Search Results (16669 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68748 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/panthor: Fix UAF race between device unplug and FW event processing The function panthor_fw_unplug() will free the FW memory sections. The problem is that there could still be pending FW events which are yet not handled at this point. process_fw_events_work() can in this case try to access said freed memory. Simply call disable_work_sync() to both drain and prevent future invocation of process_fw_events_work().
CVE-2025-68739 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: PM / devfreq: hisi: Fix potential UAF in OPP handling Ensure all required data is acquired before calling dev_pm_opp_put(opp) to maintain correct resource acquisition and release order.
CVE-2025-68738 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7996: fix null pointer deref in mt7996_conf_tx() If a link does not have an assigned channel yet, mt7996_vif_link returns NULL. We still need to store the updated queue settings in that case, and apply them later. Move the location of the queue params to within struct mt7996_vif_link.
CVE-2023-54136 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: serial: sprd: Fix DMA buffer leak issue Release DMA buffer when _probe() returns failure to avoid memory leak.
CVE-2025-68743 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: mshv: Fix create memory region overlap check The current check is incorrect; it only checks if the beginning or end of a region is within an existing region. This doesn't account for userspace specifying a region that begins before and ends after an existing region. Change the logic to a range intersection check against gfns and uaddrs for each region. Remove mshv_partition_region_by_uaddr() as it is no longer used.
CVE-2025-68736 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: landlock: Fix handling of disconnected directories Disconnected files or directories can appear when they are visible and opened from a bind mount, but have been renamed or moved from the source of the bind mount in a way that makes them inaccessible from the mount point (i.e. out of scope). Previously, access rights tied to files or directories opened through a disconnected directory were collected by walking the related hierarchy down to the root of the filesystem, without taking into account the mount point because it couldn't be found. This could lead to inconsistent access results, potential access right widening, and hard-to-debug renames, especially since such paths cannot be printed. For a sandboxed task to create a disconnected directory, it needs to have write access (i.e. FS_MAKE_REG, FS_REMOVE_FILE, and FS_REFER) to the underlying source of the bind mount, and read access to the related mount point. Because a sandboxed task cannot acquire more access rights than those defined by its Landlock domain, this could lead to inconsistent access rights due to missing permissions that should be inherited from the mount point hierarchy, while inheriting permissions from the filesystem hierarchy hidden by this mount point instead. Landlock now handles files and directories opened from disconnected directories by taking into account the filesystem hierarchy when the mount point is not found in the hierarchy walk, and also always taking into account the mount point from which these disconnected directories were opened. This ensures that a rename is not allowed if it would widen access rights [1]. The rationale is that, even if disconnected hierarchies might not be visible or accessible to a sandboxed task, relying on the collected access rights from them improves the guarantee that access rights will not be widened during a rename because of the access right comparison between the source and the destination (see LANDLOCK_ACCESS_FS_REFER). It may look like this would grant more access on disconnected files and directories, but the security policies are always enforced for all the evaluated hierarchies. This new behavior should be less surprising to users and safer from an access control perspective. Remove a wrong WARN_ON_ONCE() canary in collect_domain_accesses() and fix the related comment. Because opened files have their access rights stored in the related file security properties, there is no impact for disconnected or unlinked files.
CVE-2023-54140 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix WARNING in mark_buffer_dirty due to discarded buffer reuse A syzbot stress test using a corrupted disk image reported that mark_buffer_dirty() called from __nilfs_mark_inode_dirty() or nilfs_palloc_commit_alloc_entry() may output a kernel warning, and can panic if the kernel is booted with panic_on_warn. This is because nilfs2 keeps buffer pointers in local structures for some metadata and reuses them, but such buffers may be forcibly discarded by nilfs_clear_dirty_page() in some critical situations. This issue is reported to appear after commit 28a65b49eb53 ("nilfs2: do not write dirty data after degenerating to read-only"), but the issue has potentially existed before. Fix this issue by checking the uptodate flag when attempting to reuse an internally held buffer, and reloading the metadata instead of reusing the buffer if the flag was lost.
CVE-2023-54152 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: j1939: prevent deadlock by moving j1939_sk_errqueue() This commit addresses a deadlock situation that can occur in certain scenarios, such as when running data TP/ETP transfer and subscribing to the error queue while receiving a net down event. The deadlock involves locks in the following order: 3 j1939_session_list_lock -> active_session_list_lock j1939_session_activate ... j1939_sk_queue_activate_next -> sk_session_queue_lock ... j1939_xtp_rx_eoma_one 2 j1939_sk_queue_drop_all -> sk_session_queue_lock ... j1939_sk_netdev_event_netdown -> j1939_socks_lock j1939_netdev_notify 1 j1939_sk_errqueue -> j1939_socks_lock __j1939_session_cancel -> active_session_list_lock j1939_tp_rxtimer CPU0 CPU1 ---- ---- lock(&priv->active_session_list_lock); lock(&jsk->sk_session_queue_lock); lock(&priv->active_session_list_lock); lock(&priv->j1939_socks_lock); The solution implemented in this commit is to move the j1939_sk_errqueue() call out of the active_session_list_lock context, thus preventing the deadlock situation.
CVE-2025-68737 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: arm64/pageattr: Propagate return value from __change_memory_common The rodata=on security measure requires that any code path which does vmalloc -> set_memory_ro/set_memory_rox must protect the linear map alias too. Therefore, if such a call fails, we must abort set_memory_* and caller must take appropriate action; currently we are suppressing the error, and there is a real chance of such an error arising post commit a166563e7ec3 ("arm64: mm: support large block mapping when rodata=full"). Therefore, propagate any error to the caller.
CVE-2023-54144 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix kernel warning during topology setup This patch fixes the following kernel warning seen during driver load by correctly initializing the p2plink attr before creating the sysfs file: [ +0.002865] ------------[ cut here ]------------ [ +0.002327] kobject: '(null)' (0000000056260cfb): is not initialized, yet kobject_put() is being called. [ +0.004780] WARNING: CPU: 32 PID: 1006 at lib/kobject.c:718 kobject_put+0xaa/0x1c0 [ +0.001361] Call Trace: [ +0.001234] <TASK> [ +0.001067] kfd_remove_sysfs_node_entry+0x24a/0x2d0 [amdgpu] [ +0.003147] kfd_topology_update_sysfs+0x3d/0x750 [amdgpu] [ +0.002890] kfd_topology_add_device+0xbd7/0xc70 [amdgpu] [ +0.002844] ? lock_release+0x13c/0x2e0 [ +0.001936] ? smu_cmn_send_smc_msg_with_param+0x1e8/0x2d0 [amdgpu] [ +0.003313] ? amdgpu_dpm_get_mclk+0x54/0x60 [amdgpu] [ +0.002703] kgd2kfd_device_init.cold+0x39f/0x4ed [amdgpu] [ +0.002930] amdgpu_amdkfd_device_init+0x13d/0x1f0 [amdgpu] [ +0.002944] amdgpu_device_init.cold+0x1464/0x17b4 [amdgpu] [ +0.002970] ? pci_bus_read_config_word+0x43/0x80 [ +0.002380] amdgpu_driver_load_kms+0x15/0x100 [amdgpu] [ +0.002744] amdgpu_pci_probe+0x147/0x370 [amdgpu] [ +0.002522] local_pci_probe+0x40/0x80 [ +0.001896] work_for_cpu_fn+0x10/0x20 [ +0.001892] process_one_work+0x26e/0x5a0 [ +0.002029] worker_thread+0x1fd/0x3e0 [ +0.001890] ? process_one_work+0x5a0/0x5a0 [ +0.002115] kthread+0xea/0x110 [ +0.001618] ? kthread_complete_and_exit+0x20/0x20 [ +0.002422] ret_from_fork+0x1f/0x30 [ +0.001808] </TASK> [ +0.001103] irq event stamp: 59837 [ +0.001718] hardirqs last enabled at (59849): [<ffffffffb30fab12>] __up_console_sem+0x52/0x60 [ +0.004414] hardirqs last disabled at (59860): [<ffffffffb30faaf7>] __up_console_sem+0x37/0x60 [ +0.004414] softirqs last enabled at (59654): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004205] softirqs last disabled at (59649): [<ffffffffb307d9c7>] irq_exit_rcu+0xd7/0x130 [ +0.004203] ---[ end trace 0000000000000000 ]---
CVE-2025-68745 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Clear cmds after chip reset Commit aefed3e5548f ("scsi: qla2xxx: target: Fix offline port handling and host reset handling") caused two problems: 1. Commands sent to FW, after chip reset got stuck and never freed as FW is not going to respond to them anymore. 2. BUG_ON(cmd->sg_mapped) in qlt_free_cmd(). Commit 26f9ce53817a ("scsi: qla2xxx: Fix missed DMA unmap for aborted commands") attempted to fix this, but introduced another bug under different circumstances when two different CPUs were racing to call qlt_unmap_sg() at the same time: BUG_ON(!valid_dma_direction(dir)) in dma_unmap_sg_attrs(). So revert "scsi: qla2xxx: Fix missed DMA unmap for aborted commands" and partially revert "scsi: qla2xxx: target: Fix offline port handling and host reset handling" at __qla2x00_abort_all_cmds.
CVE-2023-54149 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses When using the felix driver (the only one which supports UC filtering and MC filtering) as a DSA master for a random other DSA switch, one can see the following stack trace when the downstream switch ports join a VLAN-aware bridge: ============================= WARNING: suspicious RCU usage ----------------------------- net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage! stack backtrace: Workqueue: dsa_ordered dsa_slave_switchdev_event_work Call trace: lockdep_rcu_suspicious+0x170/0x210 vlan_for_each+0x8c/0x188 dsa_slave_sync_uc+0x128/0x178 __hw_addr_sync_dev+0x138/0x158 dsa_slave_set_rx_mode+0x58/0x70 __dev_set_rx_mode+0x88/0xa8 dev_uc_add+0x74/0xa0 dsa_port_bridge_host_fdb_add+0xec/0x180 dsa_slave_switchdev_event_work+0x7c/0x1c8 process_one_work+0x290/0x568 What it's saying is that vlan_for_each() expects rtnl_lock() context and it's not getting it, when it's called from the DSA master's ndo_set_rx_mode(). The caller of that - dsa_slave_set_rx_mode() - is the slave DSA interface's dsa_port_bridge_host_fdb_add() which comes from the deferred dsa_slave_switchdev_event_work(). We went to great lengths to avoid the rtnl_lock() context in that call path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not an option due to the possibility of deadlocking when calling dsa_flush_workqueue() from the call paths that do hold rtnl_lock() - basically all of them. So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(), the state of the 8021q driver on this device is really not protected from concurrent access by anything. Looking at net/8021q/, I don't think that vlan_info->vid_list was particularly designed with RCU traversal in mind, so introducing an RCU read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so easy, and it also wouldn't be exactly what we need anyway. In general I believe that the solution isn't in net/8021q/ anyway; vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock() to be held per se - since it's not a netdev state change that we're blocking, but rather, just concurrent additions/removals to a VLAN list. We don't even need sleepable context - the callback of vlan_for_each() just schedules deferred work. The proposed escape is to remove the dependency on vlan_for_each() and to open-code a non-sleepable, rtnl-free alternative to that, based on copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and .ndo_vlan_rx_kill_vid().
CVE-2023-54154 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: target: core: Fix target_cmd_counter leak The target_cmd_counter struct allocated via target_alloc_cmd_counter() is never freed, resulting in leaks across various transport types, e.g.: unreferenced object 0xffff88801f920120 (size 96): comm "sh", pid 102, jiffies 4294892535 (age 713.412s) hex dump (first 32 bytes): 07 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 38 01 92 1f 80 88 ff ff ........8....... backtrace: [<00000000e58a6252>] kmalloc_trace+0x11/0x20 [<0000000043af4b2f>] target_alloc_cmd_counter+0x17/0x90 [target_core_mod] [<000000007da2dfa7>] target_setup_session+0x2d/0x140 [target_core_mod] [<0000000068feef86>] tcm_loop_tpg_nexus_store+0x19b/0x350 [tcm_loop] [<000000006a80e021>] configfs_write_iter+0xb1/0x120 [<00000000e9f4d860>] vfs_write+0x2e4/0x3c0 [<000000008143433b>] ksys_write+0x80/0xb0 [<00000000a7df29b2>] do_syscall_64+0x42/0x90 [<0000000053f45fb8>] entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Free the structure alongside the corresponding iscsit_conn / se_sess parent.
CVE-2023-54139 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: tracing/user_events: Ensure write index cannot be negative The write index indicates which event the data is for and accesses a per-file array. The index is passed by user processes during write() calls as the first 4 bytes. Ensure that it cannot be negative by returning -EINVAL to prevent out of bounds accesses. Update ftrace self-test to ensure this occurs properly.
CVE-2023-54142 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: gtp: Fix use-after-free in __gtp_encap_destroy(). syzkaller reported use-after-free in __gtp_encap_destroy(). [0] It shows the same process freed sk and touched it illegally. Commit e198987e7dd7 ("gtp: fix suspicious RCU usage") added lock_sock() and release_sock() in __gtp_encap_destroy() to protect sk->sk_user_data, but release_sock() is called after sock_put() releases the last refcnt. [0]: BUG: KASAN: slab-use-after-free in instrument_atomic_read_write include/linux/instrumented.h:96 [inline] BUG: KASAN: slab-use-after-free in atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline] BUG: KASAN: slab-use-after-free in queued_spin_lock include/asm-generic/qspinlock.h:111 [inline] BUG: KASAN: slab-use-after-free in do_raw_spin_lock include/linux/spinlock.h:186 [inline] BUG: KASAN: slab-use-after-free in __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline] BUG: KASAN: slab-use-after-free in _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178 Write of size 4 at addr ffff88800dbef398 by task syz-executor.2/2401 CPU: 1 PID: 2401 Comm: syz-executor.2 Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x72/0xa0 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:351 [inline] print_report+0xcc/0x620 mm/kasan/report.c:462 kasan_report+0xb2/0xe0 mm/kasan/report.c:572 check_region_inline mm/kasan/generic.c:181 [inline] kasan_check_range+0x39/0x1c0 mm/kasan/generic.c:187 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_try_cmpxchg_acquire include/linux/atomic/atomic-instrumented.h:541 [inline] queued_spin_lock include/asm-generic/qspinlock.h:111 [inline] do_raw_spin_lock include/linux/spinlock.h:186 [inline] __raw_spin_lock_bh include/linux/spinlock_api_smp.h:127 [inline] _raw_spin_lock_bh+0x75/0xe0 kernel/locking/spinlock.c:178 spin_lock_bh include/linux/spinlock.h:355 [inline] release_sock+0x1f/0x1a0 net/core/sock.c:3526 gtp_encap_disable_sock drivers/net/gtp.c:651 [inline] gtp_encap_disable+0xb9/0x220 drivers/net/gtp.c:664 gtp_dev_uninit+0x19/0x50 drivers/net/gtp.c:728 unregister_netdevice_many_notify+0x97e/0x1520 net/core/dev.c:10841 rtnl_delete_link net/core/rtnetlink.c:3216 [inline] rtnl_dellink+0x3c0/0xb30 net/core/rtnetlink.c:3268 rtnetlink_rcv_msg+0x450/0xb10 net/core/rtnetlink.c:6423 netlink_rcv_skb+0x15d/0x450 net/netlink/af_netlink.c:2548 netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline] netlink_unicast+0x700/0x930 net/netlink/af_netlink.c:1365 netlink_sendmsg+0x91c/0xe30 net/netlink/af_netlink.c:1913 sock_sendmsg_nosec net/socket.c:724 [inline] sock_sendmsg+0x1b7/0x200 net/socket.c:747 ____sys_sendmsg+0x75a/0x990 net/socket.c:2493 ___sys_sendmsg+0x11d/0x1c0 net/socket.c:2547 __sys_sendmsg+0xfe/0x1d0 net/socket.c:2576 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x3f/0x90 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x72/0xdc RIP: 0033:0x7f1168b1fe5d Code: ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 73 9f 1b 00 f7 d8 64 89 01 48 RSP: 002b:00007f1167edccc8 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00000000004bbf80 RCX: 00007f1168b1fe5d RDX: 0000000000000000 RSI: 00000000200002c0 RDI: 0000000000000003 RBP: 00000000004bbf80 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007f1168b80530 R15: 0000000000000000 </TASK> Allocated by task 1483: kasan_save_stack+0x22/0x50 mm/kasan/common.c:45 kasan_set_track+0x25/0x30 mm/kasan/common.c:52 __kasan_slab_alloc+0x ---truncated---
CVE-2023-54138 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/msm: fix NULL-deref on irq uninstall In case of early initialisation errors and on platforms that do not use the DPU controller, the deinitilisation code can be called with the kms pointer set to NULL. Patchwork: https://patchwork.freedesktop.org/patch/525104/
CVE-2023-54141 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath11k: Add missing hw_ops->get_ring_selector() for IPQ5018 During sending data after clients connected, hw_ops->get_ring_selector() will be called. But for IPQ5018, this member isn't set, and the following NULL pointer exception will be occurred: [ 38.840478] 8<--- cut here --- [ 38.840517] Unable to handle kernel NULL pointer dereference at virtual address 00000000 ... [ 38.923161] PC is at 0x0 [ 38.927930] LR is at ath11k_dp_tx+0x70/0x730 [ath11k] ... [ 39.063264] Process hostapd (pid: 1034, stack limit = 0x801ceb3d) [ 39.068994] Stack: (0x856a9a68 to 0x856aa000) ... [ 39.438467] [<7f323804>] (ath11k_dp_tx [ath11k]) from [<7f314e6c>] (ath11k_mac_op_tx+0x80/0x190 [ath11k]) [ 39.446607] [<7f314e6c>] (ath11k_mac_op_tx [ath11k]) from [<7f17dbe0>] (ieee80211_handle_wake_tx_queue+0x7c/0xc0 [mac80211]) [ 39.456162] [<7f17dbe0>] (ieee80211_handle_wake_tx_queue [mac80211]) from [<7f174450>] (ieee80211_probereq_get+0x584/0x704 [mac80211]) [ 39.467443] [<7f174450>] (ieee80211_probereq_get [mac80211]) from [<7f178c40>] (ieee80211_tx_prepare_skb+0x1f8/0x248 [mac80211]) [ 39.479334] [<7f178c40>] (ieee80211_tx_prepare_skb [mac80211]) from [<7f179e28>] (__ieee80211_subif_start_xmit+0x32c/0x3d4 [mac80211]) [ 39.491053] [<7f179e28>] (__ieee80211_subif_start_xmit [mac80211]) from [<7f17af08>] (ieee80211_tx_control_port+0x19c/0x288 [mac80211]) [ 39.502946] [<7f17af08>] (ieee80211_tx_control_port [mac80211]) from [<7f0fc704>] (nl80211_tx_control_port+0x174/0x1d4 [cfg80211]) [ 39.515017] [<7f0fc704>] (nl80211_tx_control_port [cfg80211]) from [<808ceac4>] (genl_rcv_msg+0x154/0x340) [ 39.526814] [<808ceac4>] (genl_rcv_msg) from [<808cdb74>] (netlink_rcv_skb+0xb8/0x11c) [ 39.536446] [<808cdb74>] (netlink_rcv_skb) from [<808ce1d0>] (genl_rcv+0x28/0x34) [ 39.544344] [<808ce1d0>] (genl_rcv) from [<808cd234>] (netlink_unicast+0x174/0x274) [ 39.551895] [<808cd234>] (netlink_unicast) from [<808cd510>] (netlink_sendmsg+0x1dc/0x440) [ 39.559362] [<808cd510>] (netlink_sendmsg) from [<808596e0>] (____sys_sendmsg+0x1a8/0x1fc) [ 39.567697] [<808596e0>] (____sys_sendmsg) from [<8085b1a8>] (___sys_sendmsg+0xa4/0xdc) [ 39.575941] [<8085b1a8>] (___sys_sendmsg) from [<8085b310>] (sys_sendmsg+0x44/0x74) [ 39.583841] [<8085b310>] (sys_sendmsg) from [<80300060>] (ret_fast_syscall+0x0/0x40) ... [ 39.620734] Code: bad PC value [ 39.625869] ---[ end trace 8aef983ad3cbc032 ]---
CVE-2023-54148 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Move representor neigh cleanup to profile cleanup_tx For IP tunnel encapsulation in ECMP (Equal-Cost Multipath) mode, as the flow is duplicated to the peer eswitch, the related neighbour information on the peer uplink representor is created as well. In the cited commit, eswitch devcom unpair is moved to uplink unload API, specifically the profile->cleanup_tx. If there is a encap rule offloaded in ECMP mode, when one eswitch does unpair (because of unloading the driver, for instance), and the peer rule from the peer eswitch is going to be deleted, the use-after-free error is triggered while accessing neigh info, as it is already cleaned up in uplink's profile->disable, which is before its profile->cleanup_tx. To fix this issue, move the neigh cleanup to profile's cleanup_tx callback, and after mlx5e_cleanup_uplink_rep_tx is called. The neigh init is moved to init_tx for symmeter. [ 2453.376299] BUG: KASAN: slab-use-after-free in mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.379125] Read of size 4 at addr ffff888127af9008 by task modprobe/2496 [ 2453.381542] CPU: 7 PID: 2496 Comm: modprobe Tainted: G B 6.4.0-rc7+ #15 [ 2453.383386] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 [ 2453.384335] Call Trace: [ 2453.384625] <TASK> [ 2453.384891] dump_stack_lvl+0x33/0x50 [ 2453.385285] print_report+0xc2/0x610 [ 2453.385667] ? __virt_addr_valid+0xb1/0x130 [ 2453.386091] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.386757] kasan_report+0xae/0xe0 [ 2453.387123] ? mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.387798] mlx5e_rep_neigh_entry_release+0x109/0x3a0 [mlx5_core] [ 2453.388465] mlx5e_rep_encap_entry_detach+0xa6/0xe0 [mlx5_core] [ 2453.389111] mlx5e_encap_dealloc+0xa7/0x100 [mlx5_core] [ 2453.389706] mlx5e_tc_tun_encap_dests_unset+0x61/0xb0 [mlx5_core] [ 2453.390361] mlx5_free_flow_attr_actions+0x11e/0x340 [mlx5_core] [ 2453.391015] ? complete_all+0x43/0xd0 [ 2453.391398] ? free_flow_post_acts+0x38/0x120 [mlx5_core] [ 2453.392004] mlx5e_tc_del_fdb_flow+0x4ae/0x690 [mlx5_core] [ 2453.392618] mlx5e_tc_del_fdb_peers_flow+0x308/0x370 [mlx5_core] [ 2453.393276] mlx5e_tc_clean_fdb_peer_flows+0xf5/0x140 [mlx5_core] [ 2453.393925] mlx5_esw_offloads_unpair+0x86/0x540 [mlx5_core] [ 2453.394546] ? mlx5_esw_offloads_set_ns_peer.isra.0+0x180/0x180 [mlx5_core] [ 2453.395268] ? down_write+0xaa/0x100 [ 2453.395652] mlx5_esw_offloads_devcom_event+0x203/0x530 [mlx5_core] [ 2453.396317] mlx5_devcom_send_event+0xbb/0x190 [mlx5_core] [ 2453.396917] mlx5_esw_offloads_devcom_cleanup+0xb0/0xd0 [mlx5_core] [ 2453.397582] mlx5e_tc_esw_cleanup+0x42/0x120 [mlx5_core] [ 2453.398182] mlx5e_rep_tc_cleanup+0x15/0x30 [mlx5_core] [ 2453.398768] mlx5e_cleanup_rep_tx+0x6c/0x80 [mlx5_core] [ 2453.399367] mlx5e_detach_netdev+0xee/0x120 [mlx5_core] [ 2453.399957] mlx5e_netdev_change_profile+0x84/0x170 [mlx5_core] [ 2453.400598] mlx5e_vport_rep_unload+0xe0/0xf0 [mlx5_core] [ 2453.403781] mlx5_eswitch_unregister_vport_reps+0x15e/0x190 [mlx5_core] [ 2453.404479] ? mlx5_eswitch_register_vport_reps+0x200/0x200 [mlx5_core] [ 2453.405170] ? up_write+0x39/0x60 [ 2453.405529] ? kernfs_remove_by_name_ns+0xb7/0xe0 [ 2453.405985] auxiliary_bus_remove+0x2e/0x40 [ 2453.406405] device_release_driver_internal+0x243/0x2d0 [ 2453.406900] ? kobject_put+0x42/0x2d0 [ 2453.407284] bus_remove_device+0x128/0x1d0 [ 2453.407687] device_del+0x240/0x550 [ 2453.408053] ? waiting_for_supplier_show+0xe0/0xe0 [ 2453.408511] ? kobject_put+0xfa/0x2d0 [ 2453.408889] ? __kmem_cache_free+0x14d/0x280 [ 2453.409310] mlx5_rescan_drivers_locked.part.0+0xcd/0x2b0 [mlx5_core] [ 2453.409973] mlx5_unregister_device+0x40/0x50 [mlx5_core] [ 2453.410561] mlx5_uninit_one+0x3d/0x110 [mlx5_core] [ 2453.411111] remove_one+0x89/0x130 [mlx5_core] [ 24 ---truncated---
CVE-2023-54156 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: sfc: fix crash when reading stats while NIC is resetting efx_net_stats() (.ndo_get_stats64) can be called during an ethtool selftest, during which time nic_data->mc_stats is NULL as the NIC has been fini'd. In this case do not attempt to fetch the latest stats from the hardware, else we will crash on a NULL dereference: BUG: kernel NULL pointer dereference, address: 0000000000000038 RIP efx_nic_update_stats abridged calltrace: efx_ef10_update_stats_pf efx_net_stats dev_get_stats dev_seq_printf_stats Skipping the read is safe, we will simply give out stale stats. To ensure that the free in efx_ef10_fini_nic() does not race against efx_ef10_update_stats_pf(), which could cause a TOCTTOU bug, take the efx->stats_lock in fini_nic (it is already held across update_stats).
CVE-2024-47683 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Skip Recompute DSC Params if no Stream on Link [why] Encounter NULL pointer dereference uner mst + dsc setup. BUG: kernel NULL pointer dereference, address: 0000000000000008 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 4 PID: 917 Comm: sway Not tainted 6.3.9-arch1-1 #1 124dc55df4f5272ccb409f39ef4872fc2b3376a2 Hardware name: LENOVO 20NKS01Y00/20NKS01Y00, BIOS R12ET61W(1.31 ) 07/28/2022 RIP: 0010:drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper] Code: 01 00 00 48 8b 85 60 05 00 00 48 63 80 88 00 00 00 3b 43 28 0f 8d 2e 01 00 00 48 8b 53 30 48 8d 04 80 48 8d 04 c2 48 8b 40 18 <48> 8> RSP: 0018:ffff960cc2df77d8 EFLAGS: 00010293 RAX: 0000000000000000 RBX: ffff8afb87e81280 RCX: 0000000000000224 RDX: ffff8afb9ee37c00 RSI: ffff8afb8da1a578 RDI: ffff8afb87e81280 RBP: ffff8afb83d67000 R08: 0000000000000001 R09: ffff8afb9652f850 R10: ffff960cc2df7908 R11: 0000000000000002 R12: 0000000000000000 R13: ffff8afb8d7688a0 R14: ffff8afb8da1a578 R15: 0000000000000224 FS: 00007f4dac35ce00(0000) GS:ffff8afe30b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 000000010ddc6000 CR4: 00000000003506e0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? plist_add+0xbe/0x100 ? exc_page_fault+0x7c/0x180 ? asm_exc_page_fault+0x26/0x30 ? drm_dp_atomic_find_time_slots+0x5e/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] ? drm_dp_atomic_find_time_slots+0x28/0x260 [drm_display_helper 0e67723696438d8e02b741593dd50d80b44c2026] compute_mst_dsc_configs_for_link+0x2ff/0xa40 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] ? fill_plane_buffer_attributes+0x419/0x510 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] compute_mst_dsc_configs_for_state+0x1e1/0x250 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] amdgpu_dm_atomic_check+0xecd/0x1190 [amdgpu 62e600d2a75e9158e1cd0a243bdc8e6da040c054] drm_atomic_check_only+0x5c5/0xa40 drm_mode_atomic_ioctl+0x76e/0xbc0 [how] dsc recompute should be skipped if no mode change detected on the new request. If detected, keep checking whether the stream is already on current state or not.