| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix RPC client cleaned up the freed pipefs dentries
RPC client pipefs dentries cleanup is in separated rpc_remove_pipedir()
workqueue,which takes care about pipefs superblock locking.
In some special scenarios, when kernel frees the pipefs sb of the
current client and immediately alloctes a new pipefs sb,
rpc_remove_pipedir function would misjudge the existence of pipefs
sb which is not the one it used to hold. As a result,
the rpc_remove_pipedir would clean the released freed pipefs dentries.
To fix this issue, rpc_remove_pipedir should check whether the
current pipefs sb is consistent with the original pipefs sb.
This error can be catched by KASAN:
=========================================================
[ 250.497700] BUG: KASAN: slab-use-after-free in dget_parent+0x195/0x200
[ 250.498315] Read of size 4 at addr ffff88800a2ab804 by task kworker/0:18/106503
[ 250.500549] Workqueue: events rpc_free_client_work
[ 250.501001] Call Trace:
[ 250.502880] kasan_report+0xb6/0xf0
[ 250.503209] ? dget_parent+0x195/0x200
[ 250.503561] dget_parent+0x195/0x200
[ 250.503897] ? __pfx_rpc_clntdir_depopulate+0x10/0x10
[ 250.504384] rpc_rmdir_depopulate+0x1b/0x90
[ 250.504781] rpc_remove_client_dir+0xf5/0x150
[ 250.505195] rpc_free_client_work+0xe4/0x230
[ 250.505598] process_one_work+0x8ee/0x13b0
...
[ 22.039056] Allocated by task 244:
[ 22.039390] kasan_save_stack+0x22/0x50
[ 22.039758] kasan_set_track+0x25/0x30
[ 22.040109] __kasan_slab_alloc+0x59/0x70
[ 22.040487] kmem_cache_alloc_lru+0xf0/0x240
[ 22.040889] __d_alloc+0x31/0x8e0
[ 22.041207] d_alloc+0x44/0x1f0
[ 22.041514] __rpc_lookup_create_exclusive+0x11c/0x140
[ 22.041987] rpc_mkdir_populate.constprop.0+0x5f/0x110
[ 22.042459] rpc_create_client_dir+0x34/0x150
[ 22.042874] rpc_setup_pipedir_sb+0x102/0x1c0
[ 22.043284] rpc_client_register+0x136/0x4e0
[ 22.043689] rpc_new_client+0x911/0x1020
[ 22.044057] rpc_create_xprt+0xcb/0x370
[ 22.044417] rpc_create+0x36b/0x6c0
...
[ 22.049524] Freed by task 0:
[ 22.049803] kasan_save_stack+0x22/0x50
[ 22.050165] kasan_set_track+0x25/0x30
[ 22.050520] kasan_save_free_info+0x2b/0x50
[ 22.050921] __kasan_slab_free+0x10e/0x1a0
[ 22.051306] kmem_cache_free+0xa5/0x390
[ 22.051667] rcu_core+0x62c/0x1930
[ 22.051995] __do_softirq+0x165/0x52a
[ 22.052347]
[ 22.052503] Last potentially related work creation:
[ 22.052952] kasan_save_stack+0x22/0x50
[ 22.053313] __kasan_record_aux_stack+0x8e/0xa0
[ 22.053739] __call_rcu_common.constprop.0+0x6b/0x8b0
[ 22.054209] dentry_free+0xb2/0x140
[ 22.054540] __dentry_kill+0x3be/0x540
[ 22.054900] shrink_dentry_list+0x199/0x510
[ 22.055293] shrink_dcache_parent+0x190/0x240
[ 22.055703] do_one_tree+0x11/0x40
[ 22.056028] shrink_dcache_for_umount+0x61/0x140
[ 22.056461] generic_shutdown_super+0x70/0x590
[ 22.056879] kill_anon_super+0x3a/0x60
[ 22.057234] rpc_kill_sb+0x121/0x200 |
| In the Linux kernel, the following vulnerability has been resolved:
ipvlan: add ipvlan_route_v6_outbound() helper
Inspired by syzbot reports using a stack of multiple ipvlan devices.
Reduce stack size needed in ipvlan_process_v6_outbound() by moving
the flowi6 struct used for the route lookup in an non inlined
helper. ipvlan_route_v6_outbound() needs 120 bytes on the stack,
immediately reclaimed.
Also make sure ipvlan_process_v4_outbound() is not inlined.
We might also have to lower MAX_NEST_DEV, because only syzbot uses
setups with more than four stacked devices.
BUG: TASK stack guard page was hit at ffffc9000e803ff8 (stack is ffffc9000e804000..ffffc9000e808000)
stack guard page: 0000 [#1] SMP KASAN
CPU: 0 PID: 13442 Comm: syz-executor.4 Not tainted 6.1.52-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/09/2023
RIP: 0010:kasan_check_range+0x4/0x2a0 mm/kasan/generic.c:188
Code: 48 01 c6 48 89 c7 e8 db 4e c1 03 31 c0 5d c3 cc 0f 0b eb 02 0f 0b b8 ea ff ff ff 5d c3 cc 00 00 cc cc 00 00 cc cc 55 48 89 e5 <41> 57 41 56 41 55 41 54 53 b0 01 48 85 f6 0f 84 a4 01 00 00 48 89
RSP: 0018:ffffc9000e804000 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff817e5bf2
RDX: 0000000000000000 RSI: 0000000000000008 RDI: ffffffff887c6568
RBP: ffffc9000e804000 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: dffffc0000000001 R12: 1ffff92001d0080c
R13: dffffc0000000000 R14: ffffffff87e6b100 R15: 0000000000000000
FS: 00007fd0c55826c0(0000) GS:ffff8881f6800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffc9000e803ff8 CR3: 0000000170ef7000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<#DF>
</#DF>
<TASK>
[<ffffffff81f281d1>] __kasan_check_read+0x11/0x20 mm/kasan/shadow.c:31
[<ffffffff817e5bf2>] instrument_atomic_read include/linux/instrumented.h:72 [inline]
[<ffffffff817e5bf2>] _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
[<ffffffff817e5bf2>] cpumask_test_cpu include/linux/cpumask.h:506 [inline]
[<ffffffff817e5bf2>] cpu_online include/linux/cpumask.h:1092 [inline]
[<ffffffff817e5bf2>] trace_lock_acquire include/trace/events/lock.h:24 [inline]
[<ffffffff817e5bf2>] lock_acquire+0xe2/0x590 kernel/locking/lockdep.c:5632
[<ffffffff8563221e>] rcu_lock_acquire+0x2e/0x40 include/linux/rcupdate.h:306
[<ffffffff8561464d>] rcu_read_lock include/linux/rcupdate.h:747 [inline]
[<ffffffff8561464d>] ip6_pol_route+0x15d/0x1440 net/ipv6/route.c:2221
[<ffffffff85618120>] ip6_pol_route_output+0x50/0x80 net/ipv6/route.c:2606
[<ffffffff856f65b5>] pol_lookup_func include/net/ip6_fib.h:584 [inline]
[<ffffffff856f65b5>] fib6_rule_lookup+0x265/0x620 net/ipv6/fib6_rules.c:116
[<ffffffff85618009>] ip6_route_output_flags_noref+0x2d9/0x3a0 net/ipv6/route.c:2638
[<ffffffff8561821a>] ip6_route_output_flags+0xca/0x340 net/ipv6/route.c:2651
[<ffffffff838bd5a3>] ip6_route_output include/net/ip6_route.h:100 [inline]
[<ffffffff838bd5a3>] ipvlan_process_v6_outbound drivers/net/ipvlan/ipvlan_core.c:473 [inline]
[<ffffffff838bd5a3>] ipvlan_process_outbound drivers/net/ipvlan/ipvlan_core.c:529 [inline]
[<ffffffff838bd5a3>] ipvlan_xmit_mode_l3 drivers/net/ipvlan/ipvlan_core.c:602 [inline]
[<ffffffff838bd5a3>] ipvlan_queue_xmit+0xc33/0x1be0 drivers/net/ipvlan/ipvlan_core.c:677
[<ffffffff838c2909>] ipvlan_start_xmit+0x49/0x100 drivers/net/ipvlan/ipvlan_main.c:229
[<ffffffff84d03900>] netdev_start_xmit include/linux/netdevice.h:4966 [inline]
[<ffffffff84d03900>] xmit_one net/core/dev.c:3644 [inline]
[<ffffffff84d03900>] dev_hard_start_xmit+0x320/0x980 net/core/dev.c:3660
[<ffffffff84d080e2>] __dev_queue_xmit+0x16b2/0x3370 net/core/dev.c:4324
[<ffffffff855ce4cd>] dev_queue_xmit include/linux/netdevice.h:3067 [inline]
[<ffffffff855ce4cd>] neigh_hh_output include/net/neighbour.h:529 [inline]
[<f
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: avoid data corruption caused by decline
We found a data corruption issue during testing of SMC-R on Redis
applications.
The benchmark has a low probability of reporting a strange error as
shown below.
"Error: Protocol error, got "\xe2" as reply type byte"
Finally, we found that the retrieved error data was as follows:
0xE2 0xD4 0xC3 0xD9 0x04 0x00 0x2C 0x20 0xA6 0x56 0x00 0x16 0x3E 0x0C
0xCB 0x04 0x02 0x01 0x00 0x00 0x20 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE2
It is quite obvious that this is a SMC DECLINE message, which means that
the applications received SMC protocol message.
We found that this was caused by the following situations:
client server
¦ clc proposal
------------->
¦ clc accept
<-------------
¦ clc confirm
------------->
wait llc confirm
send llc confirm
¦failed llc confirm
¦ x------
(after 2s)timeout
wait llc confirm rsp
wait decline
(after 1s) timeout
(after 2s) timeout
¦ decline
-------------->
¦ decline
<--------------
As a result, a decline message was sent in the implementation, and this
message was read from TCP by the already-fallback connection.
This patch double the client timeout as 2x of the server value,
With this simple change, the Decline messages should never cross or
collide (during Confirm link timeout).
This issue requires an immediate solution, since the protocol updates
involve a more long-term solution. |
| In the Linux kernel, the following vulnerability has been resolved:
cxl/port: Fix delete_endpoint() vs parent unregistration race
The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of
ports (struct cxl_port objects) between an endpoint and the root of a
CXL topology. Each port including the endpoint port is attached to the
cxl_port driver.
Given that setup, it follows that when either any port in that lineage
goes through a cxl_port ->remove() event, or the memdev goes through a
cxl_mem ->remove() event. The hierarchy below the removed port, or the
entire hierarchy if the memdev is removed needs to come down.
The delete_endpoint() callback is careful to check whether it is being
called to tear down the hierarchy, or if it is only being called to
teardown the memdev because an ancestor port is going through
->remove().
That care needs to take the device_lock() of the endpoint's parent.
Which requires 2 bugs to be fixed:
1/ A reference on the parent is needed to prevent use-after-free
scenarios like this signature:
BUG: spinlock bad magic on CPU#0, kworker/u56:0/11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023
Workqueue: cxl_port detach_memdev [cxl_core]
RIP: 0010:spin_bug+0x65/0xa0
Call Trace:
do_raw_spin_lock+0x69/0xa0
__mutex_lock+0x695/0xb80
delete_endpoint+0xad/0x150 [cxl_core]
devres_release_all+0xb8/0x110
device_unbind_cleanup+0xe/0x70
device_release_driver_internal+0x1d2/0x210
detach_memdev+0x15/0x20 [cxl_core]
process_one_work+0x1e3/0x4c0
worker_thread+0x1dd/0x3d0
2/ In the case of RCH topologies, the parent device that needs to be
locked is not always @port->dev as returned by cxl_mem_find_port(), use
endpoint->dev.parent instead. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s/interrupt: Fix interrupt exit race with security mitigation switch
The RFI and STF security mitigation options can flip the
interrupt_exit_not_reentrant static branch condition concurrently with
the interrupt exit code which tests that branch.
Interrupt exit tests this condition to set MSR[EE|RI] for exit, then
again in the case a soft-masked interrupt is found pending, to recover
the MSR so the interrupt can be replayed before attempting to exit
again. If the condition changes between these two tests, the MSR and irq
soft-mask state will become corrupted, leading to warnings and possible
crashes. For example, if the branch is initially true then false,
MSR[EE] will be 0 but PACA_IRQ_HARD_DIS clear and EE may not get
enabled, leading to warnings in irq_64.c. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix invalid page access after closing deferred I/O devices
When a fbdev with deferred I/O is once opened and closed, the dirty
pages still remain queued in the pageref list, and eventually later
those may be processed in the delayed work. This may lead to a
corruption of pages, hitting an Oops.
This patch makes sure to cancel the delayed work and clean up the
pageref list at closing the device for addressing the bug. A part of
the cleanup code is factored out as a new helper function that is
called from the common fb_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: sdio: fix possible resource leaks in some error paths
If sdio_add_func() or sdio_init_func() fails, sdio_remove_func() can
not release the resources, because the sdio function is not presented
in these two cases, it won't call of_node_put() or put_device().
To fix these leaks, make sdio_func_present() only control whether
device_del() needs to be called or not, then always call of_node_put()
and put_device().
In error case in sdio_init_func(), the reference of 'card->dev' is
not get, to avoid redundant put in sdio_free_func_cis(), move the
get_device() to sdio_alloc_func() and put_device() to sdio_release_func(),
it can keep the get/put function be balanced.
Without this patch, while doing fault inject test, it can get the
following leak reports, after this fix, the leak is gone.
unreferenced object 0xffff888112514000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741614 (age 124.774s)
hex dump (first 32 bytes):
00 e0 6f 12 81 88 ff ff 60 58 8d 06 81 88 ff ff ..o.....`X......
10 40 51 12 81 88 ff ff 10 40 51 12 81 88 ff ff .@Q......@Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<000000002f839ccb>] mmc_alloc_card+0x38/0xb0 [mmc_core]
[<0000000004adcbf6>] mmc_sdio_init_card+0xde/0x170 [mmc_core]
[<000000007538fea0>] mmc_attach_sdio+0xcb/0x1b0 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core]
unreferenced object 0xffff888112511000 (size 2048):
comm "kworker/3:2", pid 65, jiffies 4294741623 (age 124.766s)
hex dump (first 32 bytes):
00 40 51 12 81 88 ff ff e0 58 8d 06 81 88 ff ff [email protected]......
10 10 51 12 81 88 ff ff 10 10 51 12 81 88 ff ff ..Q.......Q.....
backtrace:
[<000000009e5931da>] kmalloc_trace+0x21/0x110
[<00000000fcbe706c>] sdio_alloc_func+0x35/0x100 [mmc_core]
[<00000000c68f4b50>] mmc_attach_sdio.cold.18+0xb1/0x395 [mmc_core]
[<00000000d4fdeba7>] mmc_rescan+0x54a/0x640 [mmc_core] |
| In the Linux kernel, the following vulnerability has been resolved:
net/usb: kalmia: Don't pass act_len in usb_bulk_msg error path
syzbot reported that act_len in kalmia_send_init_packet() is
uninitialized when passing it to the first usb_bulk_msg error path. Jiri
Pirko noted that it's pointless to pass it in the error path, and that
the value that would be printed in the second error path would be the
value of act_len from the first call to usb_bulk_msg.[1]
With this in mind, let's just not pass act_len to the usb_bulk_msg error
paths.
1: https://lore.kernel.org/lkml/Y9pY61y1nwTuzMOa@nanopsycho/ |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix mpol_new leak in shared_policy_replace
If mpol_new is allocated but not used in restart loop, mpol_new will be
freed via mpol_put before returning to the caller. But refcnt is not
initialized yet, so mpol_put could not do the right things and might
leak the unused mpol_new. This would happen if mempolicy was updated on
the shared shmem file while the sp->lock has been dropped during the
memory allocation.
This issue could be triggered easily with the below code snippet if
there are many processes doing the below work at the same time:
shmid = shmget((key_t)5566, 1024 * PAGE_SIZE, 0666|IPC_CREAT);
shm = shmat(shmid, 0, 0);
loop many times {
mbind(shm, 1024 * PAGE_SIZE, MPOL_LOCAL, mask, maxnode, 0);
mbind(shm + 128 * PAGE_SIZE, 128 * PAGE_SIZE, MPOL_DEFAULT, mask,
maxnode, 0);
} |
| In the Linux kernel, the following vulnerability has been resolved:
block: null_blk: end timed out poll request
When poll request is timed out, it is removed from the poll list,
but not completed, so the request is leaked, and never get chance
to complete.
Fix the issue by ending it in timeout handler. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix missing hugetlb_lock for resv uncharge
There is a recent report on UFFDIO_COPY over hugetlb:
https://lore.kernel.org/all/[email protected]/
350: lockdep_assert_held(&hugetlb_lock);
Should be an issue in hugetlb but triggered in an userfault context, where
it goes into the unlikely path where two threads modifying the resv map
together. Mike has a fix in that path for resv uncharge but it looks like
the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd()
will update the cgroup pointer, so it requires to be called with the lock
held. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode reference leakage in ceph_get_snapdir()
The ceph_get_inode() will search for or insert a new inode into the
hash for the given vino, and return a reference to it. If new is
non-NULL, its reference is consumed.
We should release the reference when in error handing cases. |
| In the Linux kernel, the following vulnerability has been resolved:
arch/arm64: Fix topology initialization for core scheduling
Arm64 systems rely on store_cpu_topology() to call update_siblings_masks()
to transfer the toplogy to the various cpu masks. This needs to be done
before the call to notify_cpu_starting() which tells the scheduler about
each cpu found, otherwise the core scheduling data structures are setup
in a way that does not match the actual topology.
With smt_mask not setup correctly we bail on `cpumask_weight(smt_mask) == 1`
for !leaders in:
notify_cpu_starting()
cpuhp_invoke_callback_range()
sched_cpu_starting()
sched_core_cpu_starting()
which leads to rq->core not being correctly set for !leader-rq's.
Without this change stress-ng (which enables core scheduling in its prctl
tests in newer versions -- i.e. with PR_SCHED_CORE support) causes a warning
and then a crash (trimmed for legibility):
[ 1853.805168] ------------[ cut here ]------------
[ 1853.809784] task_rq(b)->core != rq->core
[ 1853.809792] WARNING: CPU: 117 PID: 0 at kernel/sched/fair.c:11102 cfs_prio_less+0x1b4/0x1c4
...
[ 1854.015210] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
[ 1854.231256] Call trace:
[ 1854.233689] pick_next_task+0x3dc/0x81c
[ 1854.237512] __schedule+0x10c/0x4cc
[ 1854.240988] schedule_idle+0x34/0x54 |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slub: Avoid list corruption when removing a slab from the full list
Boot with slub_debug=UFPZ.
If allocated object failed in alloc_consistency_checks, all objects of
the slab will be marked as used, and then the slab will be removed from
the partial list.
When an object belonging to the slab got freed later, the remove_full()
function is called. Because the slab is neither on the partial list nor
on the full list, it eventually lead to a list corruption (actually a
list poison being detected).
So we need to mark and isolate the slab page with metadata corruption,
do not put it back in circulation.
Because the debug caches avoid all the fastpaths, reusing the frozen bit
to mark slab page with metadata corruption seems to be fine.
[ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100)
[ 4277.387023] ------------[ cut here ]------------
[ 4277.387880] kernel BUG at lib/list_debug.c:56!
[ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1
[ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs]
[ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91
[ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082
[ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000
[ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff
[ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0
[ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910
[ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0
[ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000
[ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0
[ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4277.410000] PKRU: 55555554
[ 4277.410645] Call Trace:
[ 4277.411234] <TASK>
[ 4277.411777] ? die+0x32/0x80
[ 4277.412439] ? do_trap+0xd6/0x100
[ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.414158] ? do_error_trap+0x6a/0x90
[ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.415915] ? exc_invalid_op+0x4c/0x60
[ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.417675] ? asm_exc_invalid_op+0x16/0x20
[ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.420410] free_to_partial_list+0x515/0x5e0
[ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs]
[ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs]
[ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs]
[ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs]
[ 4277.428567] xfs_inactive+0x22d/0x290 [xfs]
[ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.430479] process_one_work+0x171/0x340
[ 4277.431227] worker_thread+0x277/0x390
[ 4277.431962] ? __pfx_worker_thread+0x10/0x10
[ 4277.432752] kthread+0xf0/0x120
[ 4277.433382] ? __pfx_kthread+0x10/0x10
[ 4277.434134] ret_from_fork+0x2d/0x50
[ 4277.434837] ? __pfx_kthread+0x10/0x10
[ 4277.435566] ret_from_fork_asm+0x1b/0x30
[ 4277.436280] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix mlx5e_priv_init() cleanup flow
When mlx5e_priv_init() fails, the cleanup flow calls mlx5e_selq_cleanup which
calls mlx5e_selq_apply() that assures that the `priv->state_lock` is held using
lockdep_is_held().
Acquire the state_lock in mlx5e_selq_cleanup().
Kernel log:
=============================
WARNING: suspicious RCU usage
6.8.0-rc3_net_next_841a9b5 #1 Not tainted
-----------------------------
drivers/net/ethernet/mellanox/mlx5/core/en/selq.c:124 suspicious rcu_dereference_protected() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by systemd-modules/293:
#0: ffffffffa05067b0 (devices_rwsem){++++}-{3:3}, at: ib_register_client+0x109/0x1b0 [ib_core]
#1: ffff8881096c65c0 (&device->client_data_rwsem){++++}-{3:3}, at: add_client_context+0x104/0x1c0 [ib_core]
stack backtrace:
CPU: 4 PID: 293 Comm: systemd-modules Not tainted 6.8.0-rc3_net_next_841a9b5 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x8a/0xa0
lockdep_rcu_suspicious+0x154/0x1a0
mlx5e_selq_apply+0x94/0xa0 [mlx5_core]
mlx5e_selq_cleanup+0x3a/0x60 [mlx5_core]
mlx5e_priv_init+0x2be/0x2f0 [mlx5_core]
mlx5_rdma_setup_rn+0x7c/0x1a0 [mlx5_core]
rdma_init_netdev+0x4e/0x80 [ib_core]
? mlx5_rdma_netdev_free+0x70/0x70 [mlx5_core]
ipoib_intf_init+0x64/0x550 [ib_ipoib]
ipoib_intf_alloc+0x4e/0xc0 [ib_ipoib]
ipoib_add_one+0xb0/0x360 [ib_ipoib]
add_client_context+0x112/0x1c0 [ib_core]
ib_register_client+0x166/0x1b0 [ib_core]
? 0xffffffffa0573000
ipoib_init_module+0xeb/0x1a0 [ib_ipoib]
do_one_initcall+0x61/0x250
do_init_module+0x8a/0x270
init_module_from_file+0x8b/0xd0
idempotent_init_module+0x17d/0x230
__x64_sys_finit_module+0x61/0xb0
do_syscall_64+0x71/0x140
entry_SYSCALL_64_after_hwframe+0x46/0x4e
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix WARN_ON in iommu probe path
Commit 1a75cc710b95 ("iommu/vt-d: Use rbtree to track iommu probed
devices") adds all devices probed by the iommu driver in a rbtree
indexed by the source ID of each device. It assumes that each device
has a unique source ID. This assumption is incorrect and the VT-d
spec doesn't state this requirement either.
The reason for using a rbtree to track devices is to look up the device
with PCI bus and devfunc in the paths of handling ATS invalidation time
out error and the PRI I/O page faults. Both are PCI ATS feature related.
Only track the devices that have PCI ATS capabilities in the rbtree to
avoid unnecessary WARN_ON in the iommu probe path. Otherwise, on some
platforms below kernel splat will be displayed and the iommu probe results
in failure.
WARNING: CPU: 3 PID: 166 at drivers/iommu/intel/iommu.c:158 intel_iommu_probe_device+0x319/0xd90
Call Trace:
<TASK>
? __warn+0x7e/0x180
? intel_iommu_probe_device+0x319/0xd90
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? intel_iommu_probe_device+0x319/0xd90
? debug_mutex_init+0x37/0x50
__iommu_probe_device+0xf2/0x4f0
iommu_probe_device+0x22/0x70
iommu_bus_notifier+0x1e/0x40
notifier_call_chain+0x46/0x150
blocking_notifier_call_chain+0x42/0x60
bus_notify+0x2f/0x50
device_add+0x5ed/0x7e0
platform_device_add+0xf5/0x240
mfd_add_devices+0x3f9/0x500
? preempt_count_add+0x4c/0xa0
? up_write+0xa2/0x1b0
? __debugfs_create_file+0xe3/0x150
intel_lpss_probe+0x49f/0x5b0
? pci_conf1_write+0xa3/0xf0
intel_lpss_pci_probe+0xcf/0x110 [intel_lpss_pci]
pci_device_probe+0x95/0x120
really_probe+0xd9/0x370
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x73/0x150
driver_probe_device+0x19/0xa0
__driver_attach+0xb6/0x180
? __pfx___driver_attach+0x10/0x10
bus_for_each_dev+0x77/0xd0
bus_add_driver+0x114/0x210
driver_register+0x5b/0x110
? __pfx_intel_lpss_pci_driver_init+0x10/0x10 [intel_lpss_pci]
do_one_initcall+0x57/0x2b0
? kmalloc_trace+0x21e/0x280
? do_init_module+0x1e/0x210
do_init_module+0x5f/0x210
load_module+0x1d37/0x1fc0
? init_module_from_file+0x86/0xd0
init_module_from_file+0x86/0xd0
idempotent_init_module+0x17c/0x230
__x64_sys_finit_module+0x56/0xb0
do_syscall_64+0x6e/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/ast: Fix soft lockup
There is a while-loop in ast_dp_set_on_off() that could lead to
infinite-loop. This is because the register, VGACRI-Dx, checked in
this API is a scratch register actually controlled by a MCU, named
DPMCU, in BMC.
These scratch registers are protected by scu-lock. If suc-lock is not
off, DPMCU can not update these registers and then host will have soft
lockup due to never updated status.
DPMCU is used to control DP and relative registers to handshake with
host's VGA driver. Even the most time-consuming task, DP's link
training, is less than 100ms. 200ms should be enough. |
| Versions of the package semver before 7.5.2 are vulnerable to Regular Expression Denial of Service (ReDoS) via the function new Range, when untrusted user data is provided as a range.
|
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: rfi: fix potential response leaks
If the rx payload length check fails, or if kmemdup() fails,
we still need to free the command response. Fix that. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: fix memory corruption bug with suspend and rebuild
The ice driver would previously panic after suspend. This is caused
from the driver *only* calling the ice_vsi_free_q_vectors() function by
itself, when it is suspending. Since commit b3e7b3a6ee92 ("ice: prevent
NULL pointer deref during reload") the driver has zeroed out
num_q_vectors, and only restored it in ice_vsi_cfg_def().
This further causes the ice_rebuild() function to allocate a zero length
buffer, after which num_q_vectors is updated, and then the new value of
num_q_vectors is used to index into the zero length buffer, which
corrupts memory.
The fix entails making sure all the code referencing num_q_vectors only
does so after it has been reset via ice_vsi_cfg_def().
I didn't perform a full bisect, but I was able to test against 6.1.77
kernel and that ice driver works fine for suspend/resume with no panic,
so sometime since then, this problem was introduced.
Also clean up an un-needed init of a local variable in the function
being modified.
PANIC from 6.8.0-rc1:
[1026674.915596] PM: suspend exit
[1026675.664697] ice 0000:17:00.1: PTP reset successful
[1026675.664707] ice 0000:17:00.1: 2755 msecs passed between update to cached PHC time
[1026675.667660] ice 0000:b1:00.0: PTP reset successful
[1026675.675944] ice 0000:b1:00.0: 2832 msecs passed between update to cached PHC time
[1026677.137733] ixgbe 0000:31:00.0 ens787: NIC Link is Up 1 Gbps, Flow Control: None
[1026677.190201] BUG: kernel NULL pointer dereference, address: 0000000000000010
[1026677.192753] ice 0000:17:00.0: PTP reset successful
[1026677.192764] ice 0000:17:00.0: 4548 msecs passed between update to cached PHC time
[1026677.197928] #PF: supervisor read access in kernel mode
[1026677.197933] #PF: error_code(0x0000) - not-present page
[1026677.197937] PGD 1557a7067 P4D 0
[1026677.212133] ice 0000:b1:00.1: PTP reset successful
[1026677.212143] ice 0000:b1:00.1: 4344 msecs passed between update to cached PHC time
[1026677.212575]
[1026677.243142] Oops: 0000 [#1] PREEMPT SMP NOPTI
[1026677.247918] CPU: 23 PID: 42790 Comm: kworker/23:0 Kdump: loaded Tainted: G W 6.8.0-rc1+ #1
[1026677.257989] Hardware name: Intel Corporation M50CYP2SBSTD/M50CYP2SBSTD, BIOS SE5C620.86B.01.01.0005.2202160810 02/16/2022
[1026677.269367] Workqueue: ice ice_service_task [ice]
[1026677.274592] RIP: 0010:ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.281421] Code: 0f 84 3a ff ff ff 41 0f b7 74 ec 02 66 89 b0 22 02 00 00 81 e6 ff 1f 00 00 e8 ec fd ff ff e9 35 ff ff ff 48 8b 43 30 49 63 ed <41> 0f b7 34 24 41 83 c5 01 48 8b 3c e8 66 89 b7 aa 02 00 00 81 e6
[1026677.300877] RSP: 0018:ff3be62a6399bcc0 EFLAGS: 00010202
[1026677.306556] RAX: ff28691e28980828 RBX: ff28691e41099828 RCX: 0000000000188000
[1026677.314148] RDX: 0000000000000000 RSI: 0000000000000010 RDI: ff28691e41099828
[1026677.321730] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[1026677.329311] R10: 0000000000000007 R11: ffffffffffffffc0 R12: 0000000000000010
[1026677.336896] R13: 0000000000000000 R14: 0000000000000000 R15: ff28691e0eaa81a0
[1026677.344472] FS: 0000000000000000(0000) GS:ff28693cbffc0000(0000) knlGS:0000000000000000
[1026677.353000] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1026677.359195] CR2: 0000000000000010 CR3: 0000000128df4001 CR4: 0000000000771ef0
[1026677.366779] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[1026677.374369] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[1026677.381952] PKRU: 55555554
[1026677.385116] Call Trace:
[1026677.388023] <TASK>
[1026677.390589] ? __die+0x20/0x70
[1026677.394105] ? page_fault_oops+0x82/0x160
[1026677.398576] ? do_user_addr_fault+0x65/0x6a0
[1026677.403307] ? exc_page_fault+0x6a/0x150
[1026677.407694] ? asm_exc_page_fault+0x22/0x30
[1026677.412349] ? ice_vsi_rebuild_set_coalesce+0x130/0x1e0 [ice]
[1026677.4186
---truncated--- |