE in Google Chrome on Mac prior to 143.0.7499.110 allowed a remote attacker to perform out of bounds memory access via a crafted HTML page. (Chromium security severity: High)
CVE-2025-38647 1 Linux 1 Linux Kernel 2025-12-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: sar: drop lockdep assertion in rtw89_set_sar_from_acpi The following assertion is triggered on the rtw89 driver startup. It looks meaningless to hold wiphy lock on the early init stage so drop the assertion. WARNING: CPU: 7 PID: 629 at drivers/net/wireless/realtek/rtw89/sar.c:502 rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core] CPU: 7 UID: 0 PID: 629 Comm: (udev-worker) Not tainted 6.15.0+ #29 PREEMPT(lazy) Hardware name: LENOVO 21D0/LNVNB161216, BIOS J6CN50WW 09/27/2024 RIP: 0010:rtw89_set_sar_from_acpi+0x365/0x4d0 [rtw89_core] Call Trace: <TASK> rtw89_sar_init+0x68/0x2c0 [rtw89_core] rtw89_core_init+0x188e/0x1e50 [rtw89_core] rtw89_pci_probe+0x530/0xb50 [rtw89_pci] local_pci_probe+0xd9/0x190 pci_call_probe+0x183/0x540 pci_device_probe+0x171/0x2c0 really_probe+0x1e1/0x890 __driver_probe_device+0x18c/0x390 driver_probe_device+0x4a/0x120 __driver_attach+0x1a0/0x530 bus_for_each_dev+0x10b/0x190 bus_add_driver+0x2eb/0x540 driver_register+0x1a3/0x3a0 do_one_initcall+0xd5/0x450 do_init_module+0x2cc/0x8f0 init_module_from_file+0xe1/0x150 idempotent_init_module+0x226/0x760 __x64_sys_finit_module+0xcd/0x150 do_syscall_64+0x94/0x380 entry_SYSCALL_64_after_hwframe+0x76/0x7e Found by Linux Verification Center (linuxtesting.org).
CVE-2025-0502 4 Apple, Craftercms, Linux and 1 more 4 Macos, Craftercms, Linux Kernel and 1 more 2025-12-15 9.1 Critical
Transmission of Private Resources into a New Sphere ('Resource Leak') vulnerability in CrafterCMS Engine on Linux, MacOS, x86, Windows, 64 bit, ARM allows Directory Indexing, Resource Leak Exposure.This issue affects CrafterCMS: from 4.0.0 before 4.0.8, from 4.1.0 before 4.1.6.
CVE-2024-56705 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: atomisp: Add check for rgby_data memory allocation failure In ia_css_3a_statistics_allocate(), there is no check on the allocation result of the rgby_data memory. If rgby_data is not successfully allocated, it may trigger the assert(host_stats->rgby_data) assertion in ia_css_s3a_hmem_decode(). Adding a check to fix this potential issue.
CVE-2025-13148 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 8.1 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow could an authenticated user to change the password of another user without prior knowledge of that password.
CVE-2025-13211 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 5.3 Medium
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to cause a denial of service in the email service due to improper control of interaction frequency.
CVE-2025-13214 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 7.6 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 is vulnerable to SQL injection. A remote attacker could send specially crafted SQL statements, which could allow the attacker to view, add, modify, or delete information in the back-end database.
CVE-2025-13481 2 Ibm, Linux 2 Aspera Orchestrator, Linux Kernel 2025-12-15 8.8 High
IBM Aspera Orchestrator 4.0.0 through 4.1.0 could allow an authenticated user to execute arbitrary commands with elevated privileges on the system due to improper validation of user supplied input.
CVE-2025-12382 2 Algosec, Linux 2 Firewall Analyzer, Linux Kernel 2025-12-11 8.8 High
Improper Limitation of a Pathname 'Path Traversal') vulnerability in Algosec Firewall Analyzer on Linux, 64 bit allows an authenticated user to upload files to a restricted directory leading to code injection. This issue affects Algosec Firewall Analyzer: A33.0 (up to build 320), A33.10 (up to build 210).
CVE-2024-26800 1 Linux 1 Linux Kernel 2025-12-11 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tls: fix use-after-free on failed backlog decryption When the decrypt request goes to the backlog and crypto_aead_decrypt returns -EBUSY, tls_do_decryption will wait until all async decryptions have completed. If one of them fails, tls_do_decryption will return -EBADMSG and tls_decrypt_sg jumps to the error path, releasing all the pages. But the pages have been passed to the async callback, and have already been released by tls_decrypt_done. The only true async case is when crypto_aead_decrypt returns -EINPROGRESS. With -EBUSY, we already waited so we can tell tls_sw_recvmsg that the data is available for immediate copy, but we need to notify tls_decrypt_sg (via the new ->async_done flag) that the memory has already been released.
CVE-2023-5197 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-12-11 7.8 High
A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free. We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325.
CVE-2025-54293 2 Canonical, Linux 3 Lxd, Linux, Linux Kernel 2025-12-10 6.5 Medium
Path Traversal in the log file retrieval function in Canonical LXD 5.0 LTS on Linux allows authenticated remote attackers to read arbitrary files on the host system via crafted log file names or symbolic links.
CVE-2021-47147 1 Linux 1 Linux Kernel 2025-12-10 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: ptp: ocp: Fix a resource leak in an error handling path If an error occurs after a successful 'pci_ioremap_bar()' call, it must be undone by a corresponding 'pci_iounmap()' call, as already done in the remove function.
CVE-2023-53818 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: zynq: Fix refcount leak in zynq_early_slcr_init of_find_compatible_node() returns a node pointer with refcount incremented, we should use of_node_put() on error path. Add missing of_node_put() to avoid refcount leak.
CVE-2023-53795 1 Linux 1 Linux Kernel 2025-12-09 7.0 High
In the Linux kernel, the following vulnerability has been resolved: iommufd: IOMMUFD_DESTROY should not increase the refcount syzkaller found a race where IOMMUFD_DESTROY increments the refcount: obj = iommufd_get_object(ucmd->ictx, cmd->id, IOMMUFD_OBJ_ANY); if (IS_ERR(obj)) return PTR_ERR(obj); iommufd_ref_to_users(obj); /* See iommufd_ref_to_users() */ if (!iommufd_object_destroy_user(ucmd->ictx, obj)) As part of the sequence to join the two existing primitives together. Allowing the refcount the be elevated without holding the destroy_rwsem violates the assumption that all temporary refcount elevations are protected by destroy_rwsem. Racing IOMMUFD_DESTROY with iommufd_object_destroy_user() will cause spurious failures: WARNING: CPU: 0 PID: 3076 at drivers/iommu/iommufd/device.c:477 iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:478 Modules linked in: CPU: 0 PID: 3076 Comm: syz-executor.0 Not tainted 6.3.0-rc1-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/03/2023 RIP: 0010:iommufd_access_destroy+0x18/0x20 drivers/iommu/iommufd/device.c:477 Code: e8 3d 4e 00 00 84 c0 74 01 c3 0f 0b c3 0f 1f 44 00 00 f3 0f 1e fa 48 89 fe 48 8b bf a8 00 00 00 e8 1d 4e 00 00 84 c0 74 01 c3 <0f> 0b c3 0f 1f 44 00 00 41 57 41 56 41 55 4c 8d ae d0 00 00 00 41 RSP: 0018:ffffc90003067e08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff888109ea0300 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000ffffffff RBP: 0000000000000004 R08: 0000000000000000 R09: ffff88810bbb3500 R10: ffff88810bbb3e48 R11: 0000000000000000 R12: ffffc90003067e88 R13: ffffc90003067ea8 R14: ffff888101249800 R15: 00000000fffffffe FS: 00007ff7254fe6c0(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555557262da8 CR3: 000000010a6fd000 CR4: 0000000000350ef0 Call Trace: <TASK> iommufd_test_create_access drivers/iommu/iommufd/selftest.c:596 [inline] iommufd_test+0x71c/0xcf0 drivers/iommu/iommufd/selftest.c:813 iommufd_fops_ioctl+0x10f/0x1b0 drivers/iommu/iommufd/main.c:337 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl fs/ioctl.c:856 [inline] __x64_sys_ioctl+0x84/0xc0 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x38/0x80 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd The solution is to not increment the refcount on the IOMMUFD_DESTROY path at all. Instead use the xa_lock to serialize everything. The refcount check == 1 and xa_erase can be done under a single critical region. This avoids the need for any refcount incrementing. It has the downside that if userspace races destroy with other operations it will get an EBUSY instead of waiting, but this is kind of racing is already dangerous.
CVE-2023-53865 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix warning when putting transaction with qgroups enabled after abort If we have a transaction abort with qgroups enabled we get a warning triggered when doing the final put on the transaction, like this: [552.6789] ------------[ cut here ]------------ [552.6815] WARNING: CPU: 4 PID: 81745 at fs/btrfs/transaction.c:144 btrfs_put_transaction+0x123/0x130 [btrfs] [552.6817] Modules linked in: btrfs blake2b_generic xor (...) [552.6819] CPU: 4 PID: 81745 Comm: btrfs-transacti Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [552.6819] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [552.6819] RIP: 0010:btrfs_put_transaction+0x123/0x130 [btrfs] [552.6821] Code: bd a0 01 00 (...) [552.6821] RSP: 0018:ffffa168c0527e28 EFLAGS: 00010286 [552.6821] RAX: ffff936042caed00 RBX: ffff93604a3eb448 RCX: 0000000000000000 [552.6821] RDX: ffff93606421b028 RSI: ffffffff92ff0878 RDI: ffff93606421b010 [552.6821] RBP: ffff93606421b000 R08: 0000000000000000 R09: ffffa168c0d07c20 [552.6821] R10: 0000000000000000 R11: ffff93608dc52950 R12: ffffa168c0527e70 [552.6821] R13: ffff93606421b000 R14: ffff93604a3eb420 R15: ffff93606421b028 [552.6821] FS: 0000000000000000(0000) GS:ffff93675fb00000(0000) knlGS:0000000000000000 [552.6821] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [552.6821] CR2: 0000558ad262b000 CR3: 000000014feda005 CR4: 0000000000370ee0 [552.6822] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [552.6822] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [552.6822] Call Trace: [552.6822] <TASK> [552.6822] ? __warn+0x80/0x130 [552.6822] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6824] ? report_bug+0x1f4/0x200 [552.6824] ? handle_bug+0x42/0x70 [552.6824] ? exc_invalid_op+0x14/0x70 [552.6824] ? asm_exc_invalid_op+0x16/0x20 [552.6824] ? btrfs_put_transaction+0x123/0x130 [btrfs] [552.6826] btrfs_cleanup_transaction+0xe7/0x5e0 [btrfs] [552.6828] ? _raw_spin_unlock_irqrestore+0x23/0x40 [552.6828] ? try_to_wake_up+0x94/0x5e0 [552.6828] ? __pfx_process_timeout+0x10/0x10 [552.6828] transaction_kthread+0x103/0x1d0 [btrfs] [552.6830] ? __pfx_transaction_kthread+0x10/0x10 [btrfs] [552.6832] kthread+0xee/0x120 [552.6832] ? __pfx_kthread+0x10/0x10 [552.6832] ret_from_fork+0x29/0x50 [552.6832] </TASK> [552.6832] ---[ end trace 0000000000000000 ]--- This corresponds to this line of code: void btrfs_put_transaction(struct btrfs_transaction *transaction) { (...) WARN_ON(!RB_EMPTY_ROOT( &transaction->delayed_refs.dirty_extent_root)); (...) } The warning happens because btrfs_qgroup_destroy_extent_records(), called in the transaction abort path, we free all entries from the rbtree "dirty_extent_root" with rbtree_postorder_for_each_entry_safe(), but we don't actually empty the rbtree - it's still pointing to nodes that were freed. So set the rbtree's root node to NULL to avoid this warning (assign RB_ROOT).
CVE-2022-50643 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: Fix xid leak in cifs_copy_file_range() If the file is used by swap, before return -EOPNOTSUPP, should free the xid, otherwise, the xid will be leaked.
CVE-2023-53787 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: regulator: da9063: fix null pointer deref with partial DT config When some of the da9063 regulators do not have corresponding DT nodes a null pointer dereference occurs on boot because such regulators have no init_data causing the pointers calculated in da9063_check_xvp_constraints() to be invalid. Do not dereference them in this case.
CVE-2023-53836 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix skb refcnt race after locking changes There is a race where skb's from the sk_psock_backlog can be referenced after userspace side has already skb_consumed() the sk_buff and its refcnt dropped to zer0 causing use after free. The flow is the following: while ((skb = skb_peek(&psock->ingress_skb)) sk_psock_handle_Skb(psock, skb, ..., ingress) if (!ingress) ... sk_psock_skb_ingress sk_psock_skb_ingress_enqueue(skb) msg->skb = skb sk_psock_queue_msg(psock, msg) skb_dequeue(&psock->ingress_skb) The sk_psock_queue_msg() puts the msg on the ingress_msg queue. This is what the application reads when recvmsg() is called. An application can read this anytime after the msg is placed on the queue. The recvmsg hook will also read msg->skb and then after user space reads the msg will call consume_skb(skb) on it effectively free'ing it. But, the race is in above where backlog queue still has a reference to the skb and calls skb_dequeue(). If the skb_dequeue happens after the user reads and free's the skb we have a use after free. The !ingress case does not suffer from this problem because it uses sendmsg_*(sk, msg) which does not pass the sk_buff further down the stack. The following splat was observed with 'test_progs -t sockmap_listen': [ 1022.710250][ T2556] general protection fault, ... [...] [ 1022.712830][ T2556] Workqueue: events sk_psock_backlog [ 1022.713262][ T2556] RIP: 0010:skb_dequeue+0x4c/0x80 [ 1022.713653][ T2556] Code: ... [...] [ 1022.720699][ T2556] Call Trace: [ 1022.720984][ T2556] <TASK> [ 1022.721254][ T2556] ? die_addr+0x32/0x80^M [ 1022.721589][ T2556] ? exc_general_protection+0x25a/0x4b0 [ 1022.722026][ T2556] ? asm_exc_general_protection+0x22/0x30 [ 1022.722489][ T2556] ? skb_dequeue+0x4c/0x80 [ 1022.722854][ T2556] sk_psock_backlog+0x27a/0x300 [ 1022.723243][ T2556] process_one_work+0x2a7/0x5b0 [ 1022.723633][ T2556] worker_thread+0x4f/0x3a0 [ 1022.723998][ T2556] ? __pfx_worker_thread+0x10/0x10 [ 1022.724386][ T2556] kthread+0xfd/0x130 [ 1022.724709][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725066][ T2556] ret_from_fork+0x2d/0x50 [ 1022.725409][ T2556] ? __pfx_kthread+0x10/0x10 [ 1022.725799][ T2556] ret_from_fork_asm+0x1b/0x30 [ 1022.726201][ T2556] </TASK> To fix we add an skb_get() before passing the skb to be enqueued in the engress queue. This bumps the skb->users refcnt so that consume_skb() and kfree_skb will not immediately free the sk_buff. With this we can be sure the skb is still around when we do the dequeue. Then we just need to decrement the refcnt or free the skb in the backlog case which we do by calling kfree_skb() on the ingress case as well as the sendmsg case. Before locking change from fixes tag we had the sock locked so we couldn't race with user and there was no issue here.
CVE-2022-50647 1 Linux 1 Linux Kernel 2025-12-09 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RISC-V: Make port I/O string accessors actually work Fix port I/O string accessors such as `insb', `outsb', etc. which use the physical PCI port I/O address rather than the corresponding memory mapping to get at the requested location, which in turn breaks at least accesses made by our parport driver to a PCIe parallel port such as: PCI parallel port detected: 1415:c118, I/O at 0x1000(0x1008), IRQ 20 parport0: PC-style at 0x1000 (0x1008), irq 20, using FIFO [PCSPP,TRISTATE,COMPAT,EPP,ECP] causing a memory access fault: Unable to handle kernel access to user memory without uaccess routines at virtual address 0000000000001008 Oops [#1] Modules linked in: CPU: 1 PID: 350 Comm: cat Not tainted 6.0.0-rc2-00283-g10d4879f9ef0-dirty #23 Hardware name: SiFive HiFive Unmatched A00 (DT) epc : parport_pc_fifo_write_block_pio+0x266/0x416 ra : parport_pc_fifo_write_block_pio+0xb4/0x416 epc : ffffffff80542c3e ra : ffffffff80542a8c sp : ffffffd88899fc60 gp : ffffffff80fa2700 tp : ffffffd882b1e900 t0 : ffffffd883d0b000 t1 : ffffffffff000002 t2 : 4646393043330a38 s0 : ffffffd88899fcf0 s1 : 0000000000001000 a0 : 0000000000000010 a1 : 0000000000000000 a2 : ffffffd883d0a010 a3 : 0000000000000023 a4 : 00000000ffff8fbb a5 : ffffffd883d0a001 a6 : 0000000100000000 a7 : ffffffc800000000 s2 : ffffffffff000002 s3 : ffffffff80d28880 s4 : ffffffff80fa1f50 s5 : 0000000000001008 s6 : 0000000000000008 s7 : ffffffd883d0a000 s8 : 0004000000000000 s9 : ffffffff80dc1d80 s10: ffffffd8807e4000 s11: 0000000000000000 t3 : 00000000000000ff t4 : 393044410a303930 t5 : 0000000000001000 t6 : 0000000000040000 status: 0000000200000120 badaddr: 0000000000001008 cause: 000000000000000f [<ffffffff80543212>] parport_pc_compat_write_block_pio+0xfe/0x200 [<ffffffff8053bbc0>] parport_write+0x46/0xf8 [<ffffffff8050530e>] lp_write+0x158/0x2d2 [<ffffffff80185716>] vfs_write+0x8e/0x2c2 [<ffffffff80185a74>] ksys_write+0x52/0xc2 [<ffffffff80185af2>] sys_write+0xe/0x16 [<ffffffff80003770>] ret_from_syscall+0x0/0x2 ---[ end trace 0000000000000000 ]--- For simplicity address the problem by adding PCI_IOBASE to the physical address requested in the respective wrapper macros only, observing that the raw accessors such as `__insb', `__outsb', etc. are not supposed to be used other than by said macros. Remove the cast to `long' that is no longer needed on `addr' now that it is used as an offset from PCI_IOBASE and add parentheses around `addr' needed for predictable evaluation in macro expansion. No need to make said adjustments in separate changes given that current code is gravely broken and does not ever work.