| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix monitor mode bringup crash
When the interface is brought up in monitor mode, it leads
to NULL pointer dereference crash. This crash happens when
the packet type is extracted for a SKB. This extraction
which is present in the received msdu delivery path,is
not needed for the monitor ring packets since they are
all RAW packets. Hence appending the flags with
"RX_FLAG_ONLY_MONITOR" to skip that extraction.
Observed calltrace:
Unable to handle kernel NULL pointer dereference at virtual address
0000000000000064
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=0000000048517000
[0000000000000064] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in: ath11k_pci ath11k qmi_helpers
CPU: 2 PID: 1781 Comm: napi/-271 Not tainted
6.1.0-rc5-wt-ath-656295-gef907406320c-dirty #6
Hardware name: Qualcomm Technologies, Inc. IPQ8074/AP-HK10-C2 (DT)
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : ath11k_hw_qcn9074_rx_desc_get_decap_type+0x34/0x60 [ath11k]
lr : ath11k_hw_qcn9074_rx_desc_get_decap_type+0x5c/0x60 [ath11k]
sp : ffff80000ef5bb10
x29: ffff80000ef5bb10 x28: 0000000000000000 x27: ffff000007baafa0
x26: ffff000014a91ed0 x25: 0000000000000000 x24: 0000000000000000
x23: ffff800002b77378 x22: ffff000014a91ec0 x21: ffff000006c8d600
x20: 0000000000000000 x19: ffff800002b77740 x18: 0000000000000006
x17: 736564203634343a x16: 656e694c20657079 x15: 0000000000000143
x14: 00000000ffffffea x13: ffff80000ef5b8b8 x12: ffff80000ef5b8c8
x11: ffff80000a591d30 x10: ffff80000a579d40 x9 : c0000000ffffefff
x8 : 0000000000000003 x7 : 0000000000017fe8 x6 : ffff80000a579ce8
x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000
x2 : 3a35ec12ed7f8900 x1 : 0000000000000000 x0 : 0000000000000052
Call trace:
ath11k_hw_qcn9074_rx_desc_get_decap_type+0x34/0x60 [ath11k]
ath11k_dp_rx_deliver_msdu.isra.42+0xa4/0x3d0 [ath11k]
ath11k_dp_rx_mon_deliver.isra.43+0x2f8/0x458 [ath11k]
ath11k_dp_rx_process_mon_rings+0x310/0x4c0 [ath11k]
ath11k_dp_service_srng+0x234/0x338 [ath11k]
ath11k_pcic_ext_grp_napi_poll+0x30/0xb8 [ath11k]
__napi_poll+0x5c/0x190
napi_threaded_poll+0xf0/0x118
kthread+0xf4/0x110
ret_from_fork+0x10/0x20
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/meson: explicitly remove aggregate driver at module unload time
Because component_master_del wasn't being called when unloading the
meson_drm module, the aggregate device would linger forever in the global
aggregate_devices list. That means when unloading and reloading the
meson_dw_hdmi module, component_add would call into
try_to_bring_up_aggregate_device and find the unbound meson_drm aggregate
device.
This would in turn dereference some of the aggregate_device's struct
entries which point to memory automatically freed by the devres API when
unbinding the aggregate device from meson_drv_unbind, and trigger an
use-after-free bug:
[ +0.000014] =============================================================
[ +0.000007] BUG: KASAN: use-after-free in find_components+0x468/0x500
[ +0.000017] Read of size 8 at addr ffff000006731688 by task modprobe/2536
[ +0.000018] CPU: 4 PID: 2536 Comm: modprobe Tainted: G C O 5.19.0-rc6-lrmbkasan+ #1
[ +0.000010] Hardware name: Hardkernel ODROID-N2Plus (DT)
[ +0.000008] Call trace:
[ +0.000005] dump_backtrace+0x1ec/0x280
[ +0.000011] show_stack+0x24/0x80
[ +0.000007] dump_stack_lvl+0x98/0xd4
[ +0.000010] print_address_description.constprop.0+0x80/0x520
[ +0.000011] print_report+0x128/0x260
[ +0.000007] kasan_report+0xb8/0xfc
[ +0.000007] __asan_report_load8_noabort+0x3c/0x50
[ +0.000009] find_components+0x468/0x500
[ +0.000008] try_to_bring_up_aggregate_device+0x64/0x390
[ +0.000009] __component_add+0x1dc/0x49c
[ +0.000009] component_add+0x20/0x30
[ +0.000008] meson_dw_hdmi_probe+0x28/0x34 [meson_dw_hdmi]
[ +0.000013] platform_probe+0xd0/0x220
[ +0.000008] really_probe+0x3ac/0xa80
[ +0.000008] __driver_probe_device+0x1f8/0x400
[ +0.000008] driver_probe_device+0x68/0x1b0
[ +0.000008] __driver_attach+0x20c/0x480
[ +0.000009] bus_for_each_dev+0x114/0x1b0
[ +0.000007] driver_attach+0x48/0x64
[ +0.000009] bus_add_driver+0x390/0x564
[ +0.000007] driver_register+0x1a8/0x3e4
[ +0.000009] __platform_driver_register+0x6c/0x94
[ +0.000007] meson_dw_hdmi_platform_driver_init+0x30/0x1000 [meson_dw_hdmi]
[ +0.000014] do_one_initcall+0xc4/0x2b0
[ +0.000008] do_init_module+0x154/0x570
[ +0.000010] load_module+0x1a78/0x1ea4
[ +0.000008] __do_sys_init_module+0x184/0x1cc
[ +0.000008] __arm64_sys_init_module+0x78/0xb0
[ +0.000008] invoke_syscall+0x74/0x260
[ +0.000008] el0_svc_common.constprop.0+0xcc/0x260
[ +0.000009] do_el0_svc+0x50/0x70
[ +0.000008] el0_svc+0x68/0x1a0
[ +0.000009] el0t_64_sync_handler+0x11c/0x150
[ +0.000009] el0t_64_sync+0x18c/0x190
[ +0.000014] Allocated by task 902:
[ +0.000007] kasan_save_stack+0x2c/0x5c
[ +0.000009] __kasan_kmalloc+0x90/0xd0
[ +0.000007] __kmalloc_node+0x240/0x580
[ +0.000010] memcg_alloc_slab_cgroups+0xa4/0x1ac
[ +0.000010] memcg_slab_post_alloc_hook+0xbc/0x4c0
[ +0.000008] kmem_cache_alloc_node+0x1d0/0x490
[ +0.000009] __alloc_skb+0x1d4/0x310
[ +0.000010] alloc_skb_with_frags+0x8c/0x620
[ +0.000008] sock_alloc_send_pskb+0x5ac/0x6d0
[ +0.000010] unix_dgram_sendmsg+0x2e0/0x12f0
[ +0.000010] sock_sendmsg+0xcc/0x110
[ +0.000007] sock_write_iter+0x1d0/0x304
[ +0.000008] new_sync_write+0x364/0x460
[ +0.000007] vfs_write+0x420/0x5ac
[ +0.000008] ksys_write+0x19c/0x1f0
[ +0.000008] __arm64_sys_write+0x78/0xb0
[ +0.000007] invoke_syscall+0x74/0x260
[ +0.000008] el0_svc_common.constprop.0+0x1a8/0x260
[ +0.000009] do_el0_svc+0x50/0x70
[ +0.000007] el0_svc+0x68/0x1a0
[ +0.000008] el0t_64_sync_handler+0x11c/0x150
[ +0.000008] el0t_64_sync+0x18c/0x190
[ +0.000013] Freed by task 2509:
[ +0.000008] kasan_save_stack+0x2c/0x5c
[ +0.000007] kasan_set_track+0x2c/0x40
[ +0.000008] kasan_set_free_info+0x28/0x50
[ +0.000008] ____kasan_slab_free+0x128/0x1d4
[ +0.000008] __kasan_slab_free+0x18/0x24
[ +0.000007] slab_free_freelist_hook+0x108/0x230
[ +0.000010]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null-deref in dm_resume
[Why]
Fixing smatch error:
dm_resume() error: we previously assumed 'aconnector->dc_link' could be null
[How]
Check if dc_link null at the beginning of the loop,
so further checks can be dropped. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix size validation for non-exclusive domains (v4)
Fix amdgpu_bo_validate_size() to check whether the TTM domain manager for the
requested memory exists, else we get a kernel oops when dereferencing "man".
v2: Make the patch standalone, i.e. not dependent on local patches.
v3: Preserve old behaviour and just check that the manager pointer is not
NULL.
v4: Complain if GTT domain requested and it is uninitialized--most likely a
bug. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: fix oops in concurrently setting insn_emulation sysctls
emulation_proc_handler() changes table->data for proc_dointvec_minmax
and can generate the following Oops if called concurrently with itself:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
| Internal error: Oops: 96000006 [#1] SMP
| Call trace:
| update_insn_emulation_mode+0xc0/0x148
| emulation_proc_handler+0x64/0xb8
| proc_sys_call_handler+0x9c/0xf8
| proc_sys_write+0x18/0x20
| __vfs_write+0x20/0x48
| vfs_write+0xe4/0x1d0
| ksys_write+0x70/0xf8
| __arm64_sys_write+0x20/0x28
| el0_svc_common.constprop.0+0x7c/0x1c0
| el0_svc_handler+0x2c/0xa0
| el0_svc+0x8/0x200
To fix this issue, keep the table->data as &insn->current_mode and
use container_of() to retrieve the insn pointer. Another mutex is
used to protect against the current_mode update but not for retrieving
insn_emulation as table->data is no longer changing. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: compat: Do not treat syscall number as ESR_ELx for a bad syscall
If a compat process tries to execute an unknown system call above the
__ARM_NR_COMPAT_END number, the kernel sends a SIGILL signal to the
offending process. Information about the error is printed to dmesg in
compat_arm_syscall() -> arm64_notify_die() -> arm64_force_sig_fault() ->
arm64_show_signal().
arm64_show_signal() interprets a non-zero value for
current->thread.fault_code as an exception syndrome and displays the
message associated with the ESR_ELx.EC field (bits 31:26).
current->thread.fault_code is set in compat_arm_syscall() ->
arm64_notify_die() with the bad syscall number instead of a valid ESR_ELx
value. This means that the ESR_ELx.EC field has the value that the user set
for the syscall number and the kernel can end up printing bogus exception
messages*. For example, for the syscall number 0x68000000, which evaluates
to ESR_ELx.EC value of 0x1A (ESR_ELx_EC_FPAC) the kernel prints this error:
[ 18.349161] syscall[300]: unhandled exception: ERET/ERETAA/ERETAB, ESR 0x68000000, Oops - bad compat syscall(2) in syscall[10000+50000]
[ 18.350639] CPU: 2 PID: 300 Comm: syscall Not tainted 5.18.0-rc1 #79
[ 18.351249] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which is misleading, as the bad compat syscall has nothing to do with
pointer authentication.
Stop arm64_show_signal() from printing exception syndrome information by
having compat_arm_syscall() set the ESR_ELx value to 0, as it has no
meaning for an invalid system call number. The example above now becomes:
[ 19.935275] syscall[301]: unhandled exception: Oops - bad compat syscall(2) in syscall[10000+50000]
[ 19.936124] CPU: 1 PID: 301 Comm: syscall Not tainted 5.18.0-rc1-00005-g7e08006d4102 #80
[ 19.936894] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which although shows less information because the syscall number,
wrongfully advertised as the ESR value, is missing, it is better than
showing plainly wrong information. The syscall number can be easily
obtained with strace.
*A 32-bit value above or equal to 0x8000_0000 is interpreted as a negative
integer in compat_arm_syscal() and the condition scno < __ARM_NR_COMPAT_END
evaluates to true; the syscall will exit to userspace in this case with the
ENOSYS error code instead of arm64_notify_die() being called. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-rdma: fix possible use-after-free in transport error_recovery work
While nvme_rdma_submit_async_event_work is checking the ctrl and queue
state before preparing the AER command and scheduling io_work, in order
to fully prevent a race where this check is not reliable the error
recovery work must flush async_event_work before continuing to destroy
the admin queue after setting the ctrl state to RESETTING such that
there is no race .submit_async_event and the error recovery handler
itself changing the ctrl state. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix WARN_ON(lock->magic != lock) error
psb_gem_unpin() calls dma_resv_lock() but the underlying ww_mutex
gets destroyed by drm_gem_object_release() move the
drm_gem_object_release() call in psb_gem_free_object() to after
the unpin to fix the below warning:
[ 79.693962] ------------[ cut here ]------------
[ 79.693992] DEBUG_LOCKS_WARN_ON(lock->magic != lock)
[ 79.694015] WARNING: CPU: 0 PID: 240 at kernel/locking/mutex.c:582 __ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694052] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer qrtr bnep ath9k ath9k_common ath9k_hw snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel ath3k snd_intel_dspcfg mac80211 snd_intel_sdw_acpi btusb snd_hda_codec btrtl btbcm btintel btmtk bluetooth at24 snd_hda_core snd_hwdep uvcvideo snd_seq libarc4 videobuf2_vmalloc ath videobuf2_memops videobuf2_v4l2 videobuf2_common snd_seq_device videodev acer_wmi intel_powerclamp coretemp mc snd_pcm joydev sparse_keymap ecdh_generic pcspkr wmi_bmof cfg80211 i2c_i801 i2c_smbus snd_timer snd r8169 rfkill lpc_ich soundcore acpi_cpufreq zram rtsx_pci_sdmmc mmc_core serio_raw rtsx_pci gma500_gfx(E) video wmi ip6_tables ip_tables i2c_dev fuse
[ 79.694436] CPU: 0 PID: 240 Comm: plymouthd Tainted: G W E 6.0.0-rc3+ #490
[ 79.694457] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 79.694469] RIP: 0010:__ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694496] Code: ff 85 c0 0f 84 15 fb ff ff 8b 05 ca 3c 11 01 85 c0 0f 85 07 fb ff ff 48 c7 c6 30 cb 84 aa 48 c7 c7 a3 e1 82 aa e8 ac 29 f8 ff <0f> 0b e9 ed fa ff ff e8 5b 83 8a ff 85 c0 74 10 44 8b 0d 98 3c 11
[ 79.694513] RSP: 0018:ffffad1dc048bbe0 EFLAGS: 00010282
[ 79.694623] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000000
[ 79.694636] RDX: 0000000000000001 RSI: ffffffffaa8b0ffc RDI: 00000000ffffffff
[ 79.694650] RBP: ffffad1dc048bc80 R08: 0000000000000000 R09: ffffad1dc048ba90
[ 79.694662] R10: 0000000000000003 R11: ffffffffaad62fe8 R12: ffff9ff302103138
[ 79.694675] R13: ffff9ff306ec8000 R14: ffff9ff307779078 R15: ffff9ff3014c0270
[ 79.694690] FS: 00007ff1cccf1740(0000) GS:ffff9ff3bc200000(0000) knlGS:0000000000000000
[ 79.694705] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 79.694719] CR2: 0000559ecbcb4420 CR3: 0000000013210000 CR4: 00000000000006f0
[ 79.694734] Call Trace:
[ 79.694749] <TASK>
[ 79.694761] ? __schedule+0x47f/0x1670
[ 79.694796] ? psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694830] ? lock_is_held_type+0xe3/0x140
[ 79.694864] ? ww_mutex_lock+0x38/0xa0
[ 79.694885] ? __cond_resched+0x1c/0x30
[ 79.694902] ww_mutex_lock+0x38/0xa0
[ 79.694925] psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694964] psb_gem_unpin+0x199/0x1a0 [gma500_gfx]
[ 79.694996] drm_gem_object_release_handle+0x50/0x60
[ 79.695020] ? drm_gem_object_handle_put_unlocked+0xf0/0xf0
[ 79.695042] idr_for_each+0x4b/0xb0
[ 79.695066] ? _raw_spin_unlock_irqrestore+0x30/0x60
[ 79.695095] drm_gem_release+0x1c/0x30
[ 79.695118] drm_file_free.part.0+0x1ea/0x260
[ 79.695150] drm_release+0x6a/0x120
[ 79.695175] __fput+0x9f/0x260
[ 79.695203] task_work_run+0x59/0xa0
[ 79.695227] do_exit+0x387/0xbe0
[ 79.695250] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90
[ 79.695275] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695304] do_group_exit+0x33/0xb0
[ 79.695331] __x64_sys_exit_group+0x14/0x20
[ 79.695353] do_syscall_64+0x58/0x80
[ 79.695376] ? up_read+0x17/0x20
[ 79.695401] ? lock_is_held_type+0xe3/0x140
[ 79.695429] ? asm_exc_page_fault+0x22/0x30
[ 79.695450] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695473] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 79.695493] RIP: 0033:0x7ff1ccefe3f1
[ 79.695516] Code: Unable to access opcode bytes at RIP 0x7ff1ccefe3c7.
[ 79.695607] RSP: 002b:00007ffed4413378 EFLAGS:
---truncated--- |
| Malwarebytes 1.0.14 for Linux doesn't properly compute signatures in some scenarios. This allows a bypass of detection. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: imm: Fix use-after-free bug caused by unfinished delayed work
The delayed work item 'imm_tq' is initialized in imm_attach() and
scheduled via imm_queuecommand() for processing SCSI commands. When the
IMM parallel port SCSI host adapter is detached through imm_detach(),
the imm_struct device instance is deallocated.
However, the delayed work might still be pending or executing
when imm_detach() is called, leading to use-after-free bugs
when the work function imm_interrupt() accesses the already
freed imm_struct memory.
The race condition can occur as follows:
CPU 0(detach thread) | CPU 1
| imm_queuecommand()
| imm_queuecommand_lck()
imm_detach() | schedule_delayed_work()
kfree(dev) //FREE | imm_interrupt()
| dev = container_of(...) //USE
dev-> //USE
Add disable_delayed_work_sync() in imm_detach() to guarantee proper
cancellation of the delayed work item before imm_struct is deallocated. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: fix use-after-free caused by uec->work
The delayed work uec->work is scheduled in gaokun_ucsi_probe()
but never properly canceled in gaokun_ucsi_remove(). This creates
use-after-free scenarios where the ucsi and gaokun_ucsi structure
are freed after ucsi_destroy() completes execution, while the
gaokun_ucsi_register_worker() might be either currently executing
or still pending in the work queue. The already-freed gaokun_ucsi
or ucsi structure may then be accessed.
Furthermore, the race window is 3 seconds, which is sufficiently
long to make this bug easily reproducible. The following is the
trace captured by KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in __run_timers+0x5ec/0x630
Write of size 8 at addr ffff00000ec28cc8 by task swapper/0/0
...
Call trace:
show_stack+0x18/0x24 (C)
dump_stack_lvl+0x78/0x90
print_report+0x114/0x580
kasan_report+0xa4/0xf0
__asan_report_store8_noabort+0x20/0x2c
__run_timers+0x5ec/0x630
run_timer_softirq+0xe8/0x1cc
handle_softirqs+0x294/0x720
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x30/0x48
do_softirq_own_stack+0x1c/0x28
__irq_exit_rcu+0x27c/0x364
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x40/0x60
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x6c/0x70
arch_local_irq_enable+0x4/0x8 (P)
do_idle+0x334/0x458
cpu_startup_entry+0x60/0x70
rest_init+0x158/0x174
start_kernel+0x2f8/0x394
__primary_switched+0x8c/0x94
Allocated by task 72 on cpu 0 at 27.510341s:
kasan_save_stack+0x2c/0x54
kasan_save_track+0x24/0x5c
kasan_save_alloc_info+0x40/0x54
__kasan_kmalloc+0xa0/0xb8
__kmalloc_node_track_caller_noprof+0x1c0/0x588
devm_kmalloc+0x7c/0x1c8
gaokun_ucsi_probe+0xa0/0x840 auxiliary_bus_probe+0x94/0xf8
really_probe+0x17c/0x5b8
__driver_probe_device+0x158/0x2c4
driver_probe_device+0x10c/0x264
__device_attach_driver+0x168/0x2d0
bus_for_each_drv+0x100/0x188
__device_attach+0x174/0x368
device_initial_probe+0x14/0x20
bus_probe_device+0x120/0x150
device_add+0xb3c/0x10fc
__auxiliary_device_add+0x88/0x130
...
Freed by task 73 on cpu 1 at 28.910627s:
kasan_save_stack+0x2c/0x54
kasan_save_track+0x24/0x5c
__kasan_save_free_info+0x4c/0x74
__kasan_slab_free+0x60/0x8c
kfree+0xd4/0x410
devres_release_all+0x140/0x1f0
device_unbind_cleanup+0x20/0x190
device_release_driver_internal+0x344/0x460
device_release_driver+0x18/0x24
bus_remove_device+0x198/0x274
device_del+0x310/0xa84
...
The buggy address belongs to the object at ffff00000ec28c00
which belongs to the cache kmalloc-512 of size 512
The buggy address is located 200 bytes inside of
freed 512-byte region
The buggy address belongs to the physical page:
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x4ec28
head: order:2 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x3fffe0000000040(head|node=0|zone=0|lastcpupid=0x1ffff)
page_type: f5(slab)
raw: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000
raw: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000
head: 03fffe0000000040 ffff000008801c80 dead000000000122 0000000000000000
head: 0000000000000000 0000000080100010 00000000f5000000 0000000000000000
head: 03fffe0000000002 fffffdffc03b0a01 00000000ffffffff 00000000ffffffff
head: ffffffffffffffff 0000000000000000 00000000ffffffff 0000000000000004
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff00000ec28b80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff00000ec28c00: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
>ffff00000ec28c80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff00000ec28d00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff00000ec28d80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
================================================================
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: core: fbcvt: avoid division by 0 in fb_cvt_hperiod()
In fb_find_mode_cvt(), iff mode->refresh somehow happens to be 0x80000000,
cvt.f_refresh will become 0 when multiplying it by 2 due to overflow. It's
then passed to fb_cvt_hperiod(), where it's used as a divider -- division
by 0 will result in kernel oops. Add a sanity check for cvt.f_refresh to
avoid such overflow...
Found by Linux Verification Center (linuxtesting.org) with the Svace static
analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
seg6: Fix validation of nexthop addresses
The kernel currently validates that the length of the provided nexthop
address does not exceed the specified length. This can lead to the
kernel reading uninitialized memory if user space provided a shorter
length than the specified one.
Fix by validating that the provided length exactly matches the specified
one. |
| In the Linux kernel, the following vulnerability has been resolved:
ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use()
There is no disagreement that we should check both ptp->is_virtual_clock
and ptp->n_vclocks to check if the ptp virtual clock is in use.
However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in
ptp_vclock_in_use(), we observe a recursive lock in the call trace
starting from n_vclocks_store().
============================================
WARNING: possible recursive locking detected
6.15.0-rc6 #1 Not tainted
--------------------------------------------
syz.0.1540/13807 is trying to acquire lock:
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline]
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415
but task is already holding lock:
ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&ptp->n_vclocks_mux);
lock(&ptp->n_vclocks_mux);
*** DEADLOCK ***
....
============================================
The best way to solve this is to remove the logic that checks
ptp->n_vclocks in ptp_vclock_in_use().
The reason why this is appropriate is that any path that uses
ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater
than 0 before unregistering vclocks, and all functions are already
written this way. And in the function that uses ptp->n_vclocks, we
already get ptp->n_vclocks_mux before unregistering vclocks.
Therefore, we need to remove the redundant check for ptp->n_vclocks in
ptp_vclock_in_use() to prevent recursive locking. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix NULL pointer deference on eir_get_service_data
The len parameter is considered optional so it can be NULL so it cannot
be used for skipping to next entry of EIR_SERVICE_DATA. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: sun8i-ce-cipher - fix error handling in sun8i_ce_cipher_prepare()
Fix two DMA cleanup issues on the error path in sun8i_ce_cipher_prepare():
1] If dma_map_sg() fails for areq->dst, the device driver would try to free
DMA memory it has not allocated in the first place. To fix this, on the
"theend_sgs" error path, call dma unmap only if the corresponding dma
map was successful.
2] If the dma_map_single() call for the IV fails, the device driver would
try to free an invalid DMA memory address on the "theend_iv" path:
------------[ cut here ]------------
DMA-API: sun8i-ce 1904000.crypto: device driver tries to free an invalid DMA memory address
WARNING: CPU: 2 PID: 69 at kernel/dma/debug.c:968 check_unmap+0x123c/0x1b90
Modules linked in: skcipher_example(O+)
CPU: 2 UID: 0 PID: 69 Comm: 1904000.crypto- Tainted: G O 6.15.0-rc3+ #24 PREEMPT
Tainted: [O]=OOT_MODULE
Hardware name: OrangePi Zero2 (DT)
pc : check_unmap+0x123c/0x1b90
lr : check_unmap+0x123c/0x1b90
...
Call trace:
check_unmap+0x123c/0x1b90 (P)
debug_dma_unmap_page+0xac/0xc0
dma_unmap_page_attrs+0x1f4/0x5fc
sun8i_ce_cipher_do_one+0x1bd4/0x1f40
crypto_pump_work+0x334/0x6e0
kthread_worker_fn+0x21c/0x438
kthread+0x374/0x664
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
To fix this, check for !dma_mapping_error() before calling
dma_unmap_single() on the "theend_iv" path. |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/skx_common: Fix general protection fault
After loading i10nm_edac (which automatically loads skx_edac_common), if
unload only i10nm_edac, then reload it and perform error injection testing,
a general protection fault may occur:
mce: [Hardware Error]: Machine check events logged
Oops: general protection fault ...
...
Workqueue: events mce_gen_pool_process
RIP: 0010:string+0x53/0xe0
...
Call Trace:
<TASK>
? die_addr+0x37/0x90
? exc_general_protection+0x1e7/0x3f0
? asm_exc_general_protection+0x26/0x30
? string+0x53/0xe0
vsnprintf+0x23e/0x4c0
snprintf+0x4d/0x70
skx_adxl_decode+0x16a/0x330 [skx_edac_common]
skx_mce_check_error.part.0+0xf8/0x220 [skx_edac_common]
skx_mce_check_error+0x17/0x20 [skx_edac_common]
...
The issue arose was because the variable 'adxl_component_count' (inside
skx_edac_common), which counts the ADXL components, was not reset. During
the reloading of i10nm_edac, the count was incremented by the actual number
of ADXL components again, resulting in a count that was double the real
number of ADXL components. This led to an out-of-bounds reference to the
ADXL component array, causing the general protection fault above.
Fix this issue by resetting the 'adxl_component_count' in adxl_put(),
which is called during the unloading of {skx,i10nm}_edac. |
| In the Linux kernel, the following vulnerability has been resolved:
ftrace: Add cond_resched() to ftrace_graph_set_hash()
When the kernel contains a large number of functions that can be traced,
the loop in ftrace_graph_set_hash() may take a lot of time to execute.
This may trigger the softlockup watchdog.
Add cond_resched() within the loop to allow the kernel to remain
responsive even when processing a large number of functions.
This matches the cond_resched() that is used in other locations of the
code that iterates over all functions that can be traced. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Verify event formats that have "%*p.."
The trace event verifier checks the formats of trace events to make sure
that they do not point at memory that is not in the trace event itself or
in data that will never be freed. If an event references data that was
allocated when the event triggered and that same data is freed before the
event is read, then the kernel can crash by reading freed memory.
The verifier runs at boot up (or module load) and scans the print formats
of the events and checks their arguments to make sure that dereferenced
pointers are safe. If the format uses "%*p.." the verifier will ignore it,
and that could be dangerous. Cover this case as well.
Also add to the sample code a use case of "%*pbl". |