| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Adobe Acrobat Reader versions 11.0.19 and earlier, 15.006.30280 and earlier, 15.023.20070 and earlier have a memory address leak vulnerability in the JPEG 2000 parser, related to contiguous code-stream parsing. |
| Adobe Flash Player versions 25.0.0.127 and earlier have an exploitable memory corruption vulnerability in the ActionScript2 code parser. Successful exploitation could lead to arbitrary code execution. |
| An issue was discovered in Adobe Flash Player 27.0.0.183 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of AdobePSDK metadata. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. |
| An issue was discovered in Adobe Flash Player 27.0.0.183 and earlier versions. This vulnerability occurs as a result of a computation that reads data that is past the end of the target buffer; the computation is part of providing language- and region- or country- specific functionality. The use of an invalid (out-of-range) pointer offset during access of internal data structure fields causes the vulnerability. A successful attack can lead to sensitive data exposure. |
| Vulnerability in the Java SE, Java SE Embedded component of Oracle Java SE (subcomponent: Networking). Supported versions that are affected are Java SE: 6u131, 7u121 and 8u112; Java SE Embedded: 8u111. Easily exploitable vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Java SE, Java SE Embedded. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized read access to a subset of Java SE, Java SE Embedded accessible data. Note: This vulnerability applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. This vulnerability does not apply to Java deployments, typically in servers, that load and run only trusted code (e.g., code installed by an administrator). CVSS v3.0 Base Score 4.3 (Confidentiality impacts). |
| VMware Workstation Pro/Player 12.x before 12.5.3 contains a security vulnerability that exists in the SVGA driver. An attacker may exploit this issue to crash the VM or trigger an out-of-bound read. Note: This issue can be triggered only when the host has no graphics card or no graphics drivers are installed. |
| VMware Workstation (12.x prior to 12.5.3) and Horizon View Client (4.x prior to 4.4.0) contain multiple out-of-bounds read vulnerabilities in JPEG2000 parser in the TPView.dll. On Workstation, this may allow a guest to execute code or perform a Denial of Service on the Windows OS that runs Workstation. In the case of a Horizon View Client, this may allow a View desktop to execute code or perform a Denial of Service on the Windows OS that runs the Horizon View Client. Exploitation is only possible if virtual printing has been enabled. This feature is not enabled by default on Workstation but it is enabled by default on Horizon View. |
| VMware Workstation (12.x before 12.5.8) and Horizon View Client for Windows (4.x before 4.6.1) contain an out-of-bounds read vulnerability in JPEG2000 parser in the TPView.dll. On Workstation, this may allow a guest to execute code or perform a Denial of Service on the Windows OS that runs Workstation. In the case of a Horizon View Client, this may allow a View desktop to execute code or perform a Denial of Service on the Windows OS that runs the Horizon View Client. Exploitation is only possible if virtual printing has been enabled. This feature is not enabled by default on Workstation but it is enabled by default on Horizon View Client. |
| A use after free in printing in Google Chrome prior to 57.0.2987.133 for Linux and Windows allowed a remote attacker to perform an out of bounds memory read via a crafted HTML page. |
| An out-of-bounds read in V8 in Google Chrome prior to 57.0.2987.133 for Linux, Windows, and Mac, and 57.0.2987.132 for Android, allowed a remote attacker to obtain heap memory contents via a crafted HTML page. |
| libdwarf before 20160923 allows remote attackers to cause a denial of service (out-of-bounds read and crash) via a large length value in a compilation unit header. |
| The jpc_undo_roi function in libjasper/jpc/jpc_dec.c in JasPer 1.900.27 allows remote attackers to cause a denial of service (invalid memory read and crash) via a crafted image. |
| The gst_avi_demux_parse_ncdt function in gst/avi/gstavidemux.c in gst-plugins-good in GStreamer before 1.10.3 allows remote attackers to cause a denial of service (out-of-bounds heap read) via vectors involving ncdt tags. |
| An issue was discovered in tnef before 1.4.13. Four type confusions have been identified in the file_add_mapi_attrs() function. These might lead to invalid read and write operations, controlled by an attacker. |
| A vulnerability in the Simple Network Management Protocol (SNMP) subsystem of Cisco IOS XE 3.16 could allow an authenticated, remote attacker to cause a denial of service (DoS) condition. The vulnerability is due to a race condition that could occur when the affected software processes an SNMP read request that contains certain criteria for a specific object ID (OID) and an active crypto session is disconnected on an affected device. An attacker who can authenticate to an affected device could trigger this vulnerability by issuing an SNMP request for a specific OID on the device. A successful exploit will cause the device to restart due to an attempt to access an invalid memory region. The attacker does not control how or when crypto sessions are disconnected on the device. Cisco Bug IDs: CSCvb94392. |
| Cisco Sourcefire Snort 3.0 before build 233 has a Buffer Overread related to use of a decoder array. The size was off by one making it possible to read past the end of the array with an ether type of 0xFFFF. Increasing the array size solves this problem. |
| An issue was discovered in ytnef before 1.9.2. There is a potential out-of-bounds access with fields of Size 0 in TNEFParse() in libytnef. |
| An issue was discovered in ytnef before 1.9.2. There is a potential heap-based buffer over-read on incoming Compressed RTF Streams, related to DecompressRTF() in libytnef. |
| In libsndfile version 1.0.28, an error in the "aiff_read_chanmap()" function (aiff.c) can be exploited to cause an out-of-bounds read memory access via a specially crafted AIFF file. |
| An issue was discovered in certain Apple products. iOS before 10.3.3 is affected. macOS before 10.12.6 is affected. iCloud before 6.2.2 on Windows is affected. iTunes before 12.6.2 on Windows is affected. tvOS before 10.2.2 is affected. The issue involves the "libxml2" component. It allows remote attackers to obtain sensitive information or cause a denial of service (out-of-bounds read and application crash) via a crafted XML file. |