| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix incorrect validation for num_aces field of smb_acl
parse_dcal() validate num_aces to allocate posix_ace_state_array.
if (num_aces > ULONG_MAX / sizeof(struct smb_ace *))
It is an incorrect validation that we can create an array of size ULONG_MAX.
smb_acl has ->size field to calculate actual number of aces in request buffer
size. Use this to check invalid num_aces. |
| In the Linux kernel, the following vulnerability has been resolved:
eth: bnxt: do not update checksum in bnxt_xdp_build_skb()
The bnxt_rx_pkt() updates ip_summed value at the end if checksum offload
is enabled.
When the XDP-MB program is attached and it returns XDP_PASS, the
bnxt_xdp_build_skb() is called to update skb_shared_info.
The main purpose of bnxt_xdp_build_skb() is to update skb_shared_info,
but it updates ip_summed value too if checksum offload is enabled.
This is actually duplicate work.
When the bnxt_rx_pkt() updates ip_summed value, it checks if ip_summed
is CHECKSUM_NONE or not.
It means that ip_summed should be CHECKSUM_NONE at this moment.
But ip_summed may already be updated to CHECKSUM_UNNECESSARY in the
XDP-MB-PASS path.
So the by skb_checksum_none_assert() WARNS about it.
This is duplicate work and updating ip_summed in the
bnxt_xdp_build_skb() is not needed.
Splat looks like:
WARNING: CPU: 3 PID: 5782 at ./include/linux/skbuff.h:5155 bnxt_rx_pkt+0x479b/0x7610 [bnxt_en]
Modules linked in: bnxt_re bnxt_en rdma_ucm rdma_cm iw_cm ib_cm ib_uverbs veth xt_nat xt_tcpudp xt_conntrack nft_chain_nat xt_MASQUERADE nf_]
CPU: 3 UID: 0 PID: 5782 Comm: socat Tainted: G W 6.14.0-rc4+ #27
Tainted: [W]=WARN
Hardware name: ASUS System Product Name/PRIME Z690-P D4, BIOS 0603 11/01/2021
RIP: 0010:bnxt_rx_pkt+0x479b/0x7610 [bnxt_en]
Code: 54 24 0c 4c 89 f1 4c 89 ff c1 ea 1f ff d3 0f 1f 00 49 89 c6 48 85 c0 0f 84 4c e5 ff ff 48 89 c7 e8 ca 3d a0 c8 e9 8f f4 ff ff <0f> 0b f
RSP: 0018:ffff88881ba09928 EFLAGS: 00010202
RAX: 0000000000000000 RBX: 00000000c7590303 RCX: 0000000000000000
RDX: 1ffff1104e7d1610 RSI: 0000000000000001 RDI: ffff8881c91300b8
RBP: ffff88881ba09b28 R08: ffff888273e8b0d0 R09: ffff888273e8b070
R10: ffff888273e8b010 R11: ffff888278b0f000 R12: ffff888273e8b080
R13: ffff8881c9130e00 R14: ffff8881505d3800 R15: ffff888273e8b000
FS: 00007f5a2e7be080(0000) GS:ffff88881ba00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff2e708ff8 CR3: 000000013e3b0000 CR4: 00000000007506f0
PKRU: 55555554
Call Trace:
<IRQ>
? __warn+0xcd/0x2f0
? bnxt_rx_pkt+0x479b/0x7610
? report_bug+0x326/0x3c0
? handle_bug+0x53/0xa0
? exc_invalid_op+0x14/0x50
? asm_exc_invalid_op+0x16/0x20
? bnxt_rx_pkt+0x479b/0x7610
? bnxt_rx_pkt+0x3e41/0x7610
? __pfx_bnxt_rx_pkt+0x10/0x10
? napi_complete_done+0x2cf/0x7d0
__bnxt_poll_work+0x4e8/0x1220
? __pfx___bnxt_poll_work+0x10/0x10
? __pfx_mark_lock.part.0+0x10/0x10
bnxt_poll_p5+0x36a/0xfa0
? __pfx_bnxt_poll_p5+0x10/0x10
__napi_poll.constprop.0+0xa0/0x440
net_rx_action+0x899/0xd00
...
Following ping.py patch adds xdp-mb-pass case. so ping.py is going
to be able to reproduce this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Assign normalized_pix_clk when color depth = 14
[WHY & HOW]
A warning message "WARNING: CPU: 4 PID: 459 at ... /dc_resource.c:3397
calculate_phy_pix_clks+0xef/0x100 [amdgpu]" occurs because the
display_color_depth == COLOR_DEPTH_141414 is not handled. This is
observed in Radeon RX 6600 XT.
It is fixed by assigning pix_clk * (14 * 3) / 24 - same as the rests.
Also fixes the indentation in get_norm_pix_clk.
(cherry picked from commit 274a87eb389f58eddcbc5659ab0b180b37e92775) |
| In the Linux kernel, the following vulnerability has been resolved:
rapidio: add check for rio_add_net() in rio_scan_alloc_net()
The return value of rio_add_net() should be checked. If it fails,
put_device() should be called to free the memory and give up the reference
initialized in rio_add_net(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: gso: fix ownership in __udp_gso_segment
In __udp_gso_segment the skb destructor is removed before segmenting the
skb but the socket reference is kept as-is. This is an issue if the
original skb is later orphaned as we can hit the following bug:
kernel BUG at ./include/linux/skbuff.h:3312! (skb_orphan)
RIP: 0010:ip_rcv_core+0x8b2/0xca0
Call Trace:
ip_rcv+0xab/0x6e0
__netif_receive_skb_one_core+0x168/0x1b0
process_backlog+0x384/0x1100
__napi_poll.constprop.0+0xa1/0x370
net_rx_action+0x925/0xe50
The above can happen following a sequence of events when using
OpenVSwitch, when an OVS_ACTION_ATTR_USERSPACE action precedes an
OVS_ACTION_ATTR_OUTPUT action:
1. OVS_ACTION_ATTR_USERSPACE is handled (in do_execute_actions): the skb
goes through queue_gso_packets and then __udp_gso_segment, where its
destructor is removed.
2. The segments' data are copied and sent to userspace.
3. OVS_ACTION_ATTR_OUTPUT is handled (in do_execute_actions) and the
same original skb is sent to its path.
4. If it later hits skb_orphan, we hit the bug.
Fix this by also removing the reference to the socket in
__udp_gso_segment. |
| In the Linux kernel, the following vulnerability has been resolved:
llc: do not use skb_get() before dev_queue_xmit()
syzbot is able to crash hosts [1], using llc and devices
not supporting IFF_TX_SKB_SHARING.
In this case, e1000 driver calls eth_skb_pad(), while
the skb is shared.
Simply replace skb_get() by skb_clone() in net/llc/llc_s_ac.c
Note that e1000 driver might have an issue with pktgen,
because it does not clear IFF_TX_SKB_SHARING, this is an
orthogonal change.
We need to audit other skb_get() uses in net/llc.
[1]
kernel BUG at net/core/skbuff.c:2178 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 16371 Comm: syz.2.2764 Not tainted 6.14.0-rc4-syzkaller-00052-gac9c34d1e45a #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:pskb_expand_head+0x6ce/0x1240 net/core/skbuff.c:2178
Call Trace:
<TASK>
__skb_pad+0x18a/0x610 net/core/skbuff.c:2466
__skb_put_padto include/linux/skbuff.h:3843 [inline]
skb_put_padto include/linux/skbuff.h:3862 [inline]
eth_skb_pad include/linux/etherdevice.h:656 [inline]
e1000_xmit_frame+0x2d99/0x5800 drivers/net/ethernet/intel/e1000/e1000_main.c:3128
__netdev_start_xmit include/linux/netdevice.h:5151 [inline]
netdev_start_xmit include/linux/netdevice.h:5160 [inline]
xmit_one net/core/dev.c:3806 [inline]
dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3822
sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343
__dev_xmit_skb net/core/dev.c:4045 [inline]
__dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4621
dev_queue_xmit include/linux/netdevice.h:3313 [inline]
llc_sap_action_send_test_c+0x268/0x320 net/llc/llc_s_ac.c:144
llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline]
llc_sap_next_state net/llc/llc_sap.c:182 [inline]
llc_sap_state_process+0x239/0x510 net/llc/llc_sap.c:209
llc_ui_sendmsg+0xd0d/0x14e0 net/llc/af_llc.c:993
sock_sendmsg_nosec net/socket.c:718 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: atm: cxacru: fix a flaw in existing endpoint checks
Syzbot once again identified a flaw in usb endpoint checking, see [1].
This time the issue stems from a commit authored by me (2eabb655a968
("usb: atm: cxacru: fix endpoint checking in cxacru_bind()")).
While using usb_find_common_endpoints() may usually be enough to
discard devices with wrong endpoints, in this case one needs more
than just finding and identifying the sufficient number of endpoints
of correct types - one needs to check the endpoint's address as well.
Since cxacru_bind() fills URBs with CXACRU_EP_CMD address in mind,
switch the endpoint verification approach to usb_check_XXX_endpoints()
instead to fix incomplete ep testing.
[1] Syzbot report:
usb 5-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 0 PID: 1378 at drivers/usb/core/urb.c:504 usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503
...
RIP: 0010:usb_submit_urb+0xc4e/0x18c0 drivers/usb/core/urb.c:503
...
Call Trace:
<TASK>
cxacru_cm+0x3c8/0xe50 drivers/usb/atm/cxacru.c:649
cxacru_card_status drivers/usb/atm/cxacru.c:760 [inline]
cxacru_bind+0xcf9/0x1150 drivers/usb/atm/cxacru.c:1223
usbatm_usb_probe+0x314/0x1d30 drivers/usb/atm/usbatm.c:1058
cxacru_usb_probe+0x184/0x220 drivers/usb/atm/cxacru.c:1377
usb_probe_interface+0x641/0xbb0 drivers/usb/core/driver.c:396
really_probe+0x2b9/0xad0 drivers/base/dd.c:658
__driver_probe_device+0x1a2/0x390 drivers/base/dd.c:800
driver_probe_device+0x50/0x430 drivers/base/dd.c:830
... |
| In the Linux kernel, the following vulnerability has been resolved:
x86/amd_nb: Use rdmsr_safe() in amd_get_mmconfig_range()
Xen doesn't offer MSR_FAM10H_MMIO_CONF_BASE to all guests. This results
in the following warning:
unchecked MSR access error: RDMSR from 0xc0010058 at rIP: 0xffffffff8101d19f (xen_do_read_msr+0x7f/0xa0)
Call Trace:
xen_read_msr+0x1e/0x30
amd_get_mmconfig_range+0x2b/0x80
quirk_amd_mmconfig_area+0x28/0x100
pnp_fixup_device+0x39/0x50
__pnp_add_device+0xf/0x150
pnp_add_device+0x3d/0x100
pnpacpi_add_device_handler+0x1f9/0x280
acpi_ns_get_device_callback+0x104/0x1c0
acpi_ns_walk_namespace+0x1d0/0x260
acpi_get_devices+0x8a/0xb0
pnpacpi_init+0x50/0x80
do_one_initcall+0x46/0x2e0
kernel_init_freeable+0x1da/0x2f0
kernel_init+0x16/0x1b0
ret_from_fork+0x30/0x50
ret_from_fork_asm+0x1b/0x30
based on quirks for a "PNP0c01" device. Treating MMCFG as disabled is the
right course of action, so no change is needed there.
This was most likely exposed by fixing the Xen MSR accessors to not be
silently-safe. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: regulatory: improve invalid hints checking
Syzbot keeps reporting an issue [1] that occurs when erroneous symbols
sent from userspace get through into user_alpha2[] via
regulatory_hint_user() call. Such invalid regulatory hints should be
rejected.
While a sanity check from commit 47caf685a685 ("cfg80211: regulatory:
reject invalid hints") looks to be enough to deter these very cases,
there is a way to get around it due to 2 reasons.
1) The way isalpha() works, symbols other than latin lower and
upper letters may be used to determine a country/domain.
For instance, greek letters will also be considered upper/lower
letters and for such characters isalpha() will return true as well.
However, ISO-3166-1 alpha2 codes should only hold latin
characters.
2) While processing a user regulatory request, between
reg_process_hint_user() and regulatory_hint_user() there happens to
be a call to queue_regulatory_request() which modifies letters in
request->alpha2[] with toupper(). This works fine for latin symbols,
less so for weird letter characters from the second part of _ctype[].
Syzbot triggers a warning in is_user_regdom_saved() by first sending
over an unexpected non-latin letter that gets malformed by toupper()
into a character that ends up failing isalpha() check.
Prevent this by enhancing is_an_alpha2() to ensure that incoming
symbols are latin letters and nothing else.
[1] Syzbot report:
------------[ cut here ]------------
Unexpected user alpha2: A�
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 is_user_regdom_saved net/wireless/reg.c:440 [inline]
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_alpha2 net/wireless/reg.c:3424 [inline]
WARNING: CPU: 1 PID: 964 at net/wireless/reg.c:442 restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516
Modules linked in:
CPU: 1 UID: 0 PID: 964 Comm: kworker/1:2 Not tainted 6.12.0-rc5-syzkaller-00044-gc1e939a21eb1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: events_power_efficient crda_timeout_work
RIP: 0010:is_user_regdom_saved net/wireless/reg.c:440 [inline]
RIP: 0010:restore_alpha2 net/wireless/reg.c:3424 [inline]
RIP: 0010:restore_regulatory_settings+0x3c0/0x1e50 net/wireless/reg.c:3516
...
Call Trace:
<TASK>
crda_timeout_work+0x27/0x50 net/wireless/reg.c:542
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f2/0x390 kernel/kthread.c:389
ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
uprobes: Reject the shared zeropage in uprobe_write_opcode()
We triggered the following crash in syzkaller tests:
BUG: Bad page state in process syz.7.38 pfn:1eff3
page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1eff3
flags: 0x3fffff00004004(referenced|reserved|node=0|zone=1|lastcpupid=0x1fffff)
raw: 003fffff00004004 ffffe6c6c07bfcc8 ffffe6c6c07bfcc8 0000000000000000
raw: 0000000000000000 0000000000000000 00000000fffffffe 0000000000000000
page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x32/0x50
bad_page+0x69/0xf0
free_unref_page_prepare+0x401/0x500
free_unref_page+0x6d/0x1b0
uprobe_write_opcode+0x460/0x8e0
install_breakpoint.part.0+0x51/0x80
register_for_each_vma+0x1d9/0x2b0
__uprobe_register+0x245/0x300
bpf_uprobe_multi_link_attach+0x29b/0x4f0
link_create+0x1e2/0x280
__sys_bpf+0x75f/0xac0
__x64_sys_bpf+0x1a/0x30
do_syscall_64+0x56/0x100
entry_SYSCALL_64_after_hwframe+0x78/0xe2
BUG: Bad rss-counter state mm:00000000452453e0 type:MM_FILEPAGES val:-1
The following syzkaller test case can be used to reproduce:
r2 = creat(&(0x7f0000000000)='./file0\x00', 0x8)
write$nbd(r2, &(0x7f0000000580)=ANY=[], 0x10)
r4 = openat(0xffffffffffffff9c, &(0x7f0000000040)='./file0\x00', 0x42, 0x0)
mmap$IORING_OFF_SQ_RING(&(0x7f0000ffd000/0x3000)=nil, 0x3000, 0x0, 0x12, r4, 0x0)
r5 = userfaultfd(0x80801)
ioctl$UFFDIO_API(r5, 0xc018aa3f, &(0x7f0000000040)={0xaa, 0x20})
r6 = userfaultfd(0x80801)
ioctl$UFFDIO_API(r6, 0xc018aa3f, &(0x7f0000000140))
ioctl$UFFDIO_REGISTER(r6, 0xc020aa00, &(0x7f0000000100)={{&(0x7f0000ffc000/0x4000)=nil, 0x4000}, 0x2})
ioctl$UFFDIO_ZEROPAGE(r5, 0xc020aa04, &(0x7f0000000000)={{&(0x7f0000ffd000/0x1000)=nil, 0x1000}})
r7 = bpf$PROG_LOAD(0x5, &(0x7f0000000140)={0x2, 0x3, &(0x7f0000000200)=ANY=[@ANYBLOB="1800000000120000000000000000000095"], &(0x7f0000000000)='GPL\x00', 0x7, 0x0, 0x0, 0x0, 0x0, '\x00', 0x0, @fallback=0x30, 0xffffffffffffffff, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x10, 0x0, @void, @value}, 0x94)
bpf$BPF_LINK_CREATE_XDP(0x1c, &(0x7f0000000040)={r7, 0x0, 0x30, 0x1e, @val=@uprobe_multi={&(0x7f0000000080)='./file0\x00', &(0x7f0000000100)=[0x2], 0x0, 0x0, 0x1}}, 0x40)
The cause is that zero pfn is set to the PTE without increasing the RSS
count in mfill_atomic_pte_zeropage() and the refcount of zero folio does
not increase accordingly. Then, the operation on the same pfn is performed
in uprobe_write_opcode()->__replace_page() to unconditional decrease the
RSS count and old_folio's refcount.
Therefore, two bugs are introduced:
1. The RSS count is incorrect, when process exit, the check_mm() report
error "Bad rss-count".
2. The reserved folio (zero folio) is freed when folio->refcount is zero,
then free_pages_prepare->free_page_is_bad() report error
"Bad page state".
There is more, the following warning could also theoretically be triggered:
__replace_page()
-> ...
-> folio_remove_rmap_pte()
-> VM_WARN_ON_FOLIO(is_zero_folio(folio), folio)
Considering that uprobe hit on the zero folio is a very rare case, just
reject zero old folio immediately after get_user_page_vma_remote().
[ mingo: Cleaned up the changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: gl620a: fix endpoint checking in genelink_bind()
Syzbot reports [1] a warning in usb_submit_urb() triggered by
inconsistencies between expected and actually present endpoints
in gl620a driver. Since genelink_bind() does not properly
verify whether specified eps are in fact provided by the device,
in this case, an artificially manufactured one, one may get a
mismatch.
Fix the issue by resorting to a usbnet utility function
usbnet_get_endpoints(), usually reserved for this very problem.
Check for endpoints and return early before proceeding further if
any are missing.
[1] Syzbot report:
usb 5-1: Manufacturer: syz
usb 5-1: SerialNumber: syz
usb 5-1: config 0 descriptor??
gl620a 5-1:0.23 usb0: register 'gl620a' at usb-dummy_hcd.0-1, ...
------------[ cut here ]------------
usb 5-1: BOGUS urb xfer, pipe 3 != type 1
WARNING: CPU: 2 PID: 1841 at drivers/usb/core/urb.c:503 usb_submit_urb+0xe4b/0x1730 drivers/usb/core/urb.c:503
Modules linked in:
CPU: 2 UID: 0 PID: 1841 Comm: kworker/2:2 Not tainted 6.12.0-syzkaller-07834-g06afb0f36106 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: mld mld_ifc_work
RIP: 0010:usb_submit_urb+0xe4b/0x1730 drivers/usb/core/urb.c:503
...
Call Trace:
<TASK>
usbnet_start_xmit+0x6be/0x2780 drivers/net/usb/usbnet.c:1467
__netdev_start_xmit include/linux/netdevice.h:5002 [inline]
netdev_start_xmit include/linux/netdevice.h:5011 [inline]
xmit_one net/core/dev.c:3590 [inline]
dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3606
sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343
__dev_xmit_skb net/core/dev.c:3827 [inline]
__dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4400
dev_queue_xmit include/linux/netdevice.h:3168 [inline]
neigh_resolve_output net/core/neighbour.c:1514 [inline]
neigh_resolve_output+0x5bc/0x950 net/core/neighbour.c:1494
neigh_output include/net/neighbour.h:539 [inline]
ip6_finish_output2+0xb1b/0x2070 net/ipv6/ip6_output.c:141
__ip6_finish_output net/ipv6/ip6_output.c:215 [inline]
ip6_finish_output+0x3f9/0x1360 net/ipv6/ip6_output.c:226
NF_HOOK_COND include/linux/netfilter.h:303 [inline]
ip6_output+0x1f8/0x540 net/ipv6/ip6_output.c:247
dst_output include/net/dst.h:450 [inline]
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netfilter.h:308 [inline]
mld_sendpack+0x9f0/0x11d0 net/ipv6/mcast.c:1819
mld_send_cr net/ipv6/mcast.c:2120 [inline]
mld_ifc_work+0x740/0xca0 net/ipv6/mcast.c:2651
process_one_work+0x9c5/0x1ba0 kernel/workqueue.c:3229
process_scheduled_works kernel/workqueue.c:3310 [inline]
worker_thread+0x6c8/0xf00 kernel/workqueue.c:3391
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: always handle address removal under msk socket lock
Syzkaller reported a lockdep splat in the PM control path:
WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 sock_owned_by_me include/net/sock.h:1711 [inline]
WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 msk_owned_by_me net/mptcp/protocol.h:363 [inline]
WARNING: CPU: 0 PID: 6693 at ./include/net/sock.h:1711 mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788
Modules linked in:
CPU: 0 UID: 0 PID: 6693 Comm: syz.0.205 Not tainted 6.14.0-rc2-syzkaller-00303-gad1b832bf1cf #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 12/27/2024
RIP: 0010:sock_owned_by_me include/net/sock.h:1711 [inline]
RIP: 0010:msk_owned_by_me net/mptcp/protocol.h:363 [inline]
RIP: 0010:mptcp_pm_nl_addr_send_ack+0x57c/0x610 net/mptcp/pm_netlink.c:788
Code: 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 ca 7b d3 f5 eb b9 e8 c3 7b d3 f5 90 0f 0b 90 e9 dd fb ff ff e8 b5 7b d3 f5 90 <0f> 0b 90 e9 3e fb ff ff 44 89 f1 80 e1 07 38 c1 0f 8c eb fb ff ff
RSP: 0000:ffffc900034f6f60 EFLAGS: 00010283
RAX: ffffffff8bee3c2b RBX: 0000000000000001 RCX: 0000000000080000
RDX: ffffc90004d42000 RSI: 000000000000a407 RDI: 000000000000a408
RBP: ffffc900034f7030 R08: ffffffff8bee37f6 R09: 0100000000000000
R10: dffffc0000000000 R11: ffffed100bcc62e4 R12: ffff88805e6316e0
R13: ffff88805e630c00 R14: dffffc0000000000 R15: ffff88805e630c00
FS: 00007f7e9a7e96c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b2fd18ff8 CR3: 0000000032c24000 CR4: 00000000003526f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
mptcp_pm_remove_addr+0x103/0x1d0 net/mptcp/pm.c:59
mptcp_pm_remove_anno_addr+0x1f4/0x2f0 net/mptcp/pm_netlink.c:1486
mptcp_nl_remove_subflow_and_signal_addr net/mptcp/pm_netlink.c:1518 [inline]
mptcp_pm_nl_del_addr_doit+0x118d/0x1af0 net/mptcp/pm_netlink.c:1629
genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline]
genl_rcv_msg+0xb1f/0xec0 net/netlink/genetlink.c:1210
netlink_rcv_skb+0x206/0x480 net/netlink/af_netlink.c:2543
genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219
netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1348
netlink_sendmsg+0x8de/0xcb0 net/netlink/af_netlink.c:1892
sock_sendmsg_nosec net/socket.c:718 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:733
____sys_sendmsg+0x53a/0x860 net/socket.c:2573
___sys_sendmsg net/socket.c:2627 [inline]
__sys_sendmsg+0x269/0x350 net/socket.c:2659
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f7e9998cde9
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f7e9a7e9038 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f7e99ba5fa0 RCX: 00007f7e9998cde9
RDX: 000000002000c094 RSI: 0000400000000000 RDI: 0000000000000007
RBP: 00007f7e99a0e2a0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f7e99ba5fa0 R15: 00007fff49231088
Indeed the PM can try to send a RM_ADDR over a msk without acquiring
first the msk socket lock.
The bugged code-path comes from an early optimization: when there
are no subflows, the PM should (usually) not send RM_ADDR
notifications.
The above statement is incorrect, as without locks another process
could concur
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
efi: Don't map the entire mokvar table to determine its size
Currently, when validating the mokvar table, we (re)map the entire table
on each iteration of the loop, adding space as we discover new entries.
If the table grows over a certain size, this fails due to limitations of
early_memmap(), and we get a failure and traceback:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 0 at mm/early_ioremap.c:139 __early_ioremap+0xef/0x220
...
Call Trace:
<TASK>
? __early_ioremap+0xef/0x220
? __warn.cold+0x93/0xfa
? __early_ioremap+0xef/0x220
? report_bug+0xff/0x140
? early_fixup_exception+0x5d/0xb0
? early_idt_handler_common+0x2f/0x3a
? __early_ioremap+0xef/0x220
? efi_mokvar_table_init+0xce/0x1d0
? setup_arch+0x864/0xc10
? start_kernel+0x6b/0xa10
? x86_64_start_reservations+0x24/0x30
? x86_64_start_kernel+0xed/0xf0
? common_startup_64+0x13e/0x141
</TASK>
---[ end trace 0000000000000000 ]---
mokvar: Failed to map EFI MOKvar config table pa=0x7c4c3000, size=265187.
Mapping the entire structure isn't actually necessary, as we don't ever
need more than one entry header mapped at once.
Changes efi_mokvar_table_init() to only map each entry header, not the
entire table, when determining the table size. Since we're not mapping
any data past the variable name, it also changes the code to enforce
that each variable name is NUL terminated, rather than attempting to
verify it in place. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: avoid holding freeze_mutex during mmap operation
We use map->freeze_mutex to prevent races between map_freeze() and
memory mapping BPF map contents with writable permissions. The way we
naively do this means we'll hold freeze_mutex for entire duration of all
the mm and VMA manipulations, which is completely unnecessary. This can
potentially also lead to deadlocks, as reported by syzbot in [0].
So, instead, hold freeze_mutex only during writeability checks, bump
(proactively) "write active" count for the map, unlock the mutex and
proceed with mmap logic. And only if something went wrong during mmap
logic, then undo that "write active" counter increment.
[0] https://lore.kernel.org/bpf/[email protected]/ |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop
Move the conditional loading of hardware DR6 with the guest's DR6 value
out of the core .vcpu_run() loop to fix a bug where KVM can load hardware
with a stale vcpu->arch.dr6.
When the guest accesses a DR and host userspace isn't debugging the guest,
KVM disables DR interception and loads the guest's values into hardware on
VM-Enter and saves them on VM-Exit. This allows the guest to access DRs
at will, e.g. so that a sequence of DR accesses to configure a breakpoint
only generates one VM-Exit.
For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also
identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest)
and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading
DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop.
But for DR6, the guest's value doesn't need to be loaded into hardware for
KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas
VMX requires software to manually load the guest value, and so loading the
guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done
_inside_ the core run loop.
Unfortunately, saving the guest values on VM-Exit is initiated by common
x86, again outside of the core run loop. If the guest modifies DR6 (in
hardware, when DR interception is disabled), and then the next VM-Exit is
a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and
clobber the guest's actual value.
The bug shows up primarily with nested VMX because KVM handles the VMX
preemption timer in the fastpath, and the window between hardware DR6
being modified (in guest context) and DR6 being read by guest software is
orders of magnitude larger in a nested setup. E.g. in non-nested, the
VMX preemption timer would need to fire precisely between #DB injection
and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the
window where hardware DR6 is "dirty" extends all the way from L1 writing
DR6 to VMRESUME (in L1).
L1's view:
==========
<L1 disables DR interception>
CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0
A: L1 Writes DR6
CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1
B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec
D: L1 reads DR6, arch.dr6 = 0
CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0
CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0
L2 reads DR6, L1 disables DR interception
CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216
CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0
CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0
L2 detects failure
CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT
L1 reads DR6 (confirms failure)
CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0
L0's view:
==========
L2 reads DR6, arch.dr6 = 0
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216
L2 => L1 nested VM-Exit
CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216
CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD
CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23
CPU 23/KVM-5046 [001] d.... 3410.
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: core: flush gadget workqueue after device removal
device_del() can lead to new work being scheduled in gadget->work
workqueue. This is observed, for example, with the dwc3 driver with the
following call stack:
device_del()
gadget_unbind_driver()
usb_gadget_disconnect_locked()
dwc3_gadget_pullup()
dwc3_gadget_soft_disconnect()
usb_gadget_set_state()
schedule_work(&gadget->work)
Move flush_work() after device_del() to ensure the workqueue is cleaned
up. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: use RCU protection in __ip_rt_update_pmtu()
__ip_rt_update_pmtu() must use RCU protection to make
sure the net structure it reads does not disappear. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: use RCU protection in ip6_default_advmss()
ip6_default_advmss() needs rcu protection to make
sure the net structure it reads does not disappear. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: add RCU protection to mld_newpack()
mld_newpack() can be called without RTNL or RCU being held.
Note that we no longer can use sock_alloc_send_skb() because
ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep.
Instead use alloc_skb() and charge the net->ipv6.igmp_sk
socket under RCU protection. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Send signals asynchronously if !preemptible
BPF programs can execute in all kinds of contexts and when a program
running in a non-preemptible context uses the bpf_send_signal() kfunc,
it will cause issues because this kfunc can sleep.
Change `irqs_disabled()` to `!preemptible()`. |