Filtered by vendor Linux
Subscriptions
Total
16293 CVE
| CVE | Vendors | Products | Updated | CVSS v3.1 |
|---|---|---|---|---|
| CVE-2022-50769 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: mmc: mxcmmc: fix return value check of mmc_add_host() mmc_add_host() may return error, if we ignore its return value, the memory that allocated in mmc_alloc_host() will be leaked and it will lead a kernel crash because of deleting not added device in the remove path. So fix this by checking the return value and goto error path which will call mmc_free_host(). | ||||
| CVE-2022-50777 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe of_phy_find_device() return device node with refcount incremented. Call put_device() to relese it when not needed anymore. | ||||
| CVE-2023-54060 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: iommufd: Set end correctly when doing batch carry Even though the test suite covers this it somehow became obscured that this wasn't working. The test iommufd_ioas.mock_domain.access_domain_destory would blow up rarely. end should be set to 1 because this just pushed an item, the carry, to the pfns list. Sometimes the test would blow up with: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:batch_unpin+0xa2/0x100 [iommufd] Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc RSP: 0018:ffffc90001677a58 EFLAGS: 00010246 RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200 R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001 R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x5c/0x70 ? __die+0x1f/0x60 ? page_fault_oops+0x15d/0x440 ? lock_release+0xbc/0x240 ? exc_page_fault+0x4a4/0x970 ? asm_exc_page_fault+0x27/0x30 ? batch_unpin+0xa2/0x100 [iommufd] ? batch_unpin+0xba/0x100 [iommufd] __iopt_area_unfill_domain+0x198/0x430 [iommufd] ? __mutex_lock+0x8c/0xb80 ? __mutex_lock+0x6aa/0xb80 ? xa_erase+0x28/0x30 ? iopt_table_remove_domain+0x162/0x320 [iommufd] ? lock_release+0xbc/0x240 iopt_area_unfill_domain+0xd/0x10 [iommufd] iopt_table_remove_domain+0x195/0x320 [iommufd] iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_device_detach+0xc5/0x140 [iommufd] iommufd_selftest_destroy+0x1f/0x70 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_destroy+0x3a/0x50 [iommufd] iommufd_fops_ioctl+0xfb/0x170 [iommufd] __x64_sys_ioctl+0x40d/0x9a0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 | ||||
| CVE-2023-54063 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix OOB read in indx_insert_into_buffer Syzbot reported a OOB read bug: BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630 Call Trace: <TASK> memmove+0x25/0x60 mm/kasan/shadow.c:54 indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863 ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548 ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100 lookup_open fs/namei.c:3413 [inline] If the member struct INDEX_BUFFER *index of struct indx_node is incorrect, that is, the value of __le32 used is greater than the value of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when memmove is called in indx_insert_into_buffer(). Fix this by adding a check in hdr_find_e(). | ||||
| CVE-2023-54067 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: btrfs: fix race when deleting free space root from the dirty cow roots list When deleting the free space tree we are deleting the free space root from the list fs_info->dirty_cowonly_roots without taking the lock that protects it, which is struct btrfs_fs_info::trans_lock. This unsynchronized list manipulation may cause chaos if there's another concurrent manipulation of this list, such as when adding a root to it with ctree.c:add_root_to_dirty_list(). This can result in all sorts of weird failures caused by a race, such as the following crash: [337571.278245] general protection fault, probably for non-canonical address 0xdead000000000108: 0000 [#1] PREEMPT SMP PTI [337571.278933] CPU: 1 PID: 115447 Comm: btrfs Tainted: G W 6.4.0-rc6-btrfs-next-134+ #1 [337571.279153] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 [337571.279572] RIP: 0010:commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.279928] Code: 85 38 06 00 (...) [337571.280363] RSP: 0018:ffff9f63446efba0 EFLAGS: 00010206 [337571.280582] RAX: ffff942d98ec2638 RBX: ffff9430b82b4c30 RCX: 0000000449e1c000 [337571.280798] RDX: dead000000000100 RSI: ffff9430021e4900 RDI: 0000000000036070 [337571.281015] RBP: ffff942d98ec2000 R08: ffff942d98ec2000 R09: 000000000000015b [337571.281254] R10: 0000000000000009 R11: 0000000000000001 R12: ffff942fe8fbf600 [337571.281476] R13: ffff942dabe23040 R14: ffff942dabe20800 R15: ffff942d92cf3b48 [337571.281723] FS: 00007f478adb7340(0000) GS:ffff94349fa40000(0000) knlGS:0000000000000000 [337571.281950] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [337571.282184] CR2: 00007f478ab9a3d5 CR3: 000000001e02c001 CR4: 0000000000370ee0 [337571.282416] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [337571.282647] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [337571.282874] Call Trace: [337571.283101] <TASK> [337571.283327] ? __die_body+0x1b/0x60 [337571.283570] ? die_addr+0x39/0x60 [337571.283796] ? exc_general_protection+0x22e/0x430 [337571.284022] ? asm_exc_general_protection+0x22/0x30 [337571.284251] ? commit_cowonly_roots+0x11f/0x250 [btrfs] [337571.284531] btrfs_commit_transaction+0x42e/0xf90 [btrfs] [337571.284803] ? _raw_spin_unlock+0x15/0x30 [337571.285031] ? release_extent_buffer+0x103/0x130 [btrfs] [337571.285305] reset_balance_state+0x152/0x1b0 [btrfs] [337571.285578] btrfs_balance+0xa50/0x11e0 [btrfs] [337571.285864] ? __kmem_cache_alloc_node+0x14a/0x410 [337571.286086] btrfs_ioctl+0x249a/0x3320 [btrfs] [337571.286358] ? mod_objcg_state+0xd2/0x360 [337571.286577] ? refill_obj_stock+0xb0/0x160 [337571.286798] ? seq_release+0x25/0x30 [337571.287016] ? __rseq_handle_notify_resume+0x3ba/0x4b0 [337571.287235] ? percpu_counter_add_batch+0x2e/0xa0 [337571.287455] ? __x64_sys_ioctl+0x88/0xc0 [337571.287675] __x64_sys_ioctl+0x88/0xc0 [337571.287901] do_syscall_64+0x38/0x90 [337571.288126] entry_SYSCALL_64_after_hwframe+0x72/0xdc [337571.288352] RIP: 0033:0x7f478aaffe9b So fix this by locking struct btrfs_fs_info::trans_lock before deleting the free space root from that list. | ||||
| CVE-2023-54070 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: igb: clean up in all error paths when enabling SR-IOV After commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), removing the igb module could hang or crash (depending on the machine) when the module has been loaded with the max_vfs parameter set to some value != 0. In case of one test machine with a dual port 82580, this hang occurred: [ 232.480687] igb 0000:41:00.1: removed PHC on enp65s0f1 [ 233.093257] igb 0000:41:00.1: IOV Disabled [ 233.329969] pcieport 0000:40:01.0: AER: Multiple Uncorrected (Non-Fatal) err0 [ 233.340302] igb 0000:41:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fata) [ 233.352248] igb 0000:41:00.0: device [8086:1516] error status/mask=00100000 [ 233.361088] igb 0000:41:00.0: [20] UnsupReq (First) [ 233.368183] igb 0000:41:00.0: AER: TLP Header: 40000001 0000040f cdbfc00c c [ 233.376846] igb 0000:41:00.1: PCIe Bus Error: severity=Uncorrected (Non-Fata) [ 233.388779] igb 0000:41:00.1: device [8086:1516] error status/mask=00100000 [ 233.397629] igb 0000:41:00.1: [20] UnsupReq (First) [ 233.404736] igb 0000:41:00.1: AER: TLP Header: 40000001 0000040f cdbfc00c c [ 233.538214] pci 0000:41:00.1: AER: can't recover (no error_detected callback) [ 233.538401] igb 0000:41:00.0: removed PHC on enp65s0f0 [ 233.546197] pcieport 0000:40:01.0: AER: device recovery failed [ 234.157244] igb 0000:41:00.0: IOV Disabled [ 371.619705] INFO: task irq/35-aerdrv:257 blocked for more than 122 seconds. [ 371.627489] Not tainted 6.4.0-dirty #2 [ 371.632257] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this. [ 371.641000] task:irq/35-aerdrv state:D stack:0 pid:257 ppid:2 f0 [ 371.650330] Call Trace: [ 371.653061] <TASK> [ 371.655407] __schedule+0x20e/0x660 [ 371.659313] schedule+0x5a/0xd0 [ 371.662824] schedule_preempt_disabled+0x11/0x20 [ 371.667983] __mutex_lock.constprop.0+0x372/0x6c0 [ 371.673237] ? __pfx_aer_root_reset+0x10/0x10 [ 371.678105] report_error_detected+0x25/0x1c0 [ 371.682974] ? __pfx_report_normal_detected+0x10/0x10 [ 371.688618] pci_walk_bus+0x72/0x90 [ 371.692519] pcie_do_recovery+0xb2/0x330 [ 371.696899] aer_process_err_devices+0x117/0x170 [ 371.702055] aer_isr+0x1c0/0x1e0 [ 371.705661] ? __set_cpus_allowed_ptr+0x54/0xa0 [ 371.710723] ? __pfx_irq_thread_fn+0x10/0x10 [ 371.715496] irq_thread_fn+0x20/0x60 [ 371.719491] irq_thread+0xe6/0x1b0 [ 371.723291] ? __pfx_irq_thread_dtor+0x10/0x10 [ 371.728255] ? __pfx_irq_thread+0x10/0x10 [ 371.732731] kthread+0xe2/0x110 [ 371.736243] ? __pfx_kthread+0x10/0x10 [ 371.740430] ret_from_fork+0x2c/0x50 [ 371.744428] </TASK> The reproducer was a simple script: #!/bin/sh for i in `seq 1 5`; do modprobe -rv igb modprobe -v igb max_vfs=1 sleep 1 modprobe -rv igb done It turned out that this could only be reproduce on 82580 (quad and dual-port), but not on 82576, i350 and i210. Further debugging showed that igb_enable_sriov()'s call to pci_enable_sriov() is failing, because dev->is_physfn is 0 on 82580. Prior to commit 50f303496d92 ("igb: Enable SR-IOV after reinit"), igb_enable_sriov() jumped into the "err_out" cleanup branch. After this commit it only returned the error code. So the cleanup didn't take place, and the incorrect VF setup in the igb_adapter structure fooled the igb driver into assuming that VFs have been set up where no VF actually existed. Fix this problem by cleaning up again if pci_enable_sriov() fails. | ||||
| CVE-2023-54088 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: hold queue_lock when removing blkg->q_node When blkg is removed from q->blkg_list from blkg_free_workfn(), queue_lock has to be held, otherwise, all kinds of bugs(list corruption, hard lockup, ..) can be triggered from blkg_destroy_all(). | ||||
| CVE-2023-54092 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: KVM: s390: pv: fix index value of replaced ASCE The index field of the struct page corresponding to a guest ASCE should be 0. When replacing the ASCE in s390_replace_asce(), the index of the new ASCE should also be set to 0. Having the wrong index might lead to the wrong addresses being passed around when notifying pte invalidations, and eventually to validity intercepts (VM crash) if the prefix gets unmapped and the notifier gets called with the wrong address. | ||||
| CVE-2023-54104 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: fsl_upm: Fix an off-by one test in fun_exec_op() 'op-cs' is copied in 'fun->mchip_number' which is used to access the 'mchip_offsets' and the 'rnb_gpio' arrays. These arrays have NAND_MAX_CHIPS elements, so the index must be below this limit. Fix the sanity check in order to avoid the NAND_MAX_CHIPS value. This would lead to out-of-bound accesses. | ||||
| CVE-2023-54116 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: drm/fbdev-generic: prohibit potential out-of-bounds access The fbdev test of IGT may write after EOF, which lead to out-of-bound access for drm drivers with fbdev-generic. For example, run fbdev test on a x86+ast2400 platform, with 1680x1050 resolution, will cause the linux kernel hang with the following call trace: Oops: 0000 [#1] PREEMPT SMP PTI [IGT] fbdev: starting subtest eof Workqueue: events drm_fb_helper_damage_work [drm_kms_helper] [IGT] fbdev: starting subtest nullptr RIP: 0010:memcpy_erms+0xa/0x20 RSP: 0018:ffffa17d40167d98 EFLAGS: 00010246 RAX: ffffa17d4eb7fa80 RBX: ffffa17d40e0aa80 RCX: 00000000000014c0 RDX: 0000000000001a40 RSI: ffffa17d40e0b000 RDI: ffffa17d4eb80000 RBP: ffffa17d40167e20 R08: 0000000000000000 R09: ffff89522ecff8c0 R10: ffffa17d4e4c5000 R11: 0000000000000000 R12: ffffa17d4eb7fa80 R13: 0000000000001a40 R14: 000000000000041a R15: ffffa17d40167e30 FS: 0000000000000000(0000) GS:ffff895257380000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: ffffa17d40e0b000 CR3: 00000001eaeca006 CR4: 00000000001706e0 Call Trace: <TASK> ? drm_fbdev_generic_helper_fb_dirty+0x207/0x330 [drm_kms_helper] drm_fb_helper_damage_work+0x8f/0x170 [drm_kms_helper] process_one_work+0x21f/0x430 worker_thread+0x4e/0x3c0 ? __pfx_worker_thread+0x10/0x10 kthread+0xf4/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 </TASK> CR2: ffffa17d40e0b000 ---[ end trace 0000000000000000 ]--- The is because damage rectangles computed by drm_fb_helper_memory_range_to_clip() function is not guaranteed to be bound in the screen's active display area. Possible reasons are: 1) Buffers are allocated in the granularity of page size, for mmap system call support. The shadow screen buffer consumed by fbdev emulation may also choosed be page size aligned. 2) The DIV_ROUND_UP() used in drm_fb_helper_memory_range_to_clip() will introduce off-by-one error. For example, on a 16KB page size system, in order to store a 1920x1080 XRGB framebuffer, we need allocate 507 pages. Unfortunately, the size 1920*1080*4 can not be divided exactly by 16KB. 1920 * 1080 * 4 = 8294400 bytes 506 * 16 * 1024 = 8290304 bytes 507 * 16 * 1024 = 8306688 bytes line_length = 1920*4 = 7680 bytes 507 * 16 * 1024 / 7680 = 1081.6 off / line_length = 507 * 16 * 1024 / 7680 = 1081 DIV_ROUND_UP(507 * 16 * 1024, 7680) will yeild 1082 memcpy_toio() typically issue the copy line by line, when copy the last line, out-of-bound access will be happen. Because: 1082 * line_length = 1082 * 7680 = 8309760, and 8309760 > 8306688 Note that userspace may still write to the invisiable area if a larger buffer than width x stride is exposed. But it is not a big issue as long as there still have memory resolve the access if not drafting so far. - Also limit the y1 (Daniel) - keep fix patch it to minimal (Daniel) - screen_size is page size aligned because of it need mmap (Thomas) - Adding fixes tag (Thomas) | ||||
| CVE-2022-50774 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: crypto: qat - fix DMA transfer direction When CONFIG_DMA_API_DEBUG is selected, while running the crypto self test on the QAT crypto algorithms, the function add_dma_entry() reports a warning similar to the one below, saying that overlapping mappings are not supported. This occurs in tests where the input and the output scatter list point to the same buffers (i.e. two different scatter lists which point to the same chunks of memory). The logic that implements the mapping uses the flag DMA_BIDIRECTIONAL for both the input and the output scatter lists which leads to overlapped write mappings. These are not supported by the DMA layer. Fix by specifying the correct DMA transfer directions when mapping buffers. For in-place operations where the input scatter list matches the output scatter list, buffers are mapped once with DMA_BIDIRECTIONAL, otherwise input buffers are mapped using the flag DMA_TO_DEVICE and output buffers are mapped with DMA_FROM_DEVICE. Overlapping a read mapping with a write mapping is a valid case in dma-coherent devices like QAT. The function that frees and unmaps the buffers, qat_alg_free_bufl() has been changed accordingly to the changes to the mapping function. DMA-API: 4xxx 0000:06:00.0: cacheline tracking EEXIST, overlapping mappings aren't supported WARNING: CPU: 53 PID: 4362 at kernel/dma/debug.c:570 add_dma_entry+0x1e9/0x270 ... Call Trace: dma_map_page_attrs+0x82/0x2d0 ? preempt_count_add+0x6a/0xa0 qat_alg_sgl_to_bufl+0x45b/0x990 [intel_qat] qat_alg_aead_dec+0x71/0x250 [intel_qat] crypto_aead_decrypt+0x3d/0x70 test_aead_vec_cfg+0x649/0x810 ? number+0x310/0x3a0 ? vsnprintf+0x2a3/0x550 ? scnprintf+0x42/0x70 ? valid_sg_divisions.constprop.0+0x86/0xa0 ? test_aead_vec+0xdf/0x120 test_aead_vec+0xdf/0x120 alg_test_aead+0x185/0x400 alg_test+0x3d8/0x500 ? crypto_acomp_scomp_free_ctx+0x30/0x30 ? __schedule+0x32a/0x12a0 ? ttwu_queue_wakelist+0xbf/0x110 ? _raw_spin_unlock_irqrestore+0x23/0x40 ? try_to_wake_up+0x83/0x570 ? _raw_spin_unlock_irqrestore+0x23/0x40 ? __set_cpus_allowed_ptr_locked+0xea/0x1b0 ? crypto_acomp_scomp_free_ctx+0x30/0x30 cryptomgr_test+0x27/0x50 kthread+0xe6/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 | ||||
| CVE-2023-54101 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: driver: soc: xilinx: use _safe loop iterator to avoid a use after free The hash_for_each_possible() loop dereferences "eve_data" to get the next item on the list. However the loop frees eve_data so it leads to a use after free. Use hash_for_each_possible_safe() instead. | ||||
| CVE-2023-54109 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: media: rcar_fdp1: Fix refcount leak in probe and remove function rcar_fcp_get() take reference, which should be balanced with rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and the error paths of fdp1_probe() to fix this. [hverkuil: resolve merge conflict, remove() is now void] | ||||
| CVE-2023-54111 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: pinctrl: rockchip: Fix refcount leak in rockchip_pinctrl_parse_groups of_find_node_by_phandle() returns a node pointer with refcount incremented, We should use of_node_put() on it when not needed anymore. Add missing of_node_put() to avoid refcount leak. | ||||
| CVE-2023-54113 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: rcu: dump vmalloc memory info safely Currently, for double invoke call_rcu(), will dump rcu_head objects memory info, if the objects is not allocated from the slab allocator, the vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to be held, since the call_rcu() can be invoked in interrupt context, therefore, there is a possibility of spinlock deadlock scenarios. And in Preempt-RT kernel, the rcutorture test also trigger the following lockdep warning: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0 preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 3 locks held by swapper/0/1: #0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0 #1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370 #2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70 irq event stamp: 565512 hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940 hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370 softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170 softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0 Preemption disabled at: [<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370 CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xb0 dump_stack+0x14/0x20 __might_resched+0x1aa/0x280 ? __pfx_rcu_torture_err_cb+0x10/0x10 rt_spin_lock+0x53/0x130 ? find_vmap_area+0x1f/0x70 find_vmap_area+0x1f/0x70 vmalloc_dump_obj+0x20/0x60 mem_dump_obj+0x22/0x90 __call_rcu_common+0x5bf/0x940 ? debug_smp_processor_id+0x1b/0x30 call_rcu_hurry+0x14/0x20 rcu_torture_init+0x1f82/0x2370 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_init+0x10/0x10 do_one_initcall+0x6c/0x300 ? debug_smp_processor_id+0x1b/0x30 kernel_init_freeable+0x2b9/0x540 ? __pfx_kernel_init+0x10/0x10 kernel_init+0x1f/0x150 ret_from_fork+0x40/0x50 ? __pfx_kernel_init+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> The previous patch fixes this by using the deadlock-safe best-effort version of find_vm_area. However, in case of failure print the fact that the pointer was a vmalloc pointer so that we print at least something. | ||||
| CVE-2023-54134 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: autofs: fix memory leak of waitqueues in autofs_catatonic_mode Syzkaller reports a memory leak: BUG: memory leak unreferenced object 0xffff88810b279e00 (size 96): comm "syz-executor399", pid 3631, jiffies 4294964921 (age 23.870s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 08 9e 27 0b 81 88 ff ff ..........'..... 08 9e 27 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ..'............. backtrace: [<ffffffff814cfc90>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff81bb75ca>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff81bb75ca>] autofs_wait+0x3fa/0x9a0 fs/autofs/waitq.c:378 [<ffffffff81bb88a7>] autofs_do_expire_multi+0xa7/0x3e0 fs/autofs/expire.c:593 [<ffffffff81bb8c33>] autofs_expire_multi+0x53/0x80 fs/autofs/expire.c:619 [<ffffffff81bb6972>] autofs_root_ioctl_unlocked+0x322/0x3b0 fs/autofs/root.c:897 [<ffffffff81bb6a95>] autofs_root_ioctl+0x25/0x30 fs/autofs/root.c:910 [<ffffffff81602a9c>] vfs_ioctl fs/ioctl.c:51 [inline] [<ffffffff81602a9c>] __do_sys_ioctl fs/ioctl.c:870 [inline] [<ffffffff81602a9c>] __se_sys_ioctl fs/ioctl.c:856 [inline] [<ffffffff81602a9c>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:856 [<ffffffff84608225>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84608225>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd autofs_wait_queue structs should be freed if their wait_ctr becomes zero. Otherwise they will be lost. In this case an AUTOFS_IOC_EXPIRE_MULTI ioctl is done, then a new waitqueue struct is allocated in autofs_wait(), its initial wait_ctr equals 2. After that wait_event_killable() is interrupted (it returns -ERESTARTSYS), so that 'wq->name.name == NULL' condition may be not satisfied. Actually, this condition can be satisfied when autofs_wait_release() or autofs_catatonic_mode() is called and, what is also important, wait_ctr is decremented in those places. Upon the exit of autofs_wait(), wait_ctr is decremented to 1. Then the unmounting process begins: kill_sb calls autofs_catatonic_mode(), which should have freed the waitqueues, but it only decrements its usage counter to zero which is not a correct behaviour. edit:imk This description is of course not correct. The umount performed as a result of an expire is a umount of a mount that has been automounted, it's not the autofs mount itself. They happen independently, usually after everything mounted within the autofs file system has been expired away. If everything hasn't been expired away the automount daemon can still exit leaving mounts in place. But expires done in both cases will result in a notification that calls autofs_wait_release() with a result status. The problem case is the summary execution of of the automount daemon. In this case any waiting processes won't be woken up until either they are terminated or the mount is umounted. end edit: imk So in catatonic mode we should free waitqueues which counter becomes zero. edit: imk Initially I was concerned that the calling of autofs_wait_release() and autofs_catatonic_mode() was not mutually exclusive but that can't be the case (obviously) because the queue entry (or entries) is removed from the list when either of these two functions are called. Consequently the wait entry will be freed by only one of these functions or by the woken process in autofs_wait() depending on the order of the calls. end edit: imk | ||||
| CVE-2025-68725 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: bpf: Do not let BPF test infra emit invalid GSO types to stack Yinhao et al. reported that their fuzzer tool was able to trigger a skb_warn_bad_offload() from netif_skb_features() -> gso_features_check(). When a BPF program - triggered via BPF test infra - pushes the packet to the loopback device via bpf_clone_redirect() then mentioned offload warning can be seen. GSO-related features are then rightfully disabled. We get into this situation due to convert___skb_to_skb() setting gso_segs and gso_size but not gso_type. Technically, it makes sense that this warning triggers since the GSO properties are malformed due to the gso_type. Potentially, the gso_type could be marked non-trustworthy through setting it at least to SKB_GSO_DODGY without any other specific assumptions, but that also feels wrong given we should not go further into the GSO engine in the first place. The checks were added in 121d57af308d ("gso: validate gso_type in GSO handlers") because there were malicious (syzbot) senders that combine a protocol with a non-matching gso_type. If we would want to drop such packets, gso_features_check() currently only returns feature flags via netif_skb_features(), so one location for potentially dropping such skbs could be validate_xmit_unreadable_skb(), but then otoh it would be an additional check in the fast-path for a very corner case. Given bpf_clone_redirect() is the only place where BPF test infra could emit such packets, lets reject them right there. | ||||
| CVE-2025-68730 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 7.0 High |
| In the Linux kernel, the following vulnerability has been resolved: accel/ivpu: Fix page fault in ivpu_bo_unbind_all_bos_from_context() Don't add BO to the vdev->bo_list in ivpu_gem_create_object(). When failure happens inside drm_gem_shmem_create(), the BO is not fully created and ivpu_gem_bo_free() callback will not be called causing a deleted BO to be left on the list. | ||||
| CVE-2025-68731 | 1 Linux | 1 Linux Kernel | 2025-12-29 | N/A |
| In the Linux kernel, the following vulnerability has been resolved: accel/amdxdna: Fix an integer overflow in aie2_query_ctx_status_array() The unpublished smatch static checker reported a warning. drivers/accel/amdxdna/aie2_pci.c:904 aie2_query_ctx_status_array() warn: potential user controlled sizeof overflow 'args->num_element * args->element_size' '1-u32max(user) * 1-u32max(user)' Even this will not cause a real issue, it is better to put a reasonable limitation for element_size and num_element. Add condition to make sure the input element_size <= 4K and num_element <= 1K. | ||||
| CVE-2022-50724 | 1 Linux | 1 Linux Kernel | 2025-12-29 | 5.5 Medium |
| In the Linux kernel, the following vulnerability has been resolved: regulator: core: fix resource leak in regulator_register() I got some resource leak reports while doing fault injection test: OF: ERROR: memory leak, expected refcount 1 instead of 100, of_node_get()/of_node_put() unbalanced - destroy cset entry: attach overlay node /i2c/pmic@64/regulators/buck1 unreferenced object 0xffff88810deea000 (size 512): comm "490-i2c-rt5190a", pid 253, jiffies 4294859840 (age 5061.046s) hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff a0 1e 00 a1 ff ff ff ff ................ backtrace: [<00000000d78541e2>] kmalloc_trace+0x21/0x110 [<00000000b343d153>] device_private_init+0x32/0xd0 [<00000000be1f0c70>] device_add+0xb2d/0x1030 [<00000000e3e6344d>] regulator_register+0xaf2/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] unreferenced object 0xffff88810b617b80 (size 32): comm "490-i2c-rt5190a", pid 253, jiffies 4294859904 (age 5060.983s) hex dump (first 32 bytes): 72 65 67 75 6c 61 74 6f 72 2e 32 38 36 38 2d 53 regulator.2868-S 55 50 50 4c 59 00 ff ff 29 00 00 00 2b 00 00 00 UPPLY...)...+... backtrace: [<000000009da9280d>] __kmalloc_node_track_caller+0x44/0x1b0 [<0000000025c6a4e5>] kstrdup+0x3a/0x70 [<00000000790efb69>] create_regulator+0xc0/0x4e0 [<0000000005ed203a>] regulator_resolve_supply+0x2d4/0x440 [<0000000045796214>] regulator_register+0x10b3/0x12a0 [<00000000e2f5e754>] devm_regulator_register+0x57/0xb0 [<000000008b898197>] rt5190a_probe+0x52a/0x861 [rt5190a_regulator] After calling regulator_resolve_supply(), the 'rdev->supply' is set by set_supply(), after this set, in the error path, the resources need be released, so call regulator_put() to avoid the leaks. | ||||