| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix overflow checking of wmfw header
Fix the checking that firmware file buffer is large enough for the
wmfw header, to prevent overrunning the buffer.
The original code tested that the firmware data buffer contained
enough bytes for the sums of the size of the structs
wmfw_header + wmfw_adsp1_sizes + wmfw_footer
But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and
Halo Core the equivalent struct is wmfw_adsp2_sizes, which is
4 bytes longer. So the length check didn't guarantee that there
are enough bytes in the firmware buffer for a header with
wmfw_adsp2_sizes.
This patch splits the length check into three separate parts. Each
of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked
separately before they are used. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers
Check that all fields of a V2 algorithm header fit into the available
firmware data buffer.
The wmfw V2 format introduced variable-length strings in the algorithm
block header. This means the overall header length is variable, and the
position of most fields varies depending on the length of the string
fields. Each field must be checked to ensure that it does not overflow
the firmware data buffer.
As this ia bugfix patch, the fixes avoid making any significant change to
the existing code. This makes it easier to review and less likely to
introduce new bugs. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix duplicate endpoint bug by clearing reserved bits in the descriptor
Syzbot has identified a bug in usbcore (see the Closes: tag below)
caused by our assumption that the reserved bits in an endpoint
descriptor's bEndpointAddress field will always be 0. As a result of
the bug, the endpoint_is_duplicate() routine in config.c (and possibly
other routines as well) may believe that two descriptors are for
distinct endpoints, even though they have the same direction and
endpoint number. This can lead to confusion, including the bug
identified by syzbot (two descriptors with matching endpoint numbers
and directions, where one was interrupt and the other was bulk).
To fix the bug, we will clear the reserved bits in bEndpointAddress
when we parse the descriptor. (Note that both the USB-2.0 and USB-3.1
specs say these bits are "Reserved, reset to zero".) This requires us
to make a copy of the descriptor earlier in usb_parse_endpoint() and
use the copy instead of the original when checking for duplicates. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: Fix fcntl/close race recovery compat path
When I wrote commit 3cad1bc01041 ("filelock: Remove locks reliably when
fcntl/close race is detected"), I missed that there are two copies of the
code I was patching: The normal version, and the version for 64-bit offsets
on 32-bit kernels.
Thanks to Greg KH for stumbling over this while doing the stable
backport...
Apply exactly the same fix to the compat path for 32-bit kernels. |
| In the Linux kernel, the following vulnerability has been resolved:
filelock: Remove locks reliably when fcntl/close race is detected
When fcntl_setlk() races with close(), it removes the created lock with
do_lock_file_wait().
However, LSMs can allow the first do_lock_file_wait() that created the lock
while denying the second do_lock_file_wait() that tries to remove the lock.
Separately, posix_lock_file() could also fail to
remove a lock due to GFP_KERNEL allocation failure (when splitting a range
in the middle).
After the bug has been triggered, use-after-free reads will occur in
lock_get_status() when userspace reads /proc/locks. This can likely be used
to read arbitrary kernel memory, but can't corrupt kernel memory.
Fix it by calling locks_remove_posix() instead, which is designed to
reliably get rid of POSIX locks associated with the given file and
files_struct and is also used by filp_flush(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix overrunning reservations in ringbuf
The BPF ring buffer internally is implemented as a power-of-2 sized circular
buffer, with two logical and ever-increasing counters: consumer_pos is the
consumer counter to show which logical position the consumer consumed the
data, and producer_pos which is the producer counter denoting the amount of
data reserved by all producers.
Each time a record is reserved, the producer that "owns" the record will
successfully advance producer counter. In user space each time a record is
read, the consumer of the data advanced the consumer counter once it finished
processing. Both counters are stored in separate pages so that from user
space, the producer counter is read-only and the consumer counter is read-write.
One aspect that simplifies and thus speeds up the implementation of both
producers and consumers is how the data area is mapped twice contiguously
back-to-back in the virtual memory, allowing to not take any special measures
for samples that have to wrap around at the end of the circular buffer data
area, because the next page after the last data page would be first data page
again, and thus the sample will still appear completely contiguous in virtual
memory.
Each record has a struct bpf_ringbuf_hdr { u32 len; u32 pg_off; } header for
book-keeping the length and offset, and is inaccessible to the BPF program.
Helpers like bpf_ringbuf_reserve() return `(void *)hdr + BPF_RINGBUF_HDR_SZ`
for the BPF program to use. Bing-Jhong and Muhammad reported that it is however
possible to make a second allocated memory chunk overlapping with the first
chunk and as a result, the BPF program is now able to edit first chunk's
header.
For example, consider the creation of a BPF_MAP_TYPE_RINGBUF map with size
of 0x4000. Next, the consumer_pos is modified to 0x3000 /before/ a call to
bpf_ringbuf_reserve() is made. This will allocate a chunk A, which is in
[0x0,0x3008], and the BPF program is able to edit [0x8,0x3008]. Now, lets
allocate a chunk B with size 0x3000. This will succeed because consumer_pos
was edited ahead of time to pass the `new_prod_pos - cons_pos > rb->mask`
check. Chunk B will be in range [0x3008,0x6010], and the BPF program is able
to edit [0x3010,0x6010]. Due to the ring buffer memory layout mentioned
earlier, the ranges [0x0,0x4000] and [0x4000,0x8000] point to the same data
pages. This means that chunk B at [0x4000,0x4008] is chunk A's header.
bpf_ringbuf_submit() / bpf_ringbuf_discard() use the header's pg_off to then
locate the bpf_ringbuf itself via bpf_ringbuf_restore_from_rec(). Once chunk
B modified chunk A's header, then bpf_ringbuf_commit() refers to the wrong
page and could cause a crash.
Fix it by calculating the oldest pending_pos and check whether the range
from the oldest outstanding record to the newest would span beyond the ring
buffer size. If that is the case, then reject the request. We've tested with
the ring buffer benchmark in BPF selftests (./benchs/run_bench_ringbufs.sh)
before/after the fix and while it seems a bit slower on some benchmarks, it
is still not significantly enough to matter. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: avoid too many retransmit packets
If a TCP socket is using TCP_USER_TIMEOUT, and the other peer
retracted its window to zero, tcp_retransmit_timer() can
retransmit a packet every two jiffies (2 ms for HZ=1000),
for about 4 minutes after TCP_USER_TIMEOUT has 'expired'.
The fix is to make sure tcp_rtx_probe0_timed_out() takes
icsk->icsk_user_timeout into account.
Before blamed commit, the socket would not timeout after
icsk->icsk_user_timeout, but would use standard exponential
backoff for the retransmits.
Also worth noting that before commit e89688e3e978 ("net: tcp:
fix unexcepted socket die when snd_wnd is 0"), the issue
would last 2 minutes instead of 4. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: work around a potential audit memory leak
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_api: fix possible infinite loop in tcf_idr_check_alloc()
syzbot found hanging tasks waiting on rtnl_lock [1]
A reproducer is available in the syzbot bug.
When a request to add multiple actions with the same index is sent, the
second request will block forever on the first request. This holds
rtnl_lock, and causes tasks to hang.
Return -EAGAIN to prevent infinite looping, while keeping documented
behavior.
[1]
INFO: task kworker/1:0:5088 blocked for more than 143 seconds.
Not tainted 6.9.0-rc4-syzkaller-00173-g3cdb45594619 #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/1:0 state:D stack:23744 pid:5088 tgid:5088 ppid:2 flags:0x00004000
Workqueue: events_power_efficient reg_check_chans_work
Call Trace:
<TASK>
context_switch kernel/sched/core.c:5409 [inline]
__schedule+0xf15/0x5d00 kernel/sched/core.c:6746
__schedule_loop kernel/sched/core.c:6823 [inline]
schedule+0xe7/0x350 kernel/sched/core.c:6838
schedule_preempt_disabled+0x13/0x30 kernel/sched/core.c:6895
__mutex_lock_common kernel/locking/mutex.c:684 [inline]
__mutex_lock+0x5b8/0x9c0 kernel/locking/mutex.c:752
wiphy_lock include/net/cfg80211.h:5953 [inline]
reg_leave_invalid_chans net/wireless/reg.c:2466 [inline]
reg_check_chans_work+0x10a/0x10e0 net/wireless/reg.c:2481 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Disassociate vcpus from redistributor region on teardown
When tearing down a redistributor region, make sure we don't have
any dangling pointer to that region stored in a vcpu. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Revert "ACPICA: avoid Info: mapping multiple BARs. Your kernel is fine."
Undo the modifications made in commit d410ee5109a1 ("ACPICA: avoid
"Info: mapping multiple BARs. Your kernel is fine.""). The initial
purpose of this commit was to stop memory mappings for operation
regions from overlapping page boundaries, as it can trigger warnings
if different page attributes are present.
However, it was found that when this situation arises, mapping
continues until the boundary's end, but there is still an attempt to
read/write the entire length of the map, leading to a NULL pointer
deference. For example, if a four-byte mapping request is made but
only one byte is mapped because it hits the current page boundary's
end, a four-byte read/write attempt is still made, resulting in a NULL
pointer deference.
Instead, map the entire length, as the ACPI specification does not
mandate that it must be within the same page boundary. It is
permissible for it to be mapped across different regions. |
| In the Linux kernel, the following vulnerability has been resolved:
tipc: force a dst refcount before doing decryption
As it says in commit 3bc07321ccc2 ("xfrm: Force a dst refcount before
entering the xfrm type handlers"):
"Crypto requests might return asynchronous. In this case we leave the
rcu protected region, so force a refcount on the skb's destination
entry before we enter the xfrm type input/output handlers."
On TIPC decryption path it has the same problem, and skb_dst_force()
should be called before doing decryption to avoid a possible crash.
Shuang reported this issue when this warning is triggered:
[] WARNING: include/net/dst.h:337 tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Kdump: loaded Tainted: G W --------- - - 4.18.0-496.el8.x86_64+debug
[] Workqueue: crypto cryptd_queue_worker
[] RIP: 0010:tipc_sk_rcv+0x1055/0x1ea0 [tipc]
[] Call Trace:
[] tipc_sk_mcast_rcv+0x548/0xea0 [tipc]
[] tipc_rcv+0xcf5/0x1060 [tipc]
[] tipc_aead_decrypt_done+0x215/0x2e0 [tipc]
[] cryptd_aead_crypt+0xdb/0x190
[] cryptd_queue_worker+0xed/0x190
[] process_one_work+0x93d/0x17e0 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix potential hung tasks during chip recovery
During chip recovery (e.g. chip reset), there is a possible situation that
kernel worker reset_work is holding the lock and waiting for kernel thread
stat_worker to be parked, while stat_worker is waiting for the release of
the same lock.
It causes a deadlock resulting in the dumping of hung tasks messages and
possible rebooting of the device.
This patch prevents the execution of stat_worker during the chip recovery. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent possible NULL deref in fib6_nh_init()
syzbot reminds us that in6_dev_get() can return NULL.
fib6_nh_init()
ip6_validate_gw( &idev )
ip6_route_check_nh( idev )
*idev = in6_dev_get(dev); // can be NULL
Oops: general protection fault, probably for non-canonical address 0xdffffc00000000bc: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x00000000000005e0-0x00000000000005e7]
CPU: 0 PID: 11237 Comm: syz-executor.3 Not tainted 6.10.0-rc2-syzkaller-00249-gbe27b8965297 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/07/2024
RIP: 0010:fib6_nh_init+0x640/0x2160 net/ipv6/route.c:3606
Code: 00 00 fc ff df 4c 8b 64 24 58 48 8b 44 24 28 4c 8b 74 24 30 48 89 c1 48 89 44 24 28 48 8d 98 e0 05 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 38 84 c0 0f 85 b3 17 00 00 8b 1b 31 ff 89 de e8 b8 8b
RSP: 0018:ffffc900032775a0 EFLAGS: 00010202
RAX: 00000000000000bc RBX: 00000000000005e0 RCX: 0000000000000000
RDX: 0000000000000010 RSI: ffffc90003277a54 RDI: ffff88802b3a08d8
RBP: ffffc900032778b0 R08: 00000000000002fc R09: 0000000000000000
R10: 00000000000002fc R11: 0000000000000000 R12: ffff88802b3a08b8
R13: 1ffff9200064eec8 R14: ffffc90003277a00 R15: dffffc0000000000
FS: 00007f940feb06c0(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 00000000245e8000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
ip6_route_info_create+0x99e/0x12b0 net/ipv6/route.c:3809
ip6_route_add+0x28/0x160 net/ipv6/route.c:3853
ipv6_route_ioctl+0x588/0x870 net/ipv6/route.c:4483
inet6_ioctl+0x21a/0x280 net/ipv6/af_inet6.c:579
sock_do_ioctl+0x158/0x460 net/socket.c:1222
sock_ioctl+0x629/0x8e0 net/socket.c:1341
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:907 [inline]
__se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f940f07cea9 |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: prevent possible NULL dereference in rt6_probe()
syzbot caught a NULL dereference in rt6_probe() [1]
Bail out if __in6_dev_get() returns NULL.
[1]
Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cb: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000658-0x000000000000065f]
CPU: 1 PID: 22444 Comm: syz-executor.0 Not tainted 6.10.0-rc2-syzkaller-00383-gb8481381d4e2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
RIP: 0010:rt6_probe net/ipv6/route.c:656 [inline]
RIP: 0010:find_match+0x8c4/0xf50 net/ipv6/route.c:758
Code: 14 fd f7 48 8b 85 38 ff ff ff 48 c7 45 b0 00 00 00 00 48 8d b8 5c 06 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 14 02 48 89 f8 83 e0 07 83 c0 03 38 d0 7c 08 84 d2 0f 85 19
RSP: 0018:ffffc900034af070 EFLAGS: 00010203
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffc90004521000
RDX: 00000000000000cb RSI: ffffffff8990d0cd RDI: 000000000000065c
RBP: ffffc900034af150 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000002 R12: 000000000000000a
R13: 1ffff92000695e18 R14: ffff8880244a1d20 R15: 0000000000000000
FS: 00007f4844a5a6c0(0000) GS:ffff8880b9300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b31b27000 CR3: 000000002d42c000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
rt6_nh_find_match+0xfa/0x1a0 net/ipv6/route.c:784
nexthop_for_each_fib6_nh+0x26d/0x4a0 net/ipv4/nexthop.c:1496
__find_rr_leaf+0x6e7/0xe00 net/ipv6/route.c:825
find_rr_leaf net/ipv6/route.c:853 [inline]
rt6_select net/ipv6/route.c:897 [inline]
fib6_table_lookup+0x57e/0xa30 net/ipv6/route.c:2195
ip6_pol_route+0x1cd/0x1150 net/ipv6/route.c:2231
pol_lookup_func include/net/ip6_fib.h:616 [inline]
fib6_rule_lookup+0x386/0x720 net/ipv6/fib6_rules.c:121
ip6_route_output_flags_noref net/ipv6/route.c:2639 [inline]
ip6_route_output_flags+0x1d0/0x640 net/ipv6/route.c:2651
ip6_dst_lookup_tail.constprop.0+0x961/0x1760 net/ipv6/ip6_output.c:1147
ip6_dst_lookup_flow+0x99/0x1d0 net/ipv6/ip6_output.c:1250
rawv6_sendmsg+0xdab/0x4340 net/ipv6/raw.c:898
inet_sendmsg+0x119/0x140 net/ipv4/af_inet.c:853
sock_sendmsg_nosec net/socket.c:730 [inline]
__sock_sendmsg net/socket.c:745 [inline]
sock_write_iter+0x4b8/0x5c0 net/socket.c:1160
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0x6b6/0x1140 fs/read_write.c:590
ksys_write+0x1f8/0x260 fs/read_write.c:643
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm6: check ip6_dst_idev() return value in xfrm6_get_saddr()
ip6_dst_idev() can return NULL, xfrm6_get_saddr() must act accordingly.
syzbot reported:
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
CPU: 1 PID: 12 Comm: kworker/u8:1 Not tainted 6.10.0-rc2-syzkaller-00383-gb8481381d4e2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Workqueue: wg-kex-wg1 wg_packet_handshake_send_worker
RIP: 0010:xfrm6_get_saddr+0x93/0x130 net/ipv6/xfrm6_policy.c:64
Code: df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 97 00 00 00 4c 8b ab d8 00 00 00 48 b8 00 00 00 00 00 fc ff df 4c 89 ea 48 c1 ea 03 <80> 3c 02 00 0f 85 86 00 00 00 4d 8b 6d 00 e8 ca 13 47 01 48 b8 00
RSP: 0018:ffffc90000117378 EFLAGS: 00010246
RAX: dffffc0000000000 RBX: ffff88807b079dc0 RCX: ffffffff89a0d6d7
RDX: 0000000000000000 RSI: ffffffff89a0d6e9 RDI: ffff88807b079e98
RBP: ffff88807ad73248 R08: 0000000000000007 R09: fffffffffffff000
R10: ffff88807b079dc0 R11: 0000000000000007 R12: ffffc90000117480
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff8880b9300000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f4586d00440 CR3: 0000000079042000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
xfrm_get_saddr net/xfrm/xfrm_policy.c:2452 [inline]
xfrm_tmpl_resolve_one net/xfrm/xfrm_policy.c:2481 [inline]
xfrm_tmpl_resolve+0xa26/0xf10 net/xfrm/xfrm_policy.c:2541
xfrm_resolve_and_create_bundle+0x140/0x2570 net/xfrm/xfrm_policy.c:2835
xfrm_bundle_lookup net/xfrm/xfrm_policy.c:3070 [inline]
xfrm_lookup_with_ifid+0x4d1/0x1e60 net/xfrm/xfrm_policy.c:3201
xfrm_lookup net/xfrm/xfrm_policy.c:3298 [inline]
xfrm_lookup_route+0x3b/0x200 net/xfrm/xfrm_policy.c:3309
ip6_dst_lookup_flow+0x15c/0x1d0 net/ipv6/ip6_output.c:1256
send6+0x611/0xd20 drivers/net/wireguard/socket.c:139
wg_socket_send_skb_to_peer+0xf9/0x220 drivers/net/wireguard/socket.c:178
wg_socket_send_buffer_to_peer+0x12b/0x190 drivers/net/wireguard/socket.c:200
wg_packet_send_handshake_initiation+0x227/0x360 drivers/net/wireguard/send.c:40
wg_packet_handshake_send_worker+0x1c/0x30 drivers/net/wireguard/send.c:51
process_one_work+0x9fb/0x1b60 kernel/workqueue.c:3231
process_scheduled_works kernel/workqueue.c:3312 [inline]
worker_thread+0x6c8/0xf70 kernel/workqueue.c:3393
kthread+0x2c1/0x3a0 kernel/kthread.c:389
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 |
| In the Linux kernel, the following vulnerability has been resolved:
netns: Make get_net_ns() handle zero refcount net
Syzkaller hit a warning:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 7890 at lib/refcount.c:25 refcount_warn_saturate+0xdf/0x1d0
Modules linked in:
CPU: 3 PID: 7890 Comm: tun Not tainted 6.10.0-rc3-00100-gcaa4f9578aba-dirty #310
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:refcount_warn_saturate+0xdf/0x1d0
Code: 41 49 04 31 ff 89 de e8 9f 1e cd fe 84 db 75 9c e8 76 26 cd fe c6 05 b6 41 49 04 01 90 48 c7 c7 b8 8e 25 86 e8 d2 05 b5 fe 90 <0f> 0b 90 90 e9 79 ff ff ff e8 53 26 cd fe 0f b6 1
RSP: 0018:ffff8881067b7da0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff811c72ac
RDX: ffff8881026a2140 RSI: ffffffff811c72b5 RDI: 0000000000000001
RBP: ffff8881067b7db0 R08: 0000000000000000 R09: 205b5d3730353139
R10: 0000000000000000 R11: 205d303938375420 R12: ffff8881086500c4
R13: ffff8881086500c4 R14: ffff8881086500b0 R15: ffff888108650040
FS: 00007f5b2961a4c0(0000) GS:ffff88823bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055d7ed36fd18 CR3: 00000001482f6000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
? show_regs+0xa3/0xc0
? __warn+0xa5/0x1c0
? refcount_warn_saturate+0xdf/0x1d0
? report_bug+0x1fc/0x2d0
? refcount_warn_saturate+0xdf/0x1d0
? handle_bug+0xa1/0x110
? exc_invalid_op+0x3c/0xb0
? asm_exc_invalid_op+0x1f/0x30
? __warn_printk+0xcc/0x140
? __warn_printk+0xd5/0x140
? refcount_warn_saturate+0xdf/0x1d0
get_net_ns+0xa4/0xc0
? __pfx_get_net_ns+0x10/0x10
open_related_ns+0x5a/0x130
__tun_chr_ioctl+0x1616/0x2370
? __sanitizer_cov_trace_switch+0x58/0xa0
? __sanitizer_cov_trace_const_cmp2+0x1c/0x30
? __pfx_tun_chr_ioctl+0x10/0x10
tun_chr_ioctl+0x2f/0x40
__x64_sys_ioctl+0x11b/0x160
x64_sys_call+0x1211/0x20d0
do_syscall_64+0x9e/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f5b28f165d7
Code: b3 66 90 48 8b 05 b1 48 2d 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 81 48 2d 00 8
RSP: 002b:00007ffc2b59c5e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5b28f165d7
RDX: 0000000000000000 RSI: 00000000000054e3 RDI: 0000000000000003
RBP: 00007ffc2b59c650 R08: 00007f5b291ed8c0 R09: 00007f5b2961a4c0
R10: 0000000029690010 R11: 0000000000000246 R12: 0000000000400730
R13: 00007ffc2b59cf40 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Kernel panic - not syncing: kernel: panic_on_warn set ...
This is trigger as below:
ns0 ns1
tun_set_iff() //dev is tun0
tun->dev = dev
//ip link set tun0 netns ns1
put_net() //ref is 0
__tun_chr_ioctl() //TUNGETDEVNETNS
net = dev_net(tun->dev);
open_related_ns(&net->ns, get_net_ns); //ns1
get_net_ns()
get_net() //addition on 0
Use maybe_get_net() in get_net_ns in case net's ref is zero to fix this |
| In the Linux kernel, the following vulnerability has been resolved:
seg6: fix parameter passing when calling NF_HOOK() in End.DX4 and End.DX6 behaviors
input_action_end_dx4() and input_action_end_dx6() are called NF_HOOK() for
PREROUTING hook, in PREROUTING hook, we should passing a valid indev,
and a NULL outdev to NF_HOOK(), otherwise may trigger a NULL pointer
dereference, as below:
[74830.647293] BUG: kernel NULL pointer dereference, address: 0000000000000090
[74830.655633] #PF: supervisor read access in kernel mode
[74830.657888] #PF: error_code(0x0000) - not-present page
[74830.659500] PGD 0 P4D 0
[74830.660450] Oops: 0000 [#1] PREEMPT SMP PTI
...
[74830.664953] Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
[74830.666569] RIP: 0010:rpfilter_mt+0x44/0x15e [ipt_rpfilter]
...
[74830.689725] Call Trace:
[74830.690402] <IRQ>
[74830.690953] ? show_trace_log_lvl+0x1c4/0x2df
[74830.692020] ? show_trace_log_lvl+0x1c4/0x2df
[74830.693095] ? ipt_do_table+0x286/0x710 [ip_tables]
[74830.694275] ? __die_body.cold+0x8/0xd
[74830.695205] ? page_fault_oops+0xac/0x140
[74830.696244] ? exc_page_fault+0x62/0x150
[74830.697225] ? asm_exc_page_fault+0x22/0x30
[74830.698344] ? rpfilter_mt+0x44/0x15e [ipt_rpfilter]
[74830.699540] ipt_do_table+0x286/0x710 [ip_tables]
[74830.700758] ? ip6_route_input+0x19d/0x240
[74830.701752] nf_hook_slow+0x3f/0xb0
[74830.702678] input_action_end_dx4+0x19b/0x1e0
[74830.703735] ? input_action_end_t+0xe0/0xe0
[74830.704734] seg6_local_input_core+0x2d/0x60
[74830.705782] lwtunnel_input+0x5b/0xb0
[74830.706690] __netif_receive_skb_one_core+0x63/0xa0
[74830.707825] process_backlog+0x99/0x140
[74830.709538] __napi_poll+0x2c/0x160
[74830.710673] net_rx_action+0x296/0x350
[74830.711860] __do_softirq+0xcb/0x2ac
[74830.713049] do_softirq+0x63/0x90
input_action_end_dx4() passing a NULL indev to NF_HOOK(), and finally
trigger a NULL dereference in rpfilter_mt()->rpfilter_is_loopback():
static bool
rpfilter_is_loopback(const struct sk_buff *skb,
const struct net_device *in)
{
// in is NULL
return skb->pkt_type == PACKET_LOOPBACK ||
in->flags & IFF_LOOPBACK;
} |
| In the Linux kernel, the following vulnerability has been resolved:
dmaengine: idxd: Fix possible Use-After-Free in irq_process_work_list
Use list_for_each_entry_safe() to allow iterating through the list and
deleting the entry in the iteration process. The descriptor is freed via
idxd_desc_complete() and there's a slight chance may cause issue for
the list iterator when the descriptor is reused by another thread
without it being deleted from the list. |
| In the Linux kernel, the following vulnerability has been resolved:
net: do not leave a dangling sk pointer, when socket creation fails
It is possible to trigger a use-after-free by:
* attaching an fentry probe to __sock_release() and the probe calling the
bpf_get_socket_cookie() helper
* running traceroute -I 1.1.1.1 on a freshly booted VM
A KASAN enabled kernel will log something like below (decoded and stripped):
==================================================================
BUG: KASAN: slab-use-after-free in __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
Read of size 8 at addr ffff888007110dd8 by task traceroute/299
CPU: 2 PID: 299 Comm: traceroute Tainted: G E 6.10.0-rc2+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:117 (discriminator 1))
print_report (mm/kasan/report.c:378 mm/kasan/report.c:488)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_report (mm/kasan/report.c:603)
? __sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
kasan_check_range (mm/kasan/generic.c:183 mm/kasan/generic.c:189)
__sock_gen_cookie (./arch/x86/include/asm/atomic64_64.h:15 ./include/linux/atomic/atomic-arch-fallback.h:2583 ./include/linux/atomic/atomic-instrumented.h:1611 net/core/sock_diag.c:29)
bpf_get_socket_ptr_cookie (./arch/x86/include/asm/preempt.h:94 ./include/linux/sock_diag.h:42 net/core/filter.c:5094 net/core/filter.c:5092)
bpf_prog_875642cf11f1d139___sock_release+0x6e/0x8e
bpf_trampoline_6442506592+0x47/0xaf
__sock_release (net/socket.c:652)
__sock_create (net/socket.c:1601)
...
Allocated by task 299 on cpu 2 at 78.328492s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
__kasan_slab_alloc (mm/kasan/common.c:312 mm/kasan/common.c:338)
kmem_cache_alloc_noprof (mm/slub.c:3941 mm/slub.c:4000 mm/slub.c:4007)
sk_prot_alloc (net/core/sock.c:2075)
sk_alloc (net/core/sock.c:2134)
inet_create (net/ipv4/af_inet.c:327 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Freed by task 299 on cpu 2 at 78.328502s:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:68)
kasan_save_free_info (mm/kasan/generic.c:582)
poison_slab_object (mm/kasan/common.c:242)
__kasan_slab_free (mm/kasan/common.c:256)
kmem_cache_free (mm/slub.c:4437 mm/slub.c:4511)
__sk_destruct (net/core/sock.c:2117 net/core/sock.c:2208)
inet_create (net/ipv4/af_inet.c:397 net/ipv4/af_inet.c:252)
__sock_create (net/socket.c:1572)
__sys_socket (net/socket.c:1660 net/socket.c:1644 net/socket.c:1706)
__x64_sys_socket (net/socket.c:1718)
do_syscall_64 (arch/x86/entry/common.c:52 arch/x86/entry/common.c:83)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
Fix this by clearing the struct socket reference in sk_common_release() to cover
all protocol families create functions, which may already attached the
reference to the sk object with sock_init_data(). |