| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: core: Run atomic i2c xfer when !preemptible
Since bae1d3a05a8b, i2c transfers are non-atomic if preemption is
disabled. However, non-atomic i2c transfers require preemption (e.g. in
wait_for_completion() while waiting for the DMA).
panic() calls preempt_disable_notrace() before calling
emergency_restart(). Therefore, if an i2c device is used for the
restart, the xfer should be atomic. This avoids warnings like:
[ 12.667612] WARNING: CPU: 1 PID: 1 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x33c/0x6b0
[ 12.676926] Voluntary context switch within RCU read-side critical section!
...
[ 12.742376] schedule_timeout from wait_for_completion_timeout+0x90/0x114
[ 12.749179] wait_for_completion_timeout from tegra_i2c_wait_completion+0x40/0x70
...
[ 12.994527] atomic_notifier_call_chain from machine_restart+0x34/0x58
[ 13.001050] machine_restart from panic+0x2a8/0x32c
Use !preemptible() instead, which is basically the same check as
pre-v5.2. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: pcrypt - Fix hungtask for PADATA_RESET
We found a hungtask bug in test_aead_vec_cfg as follows:
INFO: task cryptomgr_test:391009 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Call trace:
__switch_to+0x98/0xe0
__schedule+0x6c4/0xf40
schedule+0xd8/0x1b4
schedule_timeout+0x474/0x560
wait_for_common+0x368/0x4e0
wait_for_completion+0x20/0x30
wait_for_completion+0x20/0x30
test_aead_vec_cfg+0xab4/0xd50
test_aead+0x144/0x1f0
alg_test_aead+0xd8/0x1e0
alg_test+0x634/0x890
cryptomgr_test+0x40/0x70
kthread+0x1e0/0x220
ret_from_fork+0x10/0x18
Kernel panic - not syncing: hung_task: blocked tasks
For padata_do_parallel, when the return err is 0 or -EBUSY, it will call
wait_for_completion(&wait->completion) in test_aead_vec_cfg. In normal
case, aead_request_complete() will be called in pcrypt_aead_serial and the
return err is 0 for padata_do_parallel. But, when pinst->flags is
PADATA_RESET, the return err is -EBUSY for padata_do_parallel, and it
won't call aead_request_complete(). Therefore, test_aead_vec_cfg will
hung at wait_for_completion(&wait->completion), which will cause
hungtask.
The problem comes as following:
(padata_do_parallel) |
rcu_read_lock_bh(); |
err = -EINVAL; | (padata_replace)
| pinst->flags |= PADATA_RESET;
err = -EBUSY |
if (pinst->flags & PADATA_RESET) |
rcu_read_unlock_bh() |
return err
In order to resolve the problem, we replace the return err -EBUSY with
-EAGAIN, which means parallel_data is changing, and the caller should call
it again.
v3:
remove retry and just change the return err.
v2:
introduce padata_try_do_parallel() in pcrypt_aead_encrypt and
pcrypt_aead_decrypt to solve the hungtask. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: lis3lv02d_i2c: Fix regulators getting en-/dis-abled twice on suspend/resume
When not configured for wakeup lis3lv02d_i2c_suspend() will call
lis3lv02d_poweroff() even if the device has already been turned off
by the runtime-suspend handler and if configured for wakeup and
the device is runtime-suspended at this point then it is not turned
back on to serve as a wakeup source.
Before commit b1b9f7a49440 ("misc: lis3lv02d_i2c: Add missing setting
of the reg_ctrl callback"), lis3lv02d_poweroff() failed to disable
the regulators which as a side effect made calling poweroff() twice ok.
Now that poweroff() correctly disables the regulators, doing this twice
triggers a WARN() in the regulator core:
unbalanced disables for regulator-dummy
WARNING: CPU: 1 PID: 92 at drivers/regulator/core.c:2999 _regulator_disable
...
Fix lis3lv02d_i2c_suspend() to not call poweroff() a second time if
already runtime-suspended and add a poweron() call when necessary to
make wakeup work.
lis3lv02d_i2c_resume() has similar issues, with an added weirness that
it always powers on the device if it is runtime suspended, after which
the first runtime-resume will call poweron() again, causing the enabled
count for the regulator to increase by 1 every suspend/resume. These
unbalanced regulator_enable() calls cause the regulator to never
be turned off and trigger the following WARN() on driver unbind:
WARNING: CPU: 1 PID: 1724 at drivers/regulator/core.c:2396 _regulator_put
Fix this by making lis3lv02d_i2c_resume() mirror the new suspend(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't set the MFP flag for the GTK
The firmware doesn't need the MFP flag for the GTK, it can even make the
firmware crash. in case the AP is configured with: group cipher TKIP and
MFPC. We would send the GTK with cipher = TKIP and MFP which is of course
not possible. |
| In the Linux kernel, the following vulnerability has been resolved:
md/md-bitmap: fix incorrect usage for sb_index
Commit d7038f951828 ("md-bitmap: don't use ->index for pages backing the
bitmap file") removed page->index from bitmap code, but left wrong code
logic for clustered-md. current code never set slot offset for cluster
nodes, will sometimes cause crash in clustered env.
Call trace (partly):
md_bitmap_file_set_bit+0x110/0x1d8 [md_mod]
md_bitmap_startwrite+0x13c/0x240 [md_mod]
raid1_make_request+0x6b0/0x1c08 [raid1]
md_handle_request+0x1dc/0x368 [md_mod]
md_submit_bio+0x80/0xf8 [md_mod]
__submit_bio+0x178/0x300
submit_bio_noacct_nocheck+0x11c/0x338
submit_bio_noacct+0x134/0x614
submit_bio+0x28/0xdc
submit_bh_wbc+0x130/0x1cc
submit_bh+0x1c/0x28 |
| In the Linux kernel, the following vulnerability has been resolved:
dm-raid: really frozen sync_thread during suspend
1) commit f52f5c71f3d4 ("md: fix stopping sync thread") remove
MD_RECOVERY_FROZEN from __md_stop_writes() and doesn't realize that
dm-raid relies on __md_stop_writes() to frozen sync_thread
indirectly. Fix this problem by adding MD_RECOVERY_FROZEN in
md_stop_writes(), and since stop_sync_thread() is only used for
dm-raid in this case, also move stop_sync_thread() to
md_stop_writes().
2) The flag MD_RECOVERY_FROZEN doesn't mean that sync thread is frozen,
it only prevent new sync_thread to start, and it can't stop the
running sync thread; In order to frozen sync_thread, after seting the
flag, stop_sync_thread() should be used.
3) The flag MD_RECOVERY_FROZEN doesn't mean that writes are stopped, use
it as condition for md_stop_writes() in raid_postsuspend() doesn't
look correct. Consider that reentrant stop_sync_thread() do nothing,
always call md_stop_writes() in raid_postsuspend().
4) raid_message can set/clear the flag MD_RECOVERY_FROZEN at anytime,
and if MD_RECOVERY_FROZEN is cleared while the array is suspended,
new sync_thread can start unexpected. Fix this by disallow
raid_message() to change sync_thread status during suspend.
Note that after commit f52f5c71f3d4 ("md: fix stopping sync thread"), the
test shell/lvconvert-raid-reshape.sh start to hang in stop_sync_thread(),
and with previous fixes, the test won't hang there anymore, however, the
test will still fail and complain that ext4 is corrupted. And with this
patch, the test won't hang due to stop_sync_thread() or fail due to ext4
is corrupted anymore. However, there is still a deadlock related to
dm-raid456 that will be fixed in following patches. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring: Fix release of pinned pages when __io_uaddr_map fails
Looking at the error path of __io_uaddr_map, if we fail after pinning
the pages for any reasons, ret will be set to -EINVAL and the error
handler won't properly release the pinned pages.
I didn't manage to trigger it without forcing a failure, but it can
happen in real life when memory is heavily fragmented. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vmwgfx: Fix the lifetime of the bo cursor memory
The cleanup can be dispatched while the atomic update is still active,
which means that the memory acquired in the atomic update needs to
not be invalidated by the cleanup. The buffer objects in vmw_plane_state
instead of using the builtin map_and_cache were trying to handle
the lifetime of the mapped memory themselves, leading to crashes.
Use the map_and_cache instead of trying to manage the lifetime of the
buffer objects held by the vmw_plane_state.
Fixes kernel oops'es in IGT's kms_cursor_legacy forked-bo. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: amdgpu_ttm_gart_bind set gtt bound flag
Otherwise after the GTT bo is released, the GTT and gart space is freed
but amdgpu_ttm_backend_unbind will not clear the gart page table entry
and leave valid mapping entry pointing to the stale system page. Then
if GPU access the gart address mistakely, it will read undefined value
instead page fault, harder to debug and reproduce the real issue. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: config: fix iteration issue in 'usb_get_bos_descriptor()'
The BOS descriptor defines a root descriptor and is the base descriptor for
accessing a family of related descriptors.
Function 'usb_get_bos_descriptor()' encounters an iteration issue when
skipping the 'USB_DT_DEVICE_CAPABILITY' descriptor type. This results in
the same descriptor being read repeatedly.
To address this issue, a 'goto' statement is introduced to ensure that the
pointer and the amount read is updated correctly. This ensures that the
function iterates to the next descriptor instead of reading the same
descriptor repeatedly. |
| In the Linux kernel, the following vulnerability has been resolved:
bonding: stop the device in bond_setup_by_slave()
Commit 9eed321cde22 ("net: lapbether: only support ethernet devices")
has been able to keep syzbot away from net/lapb, until today.
In the following splat [1], the issue is that a lapbether device has
been created on a bonding device without members. Then adding a non
ARPHRD_ETHER member forced the bonding master to change its type.
The fix is to make sure we call dev_close() in bond_setup_by_slave()
so that the potential linked lapbether devices (or any other devices
having assumptions on the physical device) are removed.
A similar bug has been addressed in commit 40baec225765
("bonding: fix panic on non-ARPHRD_ETHER enslave failure")
[1]
skbuff: skb_under_panic: text:ffff800089508810 len:44 put:40 head:ffff0000c78e7c00 data:ffff0000c78e7bea tail:0x16 end:0x140 dev:bond0
kernel BUG at net/core/skbuff.c:192 !
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 6007 Comm: syz-executor383 Not tainted 6.6.0-rc3-syzkaller-gbf6547d8715b #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/04/2023
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : skb_panic net/core/skbuff.c:188 [inline]
pc : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
lr : skb_panic net/core/skbuff.c:188 [inline]
lr : skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
sp : ffff800096a06aa0
x29: ffff800096a06ab0 x28: ffff800096a06ba0 x27: dfff800000000000
x26: ffff0000ce9b9b50 x25: 0000000000000016 x24: ffff0000c78e7bea
x23: ffff0000c78e7c00 x22: 000000000000002c x21: 0000000000000140
x20: 0000000000000028 x19: ffff800089508810 x18: ffff800096a06100
x17: 0000000000000000 x16: ffff80008a629a3c x15: 0000000000000001
x14: 1fffe00036837a32 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000201 x10: 0000000000000000 x9 : cb50b496c519aa00
x8 : cb50b496c519aa00 x7 : 0000000000000001 x6 : 0000000000000001
x5 : ffff800096a063b8 x4 : ffff80008e280f80 x3 : ffff8000805ad11c
x2 : 0000000000000001 x1 : 0000000100000201 x0 : 0000000000000086
Call trace:
skb_panic net/core/skbuff.c:188 [inline]
skb_under_panic+0x13c/0x140 net/core/skbuff.c:202
skb_push+0xf0/0x108 net/core/skbuff.c:2446
ip6gre_header+0xbc/0x738 net/ipv6/ip6_gre.c:1384
dev_hard_header include/linux/netdevice.h:3136 [inline]
lapbeth_data_transmit+0x1c4/0x298 drivers/net/wan/lapbether.c:257
lapb_data_transmit+0x8c/0xb0 net/lapb/lapb_iface.c:447
lapb_transmit_buffer+0x178/0x204 net/lapb/lapb_out.c:149
lapb_send_control+0x220/0x320 net/lapb/lapb_subr.c:251
__lapb_disconnect_request+0x9c/0x17c net/lapb/lapb_iface.c:326
lapb_device_event+0x288/0x4e0 net/lapb/lapb_iface.c:492
notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93
raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461
call_netdevice_notifiers_info net/core/dev.c:1970 [inline]
call_netdevice_notifiers_extack net/core/dev.c:2008 [inline]
call_netdevice_notifiers net/core/dev.c:2022 [inline]
__dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508
dev_close_many+0x1e0/0x470 net/core/dev.c:1559
dev_close+0x174/0x250 net/core/dev.c:1585
lapbeth_device_event+0x2e4/0x958 drivers/net/wan/lapbether.c:466
notifier_call_chain+0x1a4/0x510 kernel/notifier.c:93
raw_notifier_call_chain+0x3c/0x50 kernel/notifier.c:461
call_netdevice_notifiers_info net/core/dev.c:1970 [inline]
call_netdevice_notifiers_extack net/core/dev.c:2008 [inline]
call_netdevice_notifiers net/core/dev.c:2022 [inline]
__dev_close_many+0x1b8/0x3c4 net/core/dev.c:1508
dev_close_many+0x1e0/0x470 net/core/dev.c:1559
dev_close+0x174/0x250 net/core/dev.c:1585
bond_enslave+0x2298/0x30cc drivers/net/bonding/bond_main.c:2332
bond_do_ioctl+0x268/0xc64 drivers/net/bonding/bond_main.c:4539
dev_ifsioc+0x754/0x9ac
dev_ioctl+0x4d8/0xd34 net/core/dev_ioctl.c:786
sock_do_ioctl+0x1d4/0x2d0 net/socket.c:1217
sock_ioctl+0x4e8/0x834 net/socket.c:1322
vfs_ioctl fs/ioctl.c:51 [inline]
__do_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: sof_sdw_rt_sdca_jack_common: ctx->headset_codec_dev = NULL
sof_sdw_rt_sdca_jack_exit() are used by different codecs, and some of
them use the same dai name.
For example, rt712 and rt713 both use "rt712-sdca-aif1" and
sof_sdw_rt_sdca_jack_exit().
As a result, sof_sdw_rt_sdca_jack_exit() will be called twice by
mc_dailink_exit_loop(). Set ctx->headset_codec_dev = NULL; after
put_device(ctx->headset_codec_dev); to avoid ctx->headset_codec_dev
being put twice. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Guard stack limits against 32bit overflow
This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.
[1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498
[2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904 |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add missing error checks to *_ctl_get()
The *_ctl_get() functions which call scarlett2_update_*() were not
checking the return value. Fix to check the return value and pass to
the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add missing mutex lock around get meter levels
As scarlett2_meter_ctl_get() uses meter_level_map[], the data_mutex
should be locked while accessing it. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: fix program check interrupt emergency stack path
Emergency stack path was jumping into a 3: label inside the
__GEN_COMMON_BODY macro for the normal path after it had finished,
rather than jumping over it. By a small miracle this is the correct
place to build up a new interrupt frame with the existing stack
pointer, so things basically worked okay with an added weird looking
700 trap frame on top (which had the wrong ->nip so it didn't decode
bug messages either).
Fix this by avoiding using numeric labels when jumping over non-trivial
macros.
Before:
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 88 Comm: sh Not tainted 5.15.0-rc2-00034-ge057cdade6e5 #2637
NIP: 7265677368657265 LR: c00000000006c0c8 CTR: c0000000000097f0
REGS: c0000000fffb3a50 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 00000700 XER: 20040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006c964 c0000000fffb3cf0 c000000001513800 0000000000000000
GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299
GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8
GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001
GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8
GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158
GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300
GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80
NIP [7265677368657265] 0x7265677368657265
LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10
Call Trace:
[c0000000fffb3cf0] [c00000000000bdac] soft_nmi_common+0x13c/0x1d0 (unreliable)
--- interrupt: 700 at decrementer_common_virt+0xb8/0x230
NIP: c0000000000098b8 LR: c00000000006c0c8 CTR: c0000000000097f0
REGS: c0000000fffb3d60 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 22424282 XER: 20040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006c964 0000000000002400 c000000001513800 0000000000000000
GPR04: 0000000048ab0778 0000000042000000 0000000000000000 0000000000001299
GPR08: 000001e447c718ec 0000000022424282 0000000000002710 c00000000006bee8
GPR12: 9000000000009033 c0000000016b0000 00000000000000b0 0000000000000001
GPR16: 0000000000000000 0000000000000002 0000000000000000 0000000000000ff8
GPR20: 0000000000001fff 0000000000000007 0000000000000080 00007fff89d90158
GPR24: 0000000002000000 0000000002000000 0000000000000255 0000000000000300
GPR28: c000000001270000 0000000042000000 0000000048ab0778 c000000080647e80
NIP [c0000000000098b8] decrementer_common_virt+0xb8/0x230
LR [c00000000006c0c8] ___do_page_fault+0x3f8/0xb10
--- interrupt: 700
Instruction dump:
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX
---[ end trace 6d28218e0cc3c949 ]---
After:
------------[ cut here ]------------
kernel BUG at arch/powerpc/kernel/exceptions-64s.S:491!
Oops: Exception in kernel mode, sig: 5 [#1]
LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in:
CPU: 0 PID: 88 Comm: login Not tainted 5.15.0-rc2-00034-ge057cdade6e5-dirty #2638
NIP: c0000000000098b8 LR: c00000000006bf04 CTR: c0000000000097f0
REGS: c0000000fffb3d60 TRAP: 0700 Not tainted
MSR: 9000000000021031 <SF,HV,ME,IR,DR,LE> CR: 24482227 XER: 00040000
CFAR: c0000000000098b0 IRQMASK: 0
GPR00: c00000000006bf04 0000000000002400 c000000001513800 c000000001271868
GPR04: 00000000100f0d29 0000000042000000 0000000000000007 0000000000000009
GPR08: 00000000100f0d29 0000000024482227 0000000000002710 c000000000181b3c
GPR12: 9000000000009033 c0000000016b0000 00000000100f0d29 c000000005b22f00
GPR16: 00000000ffff0000 0000000000000001 0000000000000009 00000000100eed90
GPR20: 00000000100eed90 00000
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64s: Fix unrecoverable MCE calling async handler from NMI
The machine check handler is not considered NMI on 64s. The early
handler is the true NMI handler, and then it schedules the
machine_check_exception handler to run when interrupts are enabled.
This works fine except the case of an unrecoverable MCE, where the true
NMI is taken when MSR[RI] is clear, it can not recover, so it calls
machine_check_exception directly so something might be done about it.
Calling an async handler from NMI context can result in irq state and
other things getting corrupted. This can also trigger the BUG at
arch/powerpc/include/asm/interrupt.h:168
BUG_ON(!arch_irq_disabled_regs(regs) && !(regs->msr & MSR_EE));
Fix this by making an _async version of the handler which is called
in the normal case, and a NMI version that is called for unrecoverable
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/mm: Ensure input to pfn_to_kaddr() is treated as a 64-bit type
On 64-bit platforms, the pfn_to_kaddr() macro requires that the input
value is 64 bits in order to ensure that valid address bits don't get
lost when shifting that input by PAGE_SHIFT to calculate the physical
address to provide a virtual address for.
One such example is in pvalidate_pages() (used by SEV-SNP guests), where
the GFN in the struct used for page-state change requests is a 40-bit
bit-field, so attempts to pass this GFN field directly into
pfn_to_kaddr() ends up causing guest crashes when dealing with addresses
above the 1TB range due to the above.
Fix this issue with SEV-SNP guests, as well as any similar cases that
might cause issues in current/future code, by using an inline function,
instead of a macro, so that the input is implicitly cast to the
expected 64-bit input type prior to performing the shift operation.
While it might be argued that the issue is on the caller side, other
archs/macros have taken similar approaches to deal with instances like
this, such as ARM explicitly casting the input to phys_addr_t:
e48866647b48 ("ARM: 8396/1: use phys_addr_t in pfn_to_kaddr()")
A C inline function is even better though.
[ mingo: Refined the changelog some more & added __always_inline. ] |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: do not allow call hns3_nic_net_open repeatedly
hns3_nic_net_open() is not allowed to called repeatly, but there
is no checking for this. When doing device reset and setup tc
concurrently, there is a small oppotunity to call hns3_nic_net_open
repeatedly, and cause kernel bug by calling napi_enable twice.
The calltrace information is like below:
[ 3078.222780] ------------[ cut here ]------------
[ 3078.230255] kernel BUG at net/core/dev.c:6991!
[ 3078.236224] Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[ 3078.243431] Modules linked in: hns3 hclgevf hclge hnae3 vfio_iommu_type1 vfio_pci vfio_virqfd vfio pv680_mii(O)
[ 3078.258880] CPU: 0 PID: 295 Comm: kworker/u8:5 Tainted: G O 5.14.0-rc4+ #1
[ 3078.269102] Hardware name: , BIOS KpxxxFPGA 1P B600 V181 08/12/2021
[ 3078.276801] Workqueue: hclge hclge_service_task [hclge]
[ 3078.288774] pstate: 60400009 (nZCv daif +PAN -UAO -TCO BTYPE=--)
[ 3078.296168] pc : napi_enable+0x80/0x84
tc qdisc sho[w 3d0e7v8 .e3t0h218 79] lr : hns3_nic_net_open+0x138/0x510 [hns3]
[ 3078.314771] sp : ffff8000108abb20
[ 3078.319099] x29: ffff8000108abb20 x28: 0000000000000000 x27: ffff0820a8490300
[ 3078.329121] x26: 0000000000000001 x25: ffff08209cfc6200 x24: 0000000000000000
[ 3078.339044] x23: ffff0820a8490300 x22: ffff08209cd76000 x21: ffff0820abfe3880
[ 3078.349018] x20: 0000000000000000 x19: ffff08209cd76900 x18: 0000000000000000
[ 3078.358620] x17: 0000000000000000 x16: ffffc816e1727a50 x15: 0000ffff8f4ff930
[ 3078.368895] x14: 0000000000000000 x13: 0000000000000000 x12: 0000259e9dbeb6b4
[ 3078.377987] x11: 0096a8f7e764eb40 x10: 634615ad28d3eab5 x9 : ffffc816ad8885b8
[ 3078.387091] x8 : ffff08209cfc6fb8 x7 : ffff0820ac0da058 x6 : ffff0820a8490344
[ 3078.396356] x5 : 0000000000000140 x4 : 0000000000000003 x3 : ffff08209cd76938
[ 3078.405365] x2 : 0000000000000000 x1 : 0000000000000010 x0 : ffff0820abfe38a0
[ 3078.414657] Call trace:
[ 3078.418517] napi_enable+0x80/0x84
[ 3078.424626] hns3_reset_notify_up_enet+0x78/0xd0 [hns3]
[ 3078.433469] hns3_reset_notify+0x64/0x80 [hns3]
[ 3078.441430] hclge_notify_client+0x68/0xb0 [hclge]
[ 3078.450511] hclge_reset_rebuild+0x524/0x884 [hclge]
[ 3078.458879] hclge_reset_service_task+0x3c4/0x680 [hclge]
[ 3078.467470] hclge_service_task+0xb0/0xb54 [hclge]
[ 3078.475675] process_one_work+0x1dc/0x48c
[ 3078.481888] worker_thread+0x15c/0x464
[ 3078.487104] kthread+0x160/0x170
[ 3078.492479] ret_from_fork+0x10/0x18
[ 3078.498785] Code: c8027c81 35ffffa2 d50323bf d65f03c0 (d4210000)
[ 3078.506889] ---[ end trace 8ebe0340a1b0fb44 ]---
Once hns3_nic_net_open() is excute success, the flag
HNS3_NIC_STATE_DOWN will be cleared. So add checking for this
flag, directly return when HNS3_NIC_STATE_DOWN is no set. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/secretmem: fix GUP-fast succeeding on secretmem folios
folio_is_secretmem() currently relies on secretmem folios being LRU
folios, to save some cycles.
However, folios might reside in a folio batch without the LRU flag set, or
temporarily have their LRU flag cleared. Consequently, the LRU flag is
unreliable for this purpose.
In particular, this is the case when secretmem_fault() allocates a fresh
page and calls filemap_add_folio()->folio_add_lru(). The folio might be
added to the per-cpu folio batch and won't get the LRU flag set until the
batch was drained using e.g., lru_add_drain().
Consequently, folio_is_secretmem() might not detect secretmem folios and
GUP-fast can succeed in grabbing a secretmem folio, crashing the kernel
when we would later try reading/writing to the folio, because the folio
has been unmapped from the directmap.
Fix it by removing that unreliable check. |