Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
16209 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50739 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Add null pointer check for inode operations This adds a sanity check for the i_op pointer of the inode which is returned after reading Root directory MFT record. We should check the i_op is valid before trying to create the root dentry, otherwise we may encounter a NPD while mounting a image with a funny Root directory MFT record. [ 114.484325] BUG: kernel NULL pointer dereference, address: 0000000000000008 [ 114.484811] #PF: supervisor read access in kernel mode [ 114.485084] #PF: error_code(0x0000) - not-present page [ 114.485606] PGD 0 P4D 0 [ 114.485975] Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI [ 114.486570] CPU: 0 PID: 237 Comm: mount Tainted: G B 6.0.0-rc4 #28 [ 114.486977] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [ 114.488169] RIP: 0010:d_flags_for_inode+0xe0/0x110 [ 114.488816] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241 [ 114.490326] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296 [ 114.490695] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea [ 114.490986] RDX: 0000000000000001 RSI: 0000000000000008 RDI: ffffffff87abd020 [ 114.491364] RBP: ffff8880065e7ac8 R08: 0000000000000001 R09: fffffbfff0f57a05 [ 114.491675] R10: ffffffff87abd027 R11: fffffbfff0f57a04 R12: 0000000000000000 [ 114.491954] R13: 0000000000000008 R14: 0000000000000000 R15: ffff888008ccd750 [ 114.492397] FS: 00007fdc8a627e40(0000) GS:ffff888058200000(0000) knlGS:0000000000000000 [ 114.492797] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 114.493150] CR2: 0000000000000008 CR3: 00000000013ba000 CR4: 00000000000006f0 [ 114.493671] Call Trace: [ 114.493890] <TASK> [ 114.494075] __d_instantiate+0x24/0x1c0 [ 114.494505] d_instantiate.part.0+0x35/0x50 [ 114.494754] d_make_root+0x53/0x80 [ 114.494998] ntfs_fill_super+0x1232/0x1b50 [ 114.495260] ? put_ntfs+0x1d0/0x1d0 [ 114.495499] ? vsprintf+0x20/0x20 [ 114.495723] ? set_blocksize+0x95/0x150 [ 114.495964] get_tree_bdev+0x232/0x370 [ 114.496272] ? put_ntfs+0x1d0/0x1d0 [ 114.496502] ntfs_fs_get_tree+0x15/0x20 [ 114.496859] vfs_get_tree+0x4c/0x130 [ 114.497099] path_mount+0x654/0xfe0 [ 114.497507] ? putname+0x80/0xa0 [ 114.497933] ? finish_automount+0x2e0/0x2e0 [ 114.498362] ? putname+0x80/0xa0 [ 114.498571] ? kmem_cache_free+0x1c4/0x440 [ 114.498819] ? putname+0x80/0xa0 [ 114.499069] do_mount+0xd6/0xf0 [ 114.499343] ? path_mount+0xfe0/0xfe0 [ 114.499683] ? __kasan_check_write+0x14/0x20 [ 114.500133] __x64_sys_mount+0xca/0x110 [ 114.500592] do_syscall_64+0x3b/0x90 [ 114.500930] entry_SYSCALL_64_after_hwframe+0x63/0xcd [ 114.501294] RIP: 0033:0x7fdc898e948a [ 114.501542] Code: 48 8b 0d 11 fa 2a 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 008 [ 114.502716] RSP: 002b:00007ffd793e58f8 EFLAGS: 00000202 ORIG_RAX: 00000000000000a5 [ 114.503175] RAX: ffffffffffffffda RBX: 0000564b2228f060 RCX: 00007fdc898e948a [ 114.503588] RDX: 0000564b2228f260 RSI: 0000564b2228f2e0 RDI: 0000564b22297ce0 [ 114.504925] RBP: 0000000000000000 R08: 0000564b2228f280 R09: 0000000000000020 [ 114.505484] R10: 00000000c0ed0000 R11: 0000000000000202 R12: 0000564b22297ce0 [ 114.505823] R13: 0000564b2228f260 R14: 0000000000000000 R15: 00000000ffffffff [ 114.506562] </TASK> [ 114.506887] Modules linked in: [ 114.507648] CR2: 0000000000000008 [ 114.508884] ---[ end trace 0000000000000000 ]--- [ 114.509675] RIP: 0010:d_flags_for_inode+0xe0/0x110 [ 114.510140] Code: 24 f7 ff 49 83 3e 00 74 41 41 83 cd 02 66 44 89 6b 02 eb 92 48 8d 7b 20 e8 6d 24 f7 ff 4c 8b 73 20 49 8d 7e 08 e8 60 241 [ 114.511762] RSP: 0018:ffff8880065e7aa8 EFLAGS: 00000296 [ 114.512401] RAX: 0000000000000001 RBX: ffff888008ccd750 RCX: ffffffff84af2aea [ 114.51 ---truncated--- | ||||
| CVE-2025-68728 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ntfs3: fix uninit memory after failed mi_read in mi_format_new Fix a KMSAN un-init bug found by syzkaller. ntfs_get_bh() expects a buffer from sb_getblk(), that buffer may not be uptodate. We do not bring the buffer uptodate before setting it as uptodate. If the buffer were to not be uptodate, it could mean adding a buffer with un-init data to the mi record. Attempting to load that record will trigger KMSAN. Avoid this by setting the buffer as uptodate, if it’s not already, by overwriting it. | ||||
| CVE-2022-50759 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov5648: Free V4L2 fwnode data on unbind The V4L2 fwnode data structure doesn't get freed on unbind, which leads to a memleak. | ||||
| CVE-2023-54123 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: md/raid10: fix memleak for 'conf->bio_split' In the error path of raid10_run(), 'conf' need be freed, however, 'conf->bio_split' is missed and memory will be leaked. Since there are 3 places to free 'conf', factor out a helper to fix the problem. | ||||
| CVE-2023-54096 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: soundwire: fix enumeration completion The soundwire subsystem uses two completion structures that allow drivers to wait for soundwire device to become enumerated on the bus and initialised by their drivers, respectively. The code implementing the signalling is currently broken as it does not signal all current and future waiters and also uses the wrong reinitialisation function, which can potentially lead to memory corruption if there are still waiters on the queue. Not signalling future waiters specifically breaks sound card probe deferrals as codec drivers can not tell that the soundwire device is already attached when being reprobed. Some codec runtime PM implementations suffer from similar problems as waiting for enumeration during resume can also timeout despite the device already having been enumerated. | ||||
| CVE-2025-68365 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Initialize allocated memory before use KMSAN reports: Multiple uninitialized values detected: - KMSAN: uninit-value in ntfs_read_hdr (3) - KMSAN: uninit-value in bcmp (3) Memory is allocated by __getname(), which is a wrapper for kmem_cache_alloc(). This memory is used before being properly cleared. Change kmem_cache_alloc() to kmem_cache_zalloc() to properly allocate and clear memory before use. | ||||
| CVE-2022-50753 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on summary info As Wenqing Liu reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216456 BUG: KASAN: use-after-free in recover_data+0x63ae/0x6ae0 [f2fs] Read of size 4 at addr ffff8881464dcd80 by task mount/1013 CPU: 3 PID: 1013 Comm: mount Tainted: G W 6.0.0-rc4 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014 Call Trace: dump_stack_lvl+0x45/0x5e print_report.cold+0xf3/0x68d kasan_report+0xa8/0x130 recover_data+0x63ae/0x6ae0 [f2fs] f2fs_recover_fsync_data+0x120d/0x1fc0 [f2fs] f2fs_fill_super+0x4665/0x61e0 [f2fs] mount_bdev+0x2cf/0x3b0 legacy_get_tree+0xed/0x1d0 vfs_get_tree+0x81/0x2b0 path_mount+0x47e/0x19d0 do_mount+0xce/0xf0 __x64_sys_mount+0x12c/0x1a0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd The root cause is: in fuzzed image, SSA table is corrupted: ofs_in_node is larger than ADDRS_PER_PAGE(), result in out-of-range access on 4k-size page. - recover_data - do_recover_data - check_index_in_prev_nodes - f2fs_data_blkaddr This patch adds sanity check on summary info in recovery and GC flow in where the flows rely on them. After patch: [ 29.310883] F2FS-fs (loop0): Inconsistent ofs_in_node:65286 in summary, ino:0, nid:6, max:1018 | ||||
| CVE-2022-50770 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: ocfs2: fix memory leak in ocfs2_mount_volume() There is a memory leak reported by kmemleak: unreferenced object 0xffff88810cc65e60 (size 32): comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s) hex dump (first 32 bytes): 10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................ 01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff8170f73d>] __kmalloc+0x4d/0x150 [<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2] [<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2] [<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2] [<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2] [<ffffffff818e1fe2>] mount_bdev+0x312/0x400 [<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0 [<ffffffff818de82d>] vfs_get_tree+0x7d/0x230 [<ffffffff81957f92>] path_mount+0xd62/0x1760 [<ffffffff81958a5a>] do_mount+0xca/0xe0 [<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0 [<ffffffff82f26f15>] do_syscall_64+0x35/0x80 [<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0 This call stack is related to two problems. Firstly, the ocfs2 super uses "replay_map" to trace online/offline slots, in order to recover offline slots during recovery and mount. But when ocfs2_truncate_log_init() returns an error in ocfs2_mount_volume(), the memory of "replay_map" will not be freed in error handling path. Secondly, the memory of "replay_map" will not be freed if d_make_root() returns an error in ocfs2_fill_super(). But the memory of "replay_map" will be freed normally when completing recovery and mount in ocfs2_complete_mount_recovery(). Fix the first problem by adding error handling path to free "replay_map" when ocfs2_truncate_log_init() fails. And fix the second problem by calling ocfs2_free_replay_slots(osb) in the error handling path "out_dismount". In addition, since ocfs2_free_replay_slots() is static, it is necessary to remove its static attribute and declare it in header file. | ||||
| CVE-2022-50738 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: vhost-vdpa: fix an iotlb memory leak Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB") we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during release to free all the resources allocated when processing user IOTLB messages through vhost_vdpa_process_iotlb_update(). That commit changed the handling of IOTLB a bit, and we accidentally removed some code called during the release. We partially fixed this with commit 037d4305569a ("vhost-vdpa: call vhost_vdpa_cleanup during the release") but a potential memory leak is still there as showed by kmemleak if the application does not send VHOST_IOTLB_INVALIDATE or crashes: unreferenced object 0xffff888007fbaa30 (size 16): comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s) hex dump (first 16 bytes): 40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA............. backtrace: [<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0 [<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa] [<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost] [<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa] [<00000000de1cd4a0>] vfs_write+0x216/0x4b0 [<00000000a2850200>] ksys_write+0x71/0xf0 [<00000000de8e720b>] __x64_sys_write+0x19/0x20 [<0000000018b12cbb>] do_syscall_64+0x3f/0x90 [<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup() since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap(). vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap() on the whole range removes all the entries. The kmemleak log reported was observed with a vDPA device that has `use_va` set to true (e.g. VDUSE). This patch has been tested with both types of devices. | ||||
| CVE-2023-54050 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: ubifs: Fix memleak when insert_old_idx() failed Following process will cause a memleak for copied up znode: dirty_cow_znode zn = copy_znode(c, znode); err = insert_old_idx(c, zbr->lnum, zbr->offs); if (unlikely(err)) return ERR_PTR(err); // No one refers to zn. Fetch a reproducer in [Link]. Function copy_znode() is split into 2 parts: resource allocation and znode replacement, insert_old_idx() is split in similar way, so resource cleanup could be done in error handling path without corrupting metadata(mem & disk). It's okay that old index inserting is put behind of add_idx_dirt(), old index is used in layout_leb_in_gaps(), so the two processes do not depend on each other. | ||||
| CVE-2023-54055 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix memory leak of PBLE objects On rmmod of irdma, the PBLE object memory is not being freed. PBLE object memory are not statically pre-allocated at function initialization time unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD) for it can be dynamically allocated during scale up and SD's remain allocated till function deinitialization. Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects(). | ||||
| CVE-2023-54105 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: can: isotp: check CAN address family in isotp_bind() Add missing check to block non-AF_CAN binds. Syzbot created some code which matched the right sockaddr struct size but used AF_XDP (0x2C) instead of AF_CAN (0x1D) in the address family field: bind$xdp(r2, &(0x7f0000000540)={0x2c, 0x0, r4, 0x0, r2}, 0x10) ^^^^ This has no funtional impact but the userspace should be notified about the wrong address family field content. | ||||
| CVE-2022-50777 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe of_phy_find_device() return device node with refcount incremented. Call put_device() to relese it when not needed anymore. | ||||
| CVE-2023-54109 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: rcar_fdp1: Fix refcount leak in probe and remove function rcar_fcp_get() take reference, which should be balanced with rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and the error paths of fdp1_probe() to fix this. [hverkuil: resolve merge conflict, remove() is now void] | ||||
| CVE-2023-54122 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add check for cstate As kzalloc may fail and return NULL pointer, it should be better to check cstate in order to avoid the NULL pointer dereference in __drm_atomic_helper_crtc_reset. Patchwork: https://patchwork.freedesktop.org/patch/514163/ | ||||
| CVE-2022-50712 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: devlink: hold region lock when flushing snapshots Netdevsim triggers a splat on reload, when it destroys regions with snapshots pending: WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140 CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580 RIP: 0010:devlink_region_snapshot_del+0x12e/0x140 Call Trace: <TASK> devl_region_destroy+0x70/0x140 nsim_dev_reload_down+0x2f/0x60 [netdevsim] devlink_reload+0x1f7/0x360 devlink_nl_cmd_reload+0x6ce/0x860 genl_family_rcv_msg_doit.isra.0+0x145/0x1c0 This is the locking assert in devlink_region_snapshot_del(), we're supposed to be holding the region->snapshot_lock here. | ||||
| CVE-2023-54043 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommufd: Do not add the same hwpt to the ioas->hwpt_list twice The hwpt is added to the hwpt_list only during its creation, it is never added again. This hunk is some missed leftover from rework. Adding it twice will corrupt the linked list in some cases. It effects HWPT specific attachment, which is something the test suite cannot cover until we can create a legitimate struct device with a non-system iommu "driver" (ie we need the bus removed from the iommu code) | ||||
| CVE-2022-50734 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: nvmem: core: Fix memleak in nvmem_register() dev_set_name will alloc memory for nvmem->dev.kobj.name in nvmem_register, when nvmem_validate_keepouts failed, nvmem's memory will be freed and return, but nobody will free memory for nvmem->dev.kobj.name, there will be memleak, so moving nvmem_validate_keepouts() after device_register() and let the device core deal with cleaning name in error cases. | ||||
| CVE-2022-50761 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: x86/xen: Fix memory leak in xen_init_lock_cpu() In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(), if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead to a memory leak issue, fix it. | ||||
| CVE-2023-54128 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: fs: drop peer group ids under namespace lock When cleaning up peer group ids in the failure path we need to make sure to hold on to the namespace lock. Otherwise another thread might just turn the mount from a shared into a non-shared mount concurrently. | ||||