Filtered by vendor Linux Subscriptions
Filtered by product Linux Kernel Subscriptions
Total 15219 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-49046 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: i2c: dev: check return value when calling dev_set_name() If dev_set_name() fails, the dev_name() is null, check the return value of dev_set_name() to avoid the null-ptr-deref.
CVE-2022-3606 1 Linux 1 Linux Kernel 2025-11-03 3.5 Low
A vulnerability was found in Linux Kernel. It has been classified as problematic. This affects the function find_prog_by_sec_insn of the file tools/lib/bpf/libbpf.c of the component BPF. The manipulation leads to null pointer dereference. It is recommended to apply a patch to fix this issue. The identifier VDB-211749 was assigned to this vulnerability.
CVE-2022-3534 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
A vulnerability classified as critical has been found in Linux Kernel. Affected is the function btf_dump_name_dups of the file tools/lib/bpf/btf_dump.c of the component libbpf. The manipulation leads to use after free. It is recommended to apply a patch to fix this issue. The identifier of this vulnerability is VDB-211032.
CVE-2025-37985 1 Linux 1 Linux Kernel 2025-11-03 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: USB: wdm: close race between wdm_open and wdm_wwan_port_stop Clearing WDM_WWAN_IN_USE must be the last action or we can open a chardev whose URBs are still poisoned
CVE-2025-37967 1 Linux 1 Linux Kernel 2025-11-03 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: displayport: Fix deadlock This patch introduces the ucsi_con_mutex_lock / ucsi_con_mutex_unlock functions to the UCSI driver. ucsi_con_mutex_lock ensures the connector mutex is only locked if a connection is established and the partner pointer is valid. This resolves a deadlock scenario where ucsi_displayport_remove_partner holds con->mutex waiting for dp_altmode_work to complete while dp_altmode_work attempts to acquire it.
CVE-2025-37964 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/mm: Eliminate window where TLB flushes may be inadvertently skipped tl;dr: There is a window in the mm switching code where the new CR3 is set and the CPU should be getting TLB flushes for the new mm. But should_flush_tlb() has a bug and suppresses the flush. Fix it by widening the window where should_flush_tlb() sends an IPI. Long Version: === History === There were a few things leading up to this. First, updating mm_cpumask() was observed to be too expensive, so it was made lazier. But being lazy caused too many unnecessary IPIs to CPUs due to the now-lazy mm_cpumask(). So code was added to cull mm_cpumask() periodically[2]. But that culling was a bit too aggressive and skipped sending TLB flushes to CPUs that need them. So here we are again. === Problem === The too-aggressive code in should_flush_tlb() strikes in this window: // Turn on IPIs for this CPU/mm combination, but only // if should_flush_tlb() agrees: cpumask_set_cpu(cpu, mm_cpumask(next)); next_tlb_gen = atomic64_read(&next->context.tlb_gen); choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush); load_new_mm_cr3(need_flush); // ^ After 'need_flush' is set to false, IPIs *MUST* // be sent to this CPU and not be ignored. this_cpu_write(cpu_tlbstate.loaded_mm, next); // ^ Not until this point does should_flush_tlb() // become true! should_flush_tlb() will suppress TLB flushes between load_new_mm_cr3() and writing to 'loaded_mm', which is a window where they should not be suppressed. Whoops. === Solution === Thankfully, the fuzzy "just about to write CR3" window is already marked with loaded_mm==LOADED_MM_SWITCHING. Simply checking for that state in should_flush_tlb() is sufficient to ensure that the CPU is targeted with an IPI. This will cause more TLB flush IPIs. But the window is relatively small and I do not expect this to cause any kind of measurable performance impact. Update the comment where LOADED_MM_SWITCHING is written since it grew yet another user. Peter Z also raised a concern that should_flush_tlb() might not observe 'loaded_mm' and 'is_lazy' in the same order that switch_mm_irqs_off() writes them. Add a barrier to ensure that they are observed in the order they are written.
CVE-2025-37947 1 Linux 1 Linux Kernel 2025-11-03 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ksmbd: prevent out-of-bounds stream writes by validating *pos ksmbd_vfs_stream_write() did not validate whether the write offset (*pos) was within the bounds of the existing stream data length (v_len). If *pos was greater than or equal to v_len, this could lead to an out-of-bounds memory write. This patch adds a check to ensure *pos is less than v_len before proceeding. If the condition fails, -EINVAL is returned.
CVE-2025-37940 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ftrace: Add cond_resched() to ftrace_graph_set_hash() When the kernel contains a large number of functions that can be traced, the loop in ftrace_graph_set_hash() may take a lot of time to execute. This may trigger the softlockup watchdog. Add cond_resched() within the loop to allow the kernel to remain responsive even when processing a large number of functions. This matches the cond_resched() that is used in other locations of the code that iterates over all functions that can be traced.
CVE-2025-37938 1 Linux 1 Linux Kernel 2025-11-03 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Verify event formats that have "%*p.." The trace event verifier checks the formats of trace events to make sure that they do not point at memory that is not in the trace event itself or in data that will never be freed. If an event references data that was allocated when the event triggered and that same data is freed before the event is read, then the kernel can crash by reading freed memory. The verifier runs at boot up (or module load) and scans the print formats of the events and checks their arguments to make sure that dereferenced pointers are safe. If the format uses "%*p.." the verifier will ignore it, and that could be dangerous. Cover this case as well. Also add to the sample code a use case of "%*pbl".
CVE-2025-37917 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: mtk-star-emac: fix spinlock recursion issues on rx/tx poll Use spin_lock_irqsave and spin_unlock_irqrestore instead of spin_lock and spin_unlock in mtk_star_emac driver to avoid spinlock recursion occurrence that can happen when enabling the DMA interrupts again in rx/tx poll. ``` BUG: spinlock recursion on CPU#0, swapper/0/0 lock: 0xffff00000db9cf20, .magic: dead4ead, .owner: swapper/0/0, .owner_cpu: 0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.15.0-rc2-next-20250417-00001-gf6a27738686c-dirty #28 PREEMPT Hardware name: MediaTek MT8365 Open Platform EVK (DT) Call trace: show_stack+0x18/0x24 (C) dump_stack_lvl+0x60/0x80 dump_stack+0x18/0x24 spin_dump+0x78/0x88 do_raw_spin_lock+0x11c/0x120 _raw_spin_lock+0x20/0x2c mtk_star_handle_irq+0xc0/0x22c [mtk_star_emac] __handle_irq_event_percpu+0x48/0x140 handle_irq_event+0x4c/0xb0 handle_fasteoi_irq+0xa0/0x1bc handle_irq_desc+0x34/0x58 generic_handle_domain_irq+0x1c/0x28 gic_handle_irq+0x4c/0x120 do_interrupt_handler+0x50/0x84 el1_interrupt+0x34/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 regmap_mmio_read32le+0xc/0x20 (P) _regmap_bus_reg_read+0x6c/0xac _regmap_read+0x60/0xdc regmap_read+0x4c/0x80 mtk_star_rx_poll+0x2f4/0x39c [mtk_star_emac] __napi_poll+0x38/0x188 net_rx_action+0x164/0x2c0 handle_softirqs+0x100/0x244 __do_softirq+0x14/0x20 ____do_softirq+0x10/0x20 call_on_irq_stack+0x24/0x64 do_softirq_own_stack+0x1c/0x40 __irq_exit_rcu+0xd4/0x10c irq_exit_rcu+0x10/0x1c el1_interrupt+0x38/0x68 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x6c/0x70 cpuidle_enter_state+0xac/0x320 (P) cpuidle_enter+0x38/0x50 do_idle+0x1e4/0x260 cpu_startup_entry+0x34/0x3c rest_init+0xdc/0xe0 console_on_rootfs+0x0/0x6c __primary_switched+0x88/0x90 ```
CVE-2025-37912 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: Check VF VSI Pointer Value in ice_vc_add_fdir_fltr() As mentioned in the commit baeb705fd6a7 ("ice: always check VF VSI pointer values"), we need to perform a null pointer check on the return value of ice_get_vf_vsi() before using it.
CVE-2025-37911 1 Linux 1 Linux Kernel 2025-11-03 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix out-of-bound memcpy() during ethtool -w When retrieving the FW coredump using ethtool, it can sometimes cause memory corruption: BUG: KFENCE: memory corruption in __bnxt_get_coredump+0x3ef/0x670 [bnxt_en] Corrupted memory at 0x000000008f0f30e8 [ ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ] (in kfence-#45): __bnxt_get_coredump+0x3ef/0x670 [bnxt_en] ethtool_get_dump_data+0xdc/0x1a0 __dev_ethtool+0xa1e/0x1af0 dev_ethtool+0xa8/0x170 dev_ioctl+0x1b5/0x580 sock_do_ioctl+0xab/0xf0 sock_ioctl+0x1ce/0x2e0 __x64_sys_ioctl+0x87/0xc0 do_syscall_64+0x5c/0xf0 entry_SYSCALL_64_after_hwframe+0x78/0x80 ... This happens when copying the coredump segment list in bnxt_hwrm_dbg_dma_data() with the HWRM_DBG_COREDUMP_LIST FW command. The info->dest_buf buffer is allocated based on the number of coredump segments returned by the FW. The segment list is then DMA'ed by the FW and the length of the DMA is returned by FW. The driver then copies this DMA'ed segment list to info->dest_buf. In some cases, this DMA length may exceed the info->dest_buf length and cause the above BUG condition. Fix it by capping the copy length to not exceed the length of info->dest_buf. The extra DMA data contains no useful information. This code path is shared for the HWRM_DBG_COREDUMP_LIST and the HWRM_DBG_COREDUMP_RETRIEVE FW commands. The buffering is different for these 2 FW commands. To simplify the logic, we need to move the line to adjust the buffer length for HWRM_DBG_COREDUMP_RETRIEVE up, so that the new check to cap the copy length will work for both commands.
CVE-2025-37905 1 Linux 1 Linux Kernel 2025-11-03 7.0 High
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Balance device refcount when destroying devices Using device_find_child() to lookup the proper SCMI device to destroy causes an unbalance in device refcount, since device_find_child() calls an implicit get_device(): this, in turns, inhibits the call of the provided release methods upon devices destruction. As a consequence, one of the structures that is not freed properly upon destruction is the internal struct device_private dev->p populated by the drivers subsystem core. KMemleak detects this situation since loading/unloding some SCMI driver causes related devices to be created/destroyed without calling any device_release method. unreferenced object 0xffff00000f583800 (size 512): comm "insmod", pid 227, jiffies 4294912190 hex dump (first 32 bytes): 00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N.......... ff ff ff ff ff ff ff ff 60 36 1d 8a 00 80 ff ff ........`6...... backtrace (crc 114e2eed): kmemleak_alloc+0xbc/0xd8 __kmalloc_cache_noprof+0x2dc/0x398 device_add+0x954/0x12d0 device_register+0x28/0x40 __scmi_device_create.part.0+0x1bc/0x380 scmi_device_create+0x2d0/0x390 scmi_create_protocol_devices+0x74/0xf8 scmi_device_request_notifier+0x1f8/0x2a8 notifier_call_chain+0x110/0x3b0 blocking_notifier_call_chain+0x70/0xb0 scmi_driver_register+0x350/0x7f0 0xffff80000a3b3038 do_one_initcall+0x12c/0x730 do_init_module+0x1dc/0x640 load_module+0x4b20/0x5b70 init_module_from_file+0xec/0x158 $ ./scripts/faddr2line ./vmlinux device_add+0x954/0x12d0 device_add+0x954/0x12d0: kmalloc_noprof at include/linux/slab.h:901 (inlined by) kzalloc_noprof at include/linux/slab.h:1037 (inlined by) device_private_init at drivers/base/core.c:3510 (inlined by) device_add at drivers/base/core.c:3561 Balance device refcount by issuing a put_device() on devices found via device_find_child().
CVE-2025-37805 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: sound/virtio: Fix cancel_sync warnings on uninitialized work_structs Betty reported hitting the following warning: [ 8.709131][ T221] WARNING: CPU: 2 PID: 221 at kernel/workqueue.c:4182 ... [ 8.713282][ T221] Call trace: [ 8.713365][ T221] __flush_work+0x8d0/0x914 [ 8.713468][ T221] __cancel_work_sync+0xac/0xfc [ 8.713570][ T221] cancel_work_sync+0x24/0x34 [ 8.713667][ T221] virtsnd_remove+0xa8/0xf8 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.713868][ T221] virtsnd_probe+0x48c/0x664 [virtio_snd ab15f34d0dd772f6d11327e08a81d46dc9c36276] [ 8.714035][ T221] virtio_dev_probe+0x28c/0x390 [ 8.714139][ T221] really_probe+0x1bc/0x4c8 ... It seems we're hitting the error path in virtsnd_probe(), which triggers a virtsnd_remove() which iterates over the substreams calling cancel_work_sync() on the elapsed_period work_struct. Looking at the code, from earlier in: virtsnd_probe()->virtsnd_build_devs()->virtsnd_pcm_parse_cfg() We set snd->nsubstreams, allocate the snd->substreams, and if we then hit an error on the info allocation or something in virtsnd_ctl_query_info() fails, we will exit without having initialized the elapsed_period work_struct. When that error path unwinds we then call virtsnd_remove() which as long as the substreams array is allocated, will iterate through calling cancel_work_sync() on the uninitialized work struct hitting this warning. Takashi Iwai suggested this fix, which initializes the substreams structure right after allocation, so that if we hit the error paths we avoid trying to cleanup uninitialized data. Note: I have not yet managed to reproduce the issue myself, so this patch has had limited testing. Feedback or thoughts would be appreciated!
CVE-2025-37787 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: mv88e6xxx: avoid unregistering devlink regions which were never registered Russell King reports that a system with mv88e6xxx dereferences a NULL pointer when unbinding this driver: https://lore.kernel.org/netdev/[email protected]/ The crash seems to be in devlink_region_destroy(), which is not NULL tolerant but is given a NULL devlink global region pointer. At least on some chips, some devlink regions are conditionally registered since the blamed commit, see mv88e6xxx_setup_devlink_regions_global(): if (cond && !cond(chip)) continue; These are MV88E6XXX_REGION_STU and MV88E6XXX_REGION_PVT. If the chip does not have an STU or PVT, it should crash like this. To fix the issue, avoid unregistering those regions which are NULL, i.e. were skipped at mv88e6xxx_setup_devlink_regions_global() time.
CVE-2025-36047 4 Apple, Ibm, Linux and 1 more 7 Macos, Aix, I and 4 more 2025-11-03 5.3 Medium
IBM WebSphere Application Server Liberty 18.0.0.2 through 25.0.0.8 is vulnerable to a denial of service, caused by sending a specially-crafted request. A remote attacker could exploit this vulnerability to cause the server to consume memory resources.
CVE-2025-22014 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: pdr: Fix the potential deadlock When some client process A call pdr_add_lookup() to add the look up for the service and does schedule locator work, later a process B got a new server packet indicating locator is up and call pdr_locator_new_server() which eventually sets pdr->locator_init_complete to true which process A sees and takes list lock and queries domain list but it will timeout due to deadlock as the response will queued to the same qmi->wq and it is ordered workqueue and process B is not able to complete new server request work due to deadlock on list lock. Fix it by removing the unnecessary list iteration as the list iteration is already being done inside locator work, so avoid it here and just call schedule_work() here. Process A Process B process_scheduled_works() pdr_add_lookup() qmi_data_ready_work() process_scheduled_works() pdr_locator_new_server() pdr->locator_init_complete=true; pdr_locator_work() mutex_lock(&pdr->list_lock); pdr_locate_service() mutex_lock(&pdr->list_lock); pdr_get_domain_list() pr_err("PDR: %s get domain list txn wait failed: %d\n", req->service_name, ret); Timeout error log due to deadlock: " PDR: tms/servreg get domain list txn wait failed: -110 PDR: service lookup for msm/adsp/sensor_pd:tms/servreg failed: -110 " Thanks to Bjorn and Johan for letting me know that this commit also fixes an audio regression when using the in-kernel pd-mapper as that makes it easier to hit this race. [1]
CVE-2025-22010 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup during bt pages loop Driver runs a for-loop when allocating bt pages and mapping them with buffer pages. When a large buffer (e.g. MR over 100GB) is being allocated, it may require a considerable loop count. This will lead to soft lockup: watchdog: BUG: soft lockup - CPU#27 stuck for 22s! ... Call trace: hem_list_alloc_mid_bt+0x124/0x394 [hns_roce_hw_v2] hns_roce_hem_list_request+0xf8/0x160 [hns_roce_hw_v2] hns_roce_mtr_create+0x2e4/0x360 [hns_roce_hw_v2] alloc_mr_pbl+0xd4/0x17c [hns_roce_hw_v2] hns_roce_reg_user_mr+0xf8/0x190 [hns_roce_hw_v2] ib_uverbs_reg_mr+0x118/0x290 watchdog: BUG: soft lockup - CPU#35 stuck for 23s! ... Call trace: hns_roce_hem_list_find_mtt+0x7c/0xb0 [hns_roce_hw_v2] mtr_map_bufs+0xc4/0x204 [hns_roce_hw_v2] hns_roce_mtr_create+0x31c/0x3c4 [hns_roce_hw_v2] alloc_mr_pbl+0xb0/0x160 [hns_roce_hw_v2] hns_roce_reg_user_mr+0x108/0x1c0 [hns_roce_hw_v2] ib_uverbs_reg_mr+0x120/0x2bc Add a cond_resched() to fix soft lockup during these loops. In order not to affect the allocation performance of normal-size buffer, set the loop count of a 100GB MR as the threshold to call cond_resched().
CVE-2025-21997 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xsk: fix an integer overflow in xp_create_and_assign_umem() Since the i and pool->chunk_size variables are of type 'u32', their product can wrap around and then be cast to 'u64'. This can lead to two different XDP buffers pointing to the same memory area. Found by InfoTeCS on behalf of Linux Verification Center (linuxtesting.org) with SVACE.
CVE-2025-21994 1 Linux 1 Linux Kernel 2025-11-03 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix incorrect validation for num_aces field of smb_acl parse_dcal() validate num_aces to allocate posix_ace_state_array. if (num_aces > ULONG_MAX / sizeof(struct smb_ace *)) It is an incorrect validation that we can create an array of size ULONG_MAX. smb_acl has ->size field to calculate actual number of aces in request buffer size. Use this to check invalid num_aces.