| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Incorrect handling of complex species in V8 in Google Chrome prior to 57.0.2987.98 for Linux, Windows, and Mac and 57.0.2987.108 for Android allowed a remote attacker to execute arbitrary code via a crafted HTML page. |
| When running Apache Tomcat versions 9.0.0.M1 to 9.0.0, 8.5.0 to 8.5.22, 8.0.0.RC1 to 8.0.46 and 7.0.0 to 7.0.81 with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default servlet to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server. |
| When running Apache Tomcat 7.0.0 to 7.0.79 on Windows with HTTP PUTs enabled (e.g. via setting the readonly initialisation parameter of the Default to false) it was possible to upload a JSP file to the server via a specially crafted request. This JSP could then be requested and any code it contained would be executed by the server. |
| Adobe Flash Player version 27.0.0.159 and earlier has a flawed bytecode verification procedure, which allows for an untrusted value to be used in the calculation of an array index. This can lead to type confusion, and successful exploitation could lead to arbitrary code execution. |
| Linux distributions that have not patched their long-term kernels with https://git.kernel.org/linus/a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (committed on April 14, 2015). This kernel vulnerability was fixed in April 2015 by commit a87938b2e246b81b4fb713edb371a9fa3c5c3c86 (backported to Linux 3.10.77 in May 2015), but it was not recognized as a security threat. With CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE enabled, and a normal top-down address allocation strategy, load_elf_binary() will attempt to map a PIE binary into an address range immediately below mm->mmap_base. Unfortunately, load_elf_ binary() does not take account of the need to allocate sufficient space for the entire binary which means that, while the first PT_LOAD segment is mapped below mm->mmap_base, the subsequent PT_LOAD segment(s) end up being mapped above mm->mmap_base into the are that is supposed to be the "gap" between the stack and the binary. |
| Use-after-free vulnerability in Adobe Flash Player before 23.0.0.205 on Windows and OS X and before 11.2.202.643 on Linux allows remote attackers to execute arbitrary code via unspecified vectors, as exploited in the wild in October 2016. |
| V8 in Google Chrome prior to 54.0.2840.90 for Linux, and 54.0.2840.85 for Android, and 54.0.2840.87 for Windows and Mac included incorrect optimisation assumptions, which allowed a remote attacker to perform arbitrary read/write operations, leading to code execution, via a crafted HTML page. |
| The (1) HTTP and (2) FTP coders in ImageMagick before 6.9.3-10 and 7.x before 7.0.1-1 allow remote attackers to conduct server-side request forgery (SSRF) attacks via a crafted image. |
| The EPHEMERAL coder in ImageMagick before 6.9.3-10 and 7.x before 7.0.1-1 allows remote attackers to delete arbitrary files via a crafted image. |
| The (1) EPHEMERAL, (2) HTTPS, (3) MVG, (4) MSL, (5) TEXT, (6) SHOW, (7) WIN, and (8) PLT coders in ImageMagick before 6.9.3-10 and 7.x before 7.0.1-1 allow remote attackers to execute arbitrary code via shell metacharacters in a crafted image, aka "ImageTragick." |
| Unspecified vulnerability in Oracle Java SE 6u113, 7u99, and 8u77; Java SE Embedded 8u77; and JRockit R28.3.9 allows remote attackers to affect confidentiality, integrity, and availability via vectors related to JMX. |
| The Array.prototype.concat implementation in builtins.cc in Google V8, as used in Google Chrome before 49.0.2623.108, does not properly consider element data types, which allows remote attackers to cause a denial of service (out-of-bounds read) or possibly have unspecified other impact via crafted JavaScript code. |
| Integer overflow in Adobe Flash Player before 18.0.0.324 and 19.x and 20.x before 20.0.0.267 on Windows and OS X and before 11.2.202.559 on Linux, Adobe AIR before 20.0.0.233, Adobe AIR SDK before 20.0.0.233, and Adobe AIR SDK & Compiler before 20.0.0.233 allows attackers to execute arbitrary code via unspecified vectors. |
| Adobe Flash Player 18.x through 18.0.0.252 and 19.x through 19.0.0.207 on Windows and OS X and 11.x through 11.2.202.535 on Linux allows remote attackers to execute arbitrary code via a crafted SWF file, as exploited in the wild in October 2015. |
| Unspecified vulnerability in Oracle Java SE 6u101, 7u85, and 8u60 allows remote attackers to affect integrity via unknown vectors related to Deployment. |
| The PDF reader in Mozilla Firefox before 39.0.3, Firefox ESR 38.x before 38.1.1, and Firefox OS before 2.2 allows remote attackers to bypass the Same Origin Policy, and read arbitrary files or gain privileges, via vectors involving crafted JavaScript code and a native setter, as exploited in the wild in August 2015. |
| Unspecified vulnerability in Oracle Java SE 6u95, 7u80, and 8u45, and Java SE Embedded 7u75 and 8u33 allows remote attackers to affect confidentiality, integrity, and availability via unknown vectors related to Libraries, a different vulnerability than CVE-2015-4732. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: E-Switch, pair only capable devices
OFFLOADS paring using devcom is possible only on devices
that support LAG. Filter based on lag capabilities.
This fixes an issue where mlx5_get_next_phys_dev() was
called without holding the interface lock.
This issue was found when commit
bc4c2f2e0179 ("net/mlx5: Lag, filter non compatible devices")
added an assert that verifies the interface lock is held.
WARNING: CPU: 9 PID: 1706 at drivers/net/ethernet/mellanox/mlx5/core/dev.c:642 mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core]
Modules linked in: mlx5_vdpa vringh vhost_iotlb vdpa mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm ib_uverbs ib_core overlay fuse [last unloaded: mlx5_core]
CPU: 9 PID: 1706 Comm: devlink Not tainted 5.18.0-rc7+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5_get_next_phys_dev+0xd2/0x100 [mlx5_core]
Code: 02 00 75 48 48 8b 85 80 04 00 00 5d c3 31 c0 5d c3 be ff ff ff ff 48 c7 c7 08 41 5b a0 e8 36 87 28 e3 85 c0 0f 85 6f ff ff ff <0f> 0b e9 68 ff ff ff 48 c7 c7 0c 91 cc 84 e8 cb 36 6f e1 e9 4d ff
RSP: 0018:ffff88811bf47458 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88811b398000 RCX: 0000000000000001
RDX: 0000000080000000 RSI: ffffffffa05b4108 RDI: ffff88812daaaa78
RBP: ffff88812d050380 R08: 0000000000000001 R09: ffff88811d6b3437
R10: 0000000000000001 R11: 00000000fddd3581 R12: ffff88815238c000
R13: ffff88812d050380 R14: ffff8881018aa7e0 R15: ffff88811d6b3428
FS: 00007fc82e18ae80(0000) GS:ffff88842e080000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f9630d1b421 CR3: 0000000149802004 CR4: 0000000000370ea0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
mlx5_esw_offloads_devcom_event+0x99/0x3b0 [mlx5_core]
mlx5_devcom_send_event+0x167/0x1d0 [mlx5_core]
esw_offloads_enable+0x1153/0x1500 [mlx5_core]
? mlx5_esw_offloads_controller_valid+0x170/0x170 [mlx5_core]
? wait_for_completion_io_timeout+0x20/0x20
? mlx5_rescan_drivers_locked+0x318/0x810 [mlx5_core]
mlx5_eswitch_enable_locked+0x586/0xc50 [mlx5_core]
? mlx5_eswitch_disable_pf_vf_vports+0x1d0/0x1d0 [mlx5_core]
? mlx5_esw_try_lock+0x1b/0xb0 [mlx5_core]
? mlx5_eswitch_enable+0x270/0x270 [mlx5_core]
? __debugfs_create_file+0x260/0x3e0
mlx5_devlink_eswitch_mode_set+0x27e/0x870 [mlx5_core]
? mutex_lock_io_nested+0x12c0/0x12c0
? esw_offloads_disable+0x250/0x250 [mlx5_core]
? devlink_nl_cmd_trap_get_dumpit+0x470/0x470
? rcu_read_lock_sched_held+0x3f/0x70
devlink_nl_cmd_eswitch_set_doit+0x217/0x620 |
| In the Linux kernel, the following vulnerability has been resolved:
ip_gre: test csum_start instead of transport header
GRE with TUNNEL_CSUM will apply local checksum offload on
CHECKSUM_PARTIAL packets.
ipgre_xmit must validate csum_start after an optional skb_pull,
else lco_csum may trigger an overflow. The original check was
if (csum && skb_checksum_start(skb) < skb->data)
return -EINVAL;
This had false positives when skb_checksum_start is undefined:
when ip_summed is not CHECKSUM_PARTIAL. A discussed refinement
was straightforward
if (csum && skb->ip_summed == CHECKSUM_PARTIAL &&
skb_checksum_start(skb) < skb->data)
return -EINVAL;
But was eventually revised more thoroughly:
- restrict the check to the only branch where needed, in an
uncommon GRE path that uses header_ops and calls skb_pull.
- test skb_transport_header, which is set along with csum_start
in skb_partial_csum_set in the normal header_ops datapath.
Turns out skbs can arrive in this branch without the transport
header set, e.g., through BPF redirection.
Revise the check back to check csum_start directly, and only if
CHECKSUM_PARTIAL. Do leave the check in the updated location.
Check field regardless of whether TUNNEL_CSUM is configured. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: filter out EXT4_FC_REPLAY from on-disk superblock field s_state
The EXT4_FC_REPLAY bit in sbi->s_mount_state is used to indicate that
we are in the middle of replay the fast commit journal. This was
actually a mistake, since the sbi->s_mount_info is initialized from
es->s_state. Arguably s_mount_state is misleadingly named, but the
name is historical --- s_mount_state and s_state dates back to ext2.
What should have been used is the ext4_{set,clear,test}_mount_flag()
inline functions, which sets EXT4_MF_* bits in sbi->s_mount_flags.
The problem with using EXT4_FC_REPLAY is that a maliciously corrupted
superblock could result in EXT4_FC_REPLAY getting set in
s_mount_state. This bypasses some sanity checks, and this can trigger
a BUG() in ext4_es_cache_extent(). As a easy-to-backport-fix, filter
out the EXT4_FC_REPLAY bit for now. We should eventually transition
away from EXT4_FC_REPLAY to something like EXT4_MF_REPLAY. |