Total
2082 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2025-55226 | 1 Microsoft | 15 Windows 10 1507, Windows 10 1607, Windows 10 1809 and 12 more | 2025-09-25 | 6.7 Medium |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to execute code locally. | ||||
| CVE-2025-55223 | 1 Microsoft | 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more | 2025-09-25 | 7 High |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to elevate privileges locally. | ||||
| CVE-2025-54919 | 1 Microsoft | 10 Windows 10 1809, Windows 10 21h2, Windows 10 22h2 and 7 more | 2025-09-25 | 7.5 High |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally. | ||||
| CVE-2024-41020 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-25 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: filelock: Fix fcntl/close race recovery compat path When I wrote commit 3cad1bc01041 ("filelock: Remove locks reliably when fcntl/close race is detected"), I missed that there are two copies of the code I was patching: The normal version, and the version for 64-bit offsets on 32-bit kernels. Thanks to Greg KH for stumbling over this while doing the stable backport... Apply exactly the same fix to the compat path for 32-bit kernels. | ||||
| CVE-2024-41050 | 1 Linux | 1 Linux Kernel | 2025-09-25 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: cachefiles: cyclic allocation of msg_id to avoid reuse Reusing the msg_id after a maliciously completed reopen request may cause a read request to remain unprocessed and result in a hung, as shown below: t1 | t2 | t3 ------------------------------------------------- cachefiles_ondemand_select_req cachefiles_ondemand_object_is_close(A) cachefiles_ondemand_set_object_reopening(A) queue_work(fscache_object_wq, &info->work) ondemand_object_worker cachefiles_ondemand_init_object(A) cachefiles_ondemand_send_req(OPEN) // get msg_id 6 wait_for_completion(&req_A->done) cachefiles_ondemand_daemon_read // read msg_id 6 req_A cachefiles_ondemand_get_fd copy_to_user // Malicious completion msg_id 6 copen 6,-1 cachefiles_ondemand_copen complete(&req_A->done) // will not set the object to close // because ondemand_id && fd is valid. // ondemand_object_worker() is done // but the object is still reopening. // new open req_B cachefiles_ondemand_init_object(B) cachefiles_ondemand_send_req(OPEN) // reuse msg_id 6 process_open_req copen 6,A.size // The expected failed copen was executed successfully Expect copen to fail, and when it does, it closes fd, which sets the object to close, and then close triggers reopen again. However, due to msg_id reuse resulting in a successful copen, the anonymous fd is not closed until the daemon exits. Therefore read requests waiting for reopen to complete may trigger hung task. To avoid this issue, allocate the msg_id cyclically to avoid reusing the msg_id for a very short duration of time. | ||||
| CVE-2024-41005 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-25 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: netpoll: Fix race condition in netpoll_owner_active KCSAN detected a race condition in netpoll: BUG: KCSAN: data-race in net_rx_action / netpoll_send_skb write (marked) to 0xffff8881164168b0 of 4 bytes by interrupt on cpu 10: net_rx_action (./include/linux/netpoll.h:90 net/core/dev.c:6712 net/core/dev.c:6822) <snip> read to 0xffff8881164168b0 of 4 bytes by task 1 on cpu 2: netpoll_send_skb (net/core/netpoll.c:319 net/core/netpoll.c:345 net/core/netpoll.c:393) netpoll_send_udp (net/core/netpoll.c:?) <snip> value changed: 0x0000000a -> 0xffffffff This happens because netpoll_owner_active() needs to check if the current CPU is the owner of the lock, touching napi->poll_owner non atomically. The ->poll_owner field contains the current CPU holding the lock. Use an atomic read to check if the poll owner is the current CPU. | ||||
| CVE-2022-48830 | 1 Linux | 1 Linux Kernel | 2025-09-25 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: can: isotp: fix potential CAN frame reception race in isotp_rcv() When receiving a CAN frame the current code logic does not consider concurrently receiving processes which do not show up in real world usage. Ziyang Xuan writes: The following syz problem is one of the scenarios. so->rx.len is changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals 0 before alloc_skb() and equals 4096 after alloc_skb(). That will trigger skb_over_panic() in skb_put(). ======================================================= CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0 RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113 Call Trace: <TASK> skb_over_panic net/core/skbuff.c:118 [inline] skb_put.cold+0x24/0x24 net/core/skbuff.c:1990 isotp_rcv_cf net/can/isotp.c:570 [inline] isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668 deliver net/can/af_can.c:574 [inline] can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635 can_receive+0x31d/0x580 net/can/af_can.c:665 can_rcv+0x120/0x1c0 net/can/af_can.c:696 __netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465 __netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579 Therefore we make sure the state changes and data structures stay consistent at CAN frame reception time by adding a spin_lock in isotp_rcv(). This fixes the issue reported by syzkaller but does not affect real world operation. | ||||
| CVE-2025-1801 | 1 Redhat | 1 Ansible Automation Platform | 2025-09-25 | 8.1 High |
| A flaw was found in the Ansible aap-gateway. Concurrent requests handled by the gateway grpc service can result in concurrency issues due to race condition requests against the proxy. This issue potentially allows a less privileged user to obtain the JWT of a greater privileged user, enabling the server to be jeopardized. A user session or confidential data might be vulnerable. | ||||
| CVE-2023-52786 | 1 Linux | 1 Linux Kernel | 2025-09-25 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ext4: fix racy may inline data check in dio write syzbot reports that the following warning from ext4_iomap_begin() triggers as of the commit referenced below: if (WARN_ON_ONCE(ext4_has_inline_data(inode))) return -ERANGE; This occurs during a dio write, which is never expected to encounter an inode with inline data. To enforce this behavior, ext4_dio_write_iter() checks the current inline state of the inode and clears the MAY_INLINE_DATA state flag to either fall back to buffered writes, or enforce that any other writers in progress on the inode are not allowed to create inline data. The problem is that the check for existing inline data and the state flag can span a lock cycle. For example, if the ilock is originally locked shared and subsequently upgraded to exclusive, another writer may have reacquired the lock and created inline data before the dio write task acquires the lock and proceeds. The commit referenced below loosens the lock requirements to allow some forms of unaligned dio writes to occur under shared lock, but AFAICT the inline data check was technically already racy for any dio write that would have involved a lock cycle. Regardless, lift clearing of the state bit to the same lock critical section that checks for preexisting inline data on the inode to close the race. | ||||
| CVE-2021-47507 | 1 Linux | 1 Linux Kernel | 2025-09-24 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: nfsd: Fix nsfd startup race (again) Commit bd5ae9288d64 ("nfsd: register pernet ops last, unregister first") has re-opened rpc_pipefs_event() race against nfsd_net_id registration (register_pernet_subsys()) which has been fixed by commit bb7ffbf29e76 ("nfsd: fix nsfd startup race triggering BUG_ON"). Restore the order of register_pernet_subsys() vs register_cld_notifier(). Add WARN_ON() to prevent a future regression. Crash info: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000012 CPU: 8 PID: 345 Comm: mount Not tainted 5.4.144-... #1 pc : rpc_pipefs_event+0x54/0x120 [nfsd] lr : rpc_pipefs_event+0x48/0x120 [nfsd] Call trace: rpc_pipefs_event+0x54/0x120 [nfsd] blocking_notifier_call_chain rpc_fill_super get_tree_keyed rpc_fs_get_tree vfs_get_tree do_mount ksys_mount __arm64_sys_mount el0_svc_handler el0_svc | ||||
| CVE-2021-47493 | 1 Linux | 1 Linux Kernel | 2025-09-24 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix race between searching chunks and release journal_head from buffer_head Encountered a race between ocfs2_test_bg_bit_allocatable() and jbd2_journal_put_journal_head() resulting in the below vmcore. PID: 106879 TASK: ffff880244ba9c00 CPU: 2 COMMAND: "loop3" Call trace: panic oops_end no_context __bad_area_nosemaphore bad_area_nosemaphore __do_page_fault do_page_fault page_fault [exception RIP: ocfs2_block_group_find_clear_bits+316] ocfs2_block_group_find_clear_bits [ocfs2] ocfs2_cluster_group_search [ocfs2] ocfs2_search_chain [ocfs2] ocfs2_claim_suballoc_bits [ocfs2] __ocfs2_claim_clusters [ocfs2] ocfs2_claim_clusters [ocfs2] ocfs2_local_alloc_slide_window [ocfs2] ocfs2_reserve_local_alloc_bits [ocfs2] ocfs2_reserve_clusters_with_limit [ocfs2] ocfs2_reserve_clusters [ocfs2] ocfs2_lock_refcount_allocators [ocfs2] ocfs2_make_clusters_writable [ocfs2] ocfs2_replace_cow [ocfs2] ocfs2_refcount_cow [ocfs2] ocfs2_file_write_iter [ocfs2] lo_rw_aio loop_queue_work kthread_worker_fn kthread ret_from_fork When ocfs2_test_bg_bit_allocatable() called bh2jh(bg_bh), the bg_bh->b_private NULL as jbd2_journal_put_journal_head() raced and released the jounal head from the buffer head. Needed to take bit lock for the bit 'BH_JournalHead' to fix this race. | ||||
| CVE-2024-56788 | 1 Linux | 1 Linux Kernel | 2025-09-24 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: net: ethernet: oa_tc6: fix tx skb race condition between reference pointers There are two skb pointers to manage tx skb's enqueued from n/w stack. waiting_tx_skb pointer points to the tx skb which needs to be processed and ongoing_tx_skb pointer points to the tx skb which is being processed. SPI thread prepares the tx data chunks from the tx skb pointed by the ongoing_tx_skb pointer. When the tx skb pointed by the ongoing_tx_skb is processed, the tx skb pointed by the waiting_tx_skb is assigned to ongoing_tx_skb and the waiting_tx_skb pointer is assigned with NULL. Whenever there is a new tx skb from n/w stack, it will be assigned to waiting_tx_skb pointer if it is NULL. Enqueuing and processing of a tx skb handled in two different threads. Consider a scenario where the SPI thread processed an ongoing_tx_skb and it moves next tx skb from waiting_tx_skb pointer to ongoing_tx_skb pointer without doing any NULL check. At this time, if the waiting_tx_skb pointer is NULL then ongoing_tx_skb pointer is also assigned with NULL. After that, if a new tx skb is assigned to waiting_tx_skb pointer by the n/w stack and there is a chance to overwrite the tx skb pointer with NULL in the SPI thread. Finally one of the tx skb will be left as unhandled, resulting packet missing and memory leak. - Consider the below scenario where the TXC reported from the previous transfer is 10 and ongoing_tx_skb holds an tx ethernet frame which can be transported in 20 TXCs and waiting_tx_skb is still NULL. tx_credits = 10; /* 21 are filled in the previous transfer */ ongoing_tx_skb = 20; waiting_tx_skb = NULL; /* Still NULL */ - So, (tc6->ongoing_tx_skb || tc6->waiting_tx_skb) becomes true. - After oa_tc6_prepare_spi_tx_buf_for_tx_skbs() ongoing_tx_skb = 10; waiting_tx_skb = NULL; /* Still NULL */ - Perform SPI transfer. - Process SPI rx buffer to get the TXC from footers. - Now let's assume previously filled 21 TXCs are freed so we are good to transport the next remaining 10 tx chunks from ongoing_tx_skb. tx_credits = 21; ongoing_tx_skb = 10; waiting_tx_skb = NULL; - So, (tc6->ongoing_tx_skb || tc6->waiting_tx_skb) becomes true again. - In the oa_tc6_prepare_spi_tx_buf_for_tx_skbs() ongoing_tx_skb = NULL; waiting_tx_skb = NULL; - Now the below bad case might happen, Thread1 (oa_tc6_start_xmit) Thread2 (oa_tc6_spi_thread_handler) --------------------------- ----------------------------------- - if waiting_tx_skb is NULL - if ongoing_tx_skb is NULL - ongoing_tx_skb = waiting_tx_skb - waiting_tx_skb = skb - waiting_tx_skb = NULL ... - ongoing_tx_skb = NULL - if waiting_tx_skb is NULL - waiting_tx_skb = skb To overcome the above issue, protect the moving of tx skb reference from waiting_tx_skb pointer to ongoing_tx_skb pointer and assigning new tx skb to waiting_tx_skb pointer, so that the other thread can't access the waiting_tx_skb pointer until the current thread completes moving the tx skb reference safely. | ||||
| CVE-2021-47461 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2025-09-24 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix a race between writeprotect and exit_mmap() A race is possible when a process exits, its VMAs are removed by exit_mmap() and at the same time userfaultfd_writeprotect() is called. The race was detected by KASAN on a development kernel, but it appears to be possible on vanilla kernels as well. Use mmget_not_zero() to prevent the race as done in other userfaultfd operations. | ||||
| CVE-2024-56552 | 1 Linux | 1 Linux Kernel | 2025-09-23 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/xe/guc_submit: fix race around suspend_pending Currently in some testcases we can trigger: xe 0000:03:00.0: [drm] Assertion `exec_queue_destroyed(q)` failed! .... WARNING: CPU: 18 PID: 2640 at drivers/gpu/drm/xe/xe_guc_submit.c:1826 xe_guc_sched_done_handler+0xa54/0xef0 [xe] xe 0000:03:00.0: [drm] *ERROR* GT1: DEREGISTER_DONE: Unexpected engine state 0x00a1, guc_id=57 Looking at a snippet of corresponding ftrace for this GuC id we can see: 162.673311: xe_sched_msg_add: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3 162.673317: xe_sched_msg_recv: dev=0000:03:00.0, gt=1 guc_id=57, opcode=3 162.673319: xe_exec_queue_scheduling_disable: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0 162.674089: xe_exec_queue_kill: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0x29, flags=0x0 162.674108: xe_exec_queue_close: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0 162.674488: xe_exec_queue_scheduling_done: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa9, flags=0x0 162.678452: xe_exec_queue_deregister: dev=0000:03:00.0, 1:0x2, gt=1, width=1, guc_id=57, guc_state=0xa1, flags=0x0 It looks like we try to suspend the queue (opcode=3), setting suspend_pending and triggering a disable_scheduling. The user then closes the queue. However the close will also forcefully signal the suspend fence after killing the queue, later when the G2H response for disable_scheduling comes back we have now cleared suspend_pending when signalling the suspend fence, so the disable_scheduling now incorrectly tries to also deregister the queue. This leads to warnings since the queue has yet to even be marked for destruction. We also seem to trigger errors later with trying to double unregister the same queue. To fix this tweak the ordering when handling the response to ensure we don't race with a disable_scheduling that didn't actually intend to perform an unregister. The destruction path should now also correctly wait for any pending_disable before marking as destroyed. (cherry picked from commit f161809b362f027b6d72bd998e47f8f0bad60a2e) | ||||
| CVE-2021-47391 | 1 Linux | 1 Linux Kernel | 2025-09-23 | 7.8 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/cma: Ensure rdma_addr_cancel() happens before issuing more requests The FSM can run in a circle allowing rdma_resolve_ip() to be called twice on the same id_priv. While this cannot happen without going through the work, it violates the invariant that the same address resolution background request cannot be active twice. CPU 1 CPU 2 rdma_resolve_addr(): RDMA_CM_IDLE -> RDMA_CM_ADDR_QUERY rdma_resolve_ip(addr_handler) #1 process_one_req(): for #1 addr_handler(): RDMA_CM_ADDR_QUERY -> RDMA_CM_ADDR_BOUND mutex_unlock(&id_priv->handler_mutex); [.. handler still running ..] rdma_resolve_addr(): RDMA_CM_ADDR_BOUND -> RDMA_CM_ADDR_QUERY rdma_resolve_ip(addr_handler) !! two requests are now on the req_list rdma_destroy_id(): destroy_id_handler_unlock(): _destroy_id(): cma_cancel_operation(): rdma_addr_cancel() // process_one_req() self removes it spin_lock_bh(&lock); cancel_delayed_work(&req->work); if (!list_empty(&req->list)) == true ! rdma_addr_cancel() returns after process_on_req #1 is done kfree(id_priv) process_one_req(): for #2 addr_handler(): mutex_lock(&id_priv->handler_mutex); !! Use after free on id_priv rdma_addr_cancel() expects there to be one req on the list and only cancels the first one. The self-removal behavior of the work only happens after the handler has returned. This yields a situations where the req_list can have two reqs for the same "handle" but rdma_addr_cancel() only cancels the first one. The second req remains active beyond rdma_destroy_id() and will use-after-free id_priv once it inevitably triggers. Fix this by remembering if the id_priv has called rdma_resolve_ip() and always cancel before calling it again. This ensures the req_list never gets more than one item in it and doesn't cost anything in the normal flow that never uses this strange error path. | ||||
| CVE-2023-52771 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-09-23 | 4.4 Medium |
| In the Linux kernel, the following vulnerability has been resolved: cxl/port: Fix delete_endpoint() vs parent unregistration race The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of ports (struct cxl_port objects) between an endpoint and the root of a CXL topology. Each port including the endpoint port is attached to the cxl_port driver. Given that setup, it follows that when either any port in that lineage goes through a cxl_port ->remove() event, or the memdev goes through a cxl_mem ->remove() event. The hierarchy below the removed port, or the entire hierarchy if the memdev is removed needs to come down. The delete_endpoint() callback is careful to check whether it is being called to tear down the hierarchy, or if it is only being called to teardown the memdev because an ancestor port is going through ->remove(). That care needs to take the device_lock() of the endpoint's parent. Which requires 2 bugs to be fixed: 1/ A reference on the parent is needed to prevent use-after-free scenarios like this signature: BUG: spinlock bad magic on CPU#0, kworker/u56:0/11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023 Workqueue: cxl_port detach_memdev [cxl_core] RIP: 0010:spin_bug+0x65/0xa0 Call Trace: do_raw_spin_lock+0x69/0xa0 __mutex_lock+0x695/0xb80 delete_endpoint+0xad/0x150 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 detach_memdev+0x15/0x20 [cxl_core] process_one_work+0x1e3/0x4c0 worker_thread+0x1dd/0x3d0 2/ In the case of RCH topologies, the parent device that needs to be locked is not always @port->dev as returned by cxl_mem_find_port(), use endpoint->dev.parent instead. | ||||
| CVE-2023-52740 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-09-23 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: powerpc/64s/interrupt: Fix interrupt exit race with security mitigation switch The RFI and STF security mitigation options can flip the interrupt_exit_not_reentrant static branch condition concurrently with the interrupt exit code which tests that branch. Interrupt exit tests this condition to set MSR[EE|RI] for exit, then again in the case a soft-masked interrupt is found pending, to recover the MSR so the interrupt can be replayed before attempting to exit again. If the condition changes between these two tests, the MSR and irq soft-mask state will become corrupted, leading to warnings and possible crashes. For example, if the branch is initially true then false, MSR[EE] will be 0 but PACA_IRQ_HARD_DIS clear and EE may not get enabled, leading to warnings in irq_64.c. | ||||
| CVE-2023-52739 | 1 Linux | 1 Linux Kernel | 2025-09-23 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: Fix page corruption caused by racy check in __free_pages When we upgraded our kernel, we started seeing some page corruption like the following consistently: BUG: Bad page state in process ganesha.nfsd pfn:1304ca page:0000000022261c55 refcount:0 mapcount:-128 mapping:0000000000000000 index:0x0 pfn:0x1304ca flags: 0x17ffffc0000000() raw: 0017ffffc0000000 ffff8a513ffd4c98 ffffeee24b35ec08 0000000000000000 raw: 0000000000000000 0000000000000001 00000000ffffff7f 0000000000000000 page dumped because: nonzero mapcount CPU: 0 PID: 15567 Comm: ganesha.nfsd Kdump: loaded Tainted: P B O 5.10.158-1.nutanix.20221209.el7.x86_64 #1 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 04/05/2016 Call Trace: dump_stack+0x74/0x96 bad_page.cold+0x63/0x94 check_new_page_bad+0x6d/0x80 rmqueue+0x46e/0x970 get_page_from_freelist+0xcb/0x3f0 ? _cond_resched+0x19/0x40 __alloc_pages_nodemask+0x164/0x300 alloc_pages_current+0x87/0xf0 skb_page_frag_refill+0x84/0x110 ... Sometimes, it would also show up as corruption in the free list pointer and cause crashes. After bisecting the issue, we found the issue started from commit e320d3012d25 ("mm/page_alloc.c: fix freeing non-compound pages"): if (put_page_testzero(page)) free_the_page(page, order); else if (!PageHead(page)) while (order-- > 0) free_the_page(page + (1 << order), order); So the problem is the check PageHead is racy because at this point we already dropped our reference to the page. So even if we came in with compound page, the page can already be freed and PageHead can return false and we will end up freeing all the tail pages causing double free. | ||||
| CVE-2022-49089 | 1 Linux | 1 Linux Kernel | 2025-09-23 | 4.7 Medium |
| In the Linux kernel, the following vulnerability has been resolved: IB/rdmavt: add lock to call to rvt_error_qp to prevent a race condition The documentation of the function rvt_error_qp says both r_lock and s_lock need to be held when calling that function. It also asserts using lockdep that both of those locks are held. However, the commit I referenced in Fixes accidentally makes the call to rvt_error_qp in rvt_ruc_loopback no longer covered by r_lock. This results in the lockdep assertion failing and also possibly in a race condition. | ||||
| CVE-2025-59577 | 2 Stylemixthemes, Wordpress | 2 Masterstudy Lms, Wordpress | 2025-09-23 | 4.3 Medium |
| Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition') vulnerability in Stylemix MasterStudy LMS allows Leveraging Race Conditions. This issue affects MasterStudy LMS: from n/a through 3.6.20. | ||||