| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net, sunrpc: Remap EPERM in case of connection failure in xs_tcp_setup_socket
When using a BPF program on kernel_connect(), the call can return -EPERM. This
causes xs_tcp_setup_socket() to loop forever, filling up the syslog and causing
the kernel to potentially freeze up.
Neil suggested:
This will propagate -EPERM up into other layers which might not be ready
to handle it. It might be safer to map EPERM to an error we would be more
likely to expect from the network system - such as ECONNREFUSED or ENETDOWN.
ECONNREFUSED as error seems reasonable. For programs setting a different error
can be out of reach (see handling in 4fbac77d2d09) in particular on kernels
which do not have f10d05966196 ("bpf: Make BPF_PROG_RUN_ARRAY return -err
instead of allow boolean"), thus given that it is better to simply remap for
consistent behavior. UDP does handle EPERM in xs_udp_send_request(). |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "sched/fair: Make sure to try to detach at least one movable task"
This reverts commit b0defa7ae03ecf91b8bfd10ede430cff12fcbd06.
b0defa7ae03ec changed the load balancing logic to ignore env.max_loop if
all tasks examined to that point were pinned. The goal of the patch was
to make it more likely to be able to detach a task buried in a long list
of pinned tasks. However, this has the unfortunate side effect of
creating an O(n) iteration in detach_tasks(), as we now must fully
iterate every task on a cpu if all or most are pinned. Since this load
balance code is done with rq lock held, and often in softirq context, it
is very easy to trigger hard lockups. We observed such hard lockups with
a user who affined O(10k) threads to a single cpu.
When I discussed this with Vincent he initially suggested that we keep
the limit on the number of tasks to detach, but increase the number of
tasks we can search. However, after some back and forth on the mailing
list, he recommended we instead revert the original patch, as it seems
likely no one was actually getting hit by the original issue. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: serial: mos7840: fix crash on resume
Since commit c49cfa917025 ("USB: serial: use generic method if no
alternative is provided in usb serial layer"), USB serial core calls the
generic resume implementation when the driver has not provided one.
This can trigger a crash on resume with mos7840 since support for
multiple read URBs was added back in 2011. Specifically, both port read
URBs are now submitted on resume for open ports, but the context pointer
of the second URB is left set to the core rather than mos7840 port
structure.
Fix this by implementing dedicated suspend and resume functions for
mos7840.
Tested with Delock 87414 USB 2.0 to 4x serial adapter.
[ johan: analyse crash and rewrite commit message; set busy flag on
resume; drop bulk-in check; drop unnecessary usb_kill_urb() ] |
| In the Linux kernel, the following vulnerability has been resolved:
x86/bhi: Avoid warning in #DB handler due to BHI mitigation
When BHI mitigation is enabled, if SYSENTER is invoked with the TF flag set
then entry_SYSENTER_compat() uses CLEAR_BRANCH_HISTORY and calls the
clear_bhb_loop() before the TF flag is cleared. This causes the #DB handler
(exc_debug_kernel()) to issue a warning because single-step is used outside the
entry_SYSENTER_compat() function.
To address this issue, entry_SYSENTER_compat() should use CLEAR_BRANCH_HISTORY
after making sure the TF flag is cleared.
The problem can be reproduced with the following sequence:
$ cat sysenter_step.c
int main()
{ asm("pushf; pop %ax; bts $8,%ax; push %ax; popf; sysenter"); }
$ gcc -o sysenter_step sysenter_step.c
$ ./sysenter_step
Segmentation fault (core dumped)
The program is expected to crash, and the #DB handler will issue a warning.
Kernel log:
WARNING: CPU: 27 PID: 7000 at arch/x86/kernel/traps.c:1009 exc_debug_kernel+0xd2/0x160
...
RIP: 0010:exc_debug_kernel+0xd2/0x160
...
Call Trace:
<#DB>
? show_regs+0x68/0x80
? __warn+0x8c/0x140
? exc_debug_kernel+0xd2/0x160
? report_bug+0x175/0x1a0
? handle_bug+0x44/0x90
? exc_invalid_op+0x1c/0x70
? asm_exc_invalid_op+0x1f/0x30
? exc_debug_kernel+0xd2/0x160
exc_debug+0x43/0x50
asm_exc_debug+0x1e/0x40
RIP: 0010:clear_bhb_loop+0x0/0xb0
...
</#DB>
<TASK>
? entry_SYSENTER_compat_after_hwframe+0x6e/0x8d
</TASK>
[ bp: Massage commit message. ] |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Return error if block header overflows file
Return an error from cs_dsp_power_up() if a block header is longer
than the amount of data left in the file.
The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop
while there was enough data left in the file for a valid region. This
protected against overrunning the end of the file data, but it didn't
abort the file processing with an error. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Validate payload length before processing block
Move the payload length check in cs_dsp_load() and cs_dsp_coeff_load()
to be done before the block is processed.
The check that the length of a block payload does not exceed the number
of remaining bytes in the firwmware file buffer was being done near the
end of the loop iteration. However, some code before that check used the
length field without validating it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Using uninitialized value *size when calling amdgpu_vce_cs_reloc
Initialize the size before calling amdgpu_vce_cs_reloc, such as case 0x03000001.
V2: To really improve the handling we would actually
need to have a separate value of 0xffffffff.(Christian) |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: replace skb_put with skb_put_zero
Avoid potentially reusing uninitialized data |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Sanitise num_phys
Information is stored in mr_sas_port->phy_mask, values larger then size of
this field shouldn't be allowed. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp_metrics: validate source addr length
I don't see anything checking that TCP_METRICS_ATTR_SADDR_IPV4
is at least 4 bytes long, and the policy doesn't have an entry
for this attribute at all (neither does it for IPv6 but v6 is
manually validated). |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: fix a possible leak when destroy a ctrl during qp establishment
In nvmet_sq_destroy we capture sq->ctrl early and if it is non-NULL we
know that a ctrl was allocated (in the admin connect request handler)
and we need to release pending AERs, clear ctrl->sqs and sq->ctrl
(for nvme-loop primarily), and drop the final reference on the ctrl.
However, a small window is possible where nvmet_sq_destroy starts (as
a result of the client giving up and disconnecting) concurrently with
the nvme admin connect cmd (which may be in an early stage). But *before*
kill_and_confirm of sq->ref (i.e. the admin connect managed to get an sq
live reference). In this case, sq->ctrl was allocated however after it was
captured in a local variable in nvmet_sq_destroy.
This prevented the final reference drop on the ctrl.
Solve this by re-capturing the sq->ctrl after all inflight request has
completed, where for sure sq->ctrl reference is final, and move forward
based on that.
This issue was observed in an environment with many hosts connecting
multiple ctrls simoutanuosly, creating a delay in allocating a ctrl
leading up to this race window. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Make qedf_execute_tmf() non-preemptible
Stop calling smp_processor_id() from preemptible code in
qedf_execute_tmf90. This results in BUG_ON() when running an RT kernel.
[ 659.343280] BUG: using smp_processor_id() in preemptible [00000000] code: sg_reset/3646
[ 659.343282] caller is qedf_execute_tmf+0x8b/0x360 [qedf] |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: restrict NL80211_ATTR_TXQ_QUANTUM values
syzbot is able to trigger softlockups, setting NL80211_ATTR_TXQ_QUANTUM
to 2^31.
We had a similar issue in sch_fq, fixed with commit
d9e15a273306 ("pkt_sched: fq: do not accept silly TCA_FQ_QUANTUM")
watchdog: BUG: soft lockup - CPU#1 stuck for 26s! [kworker/1:0:24]
Modules linked in:
irq event stamp: 131135
hardirqs last enabled at (131134): [<ffff80008ae8778c>] __exit_to_kernel_mode arch/arm64/kernel/entry-common.c:85 [inline]
hardirqs last enabled at (131134): [<ffff80008ae8778c>] exit_to_kernel_mode+0xdc/0x10c arch/arm64/kernel/entry-common.c:95
hardirqs last disabled at (131135): [<ffff80008ae85378>] __el1_irq arch/arm64/kernel/entry-common.c:533 [inline]
hardirqs last disabled at (131135): [<ffff80008ae85378>] el1_interrupt+0x24/0x68 arch/arm64/kernel/entry-common.c:551
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_hh_init net/core/neighbour.c:1538 [inline]
softirqs last enabled at (125892): [<ffff80008907e82c>] neigh_resolve_output+0x268/0x658 net/core/neighbour.c:1553
softirqs last disabled at (125896): [<ffff80008904166c>] local_bh_disable+0x10/0x34 include/linux/bottom_half.h:19
CPU: 1 PID: 24 Comm: kworker/1:0 Not tainted 6.9.0-rc7-syzkaller-gfda5695d692c #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Workqueue: mld mld_ifc_work
pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __list_del include/linux/list.h:195 [inline]
pc : __list_del_entry include/linux/list.h:218 [inline]
pc : list_move_tail include/linux/list.h:310 [inline]
pc : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
pc : ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
lr : __list_del_entry include/linux/list.h:218 [inline]
lr : list_move_tail include/linux/list.h:310 [inline]
lr : fq_tin_dequeue include/net/fq_impl.h:112 [inline]
lr : ieee80211_tx_dequeue+0x67c/0x3b4c net/mac80211/tx.c:3854
sp : ffff800093d36700
x29: ffff800093d36a60 x28: ffff800093d36960 x27: dfff800000000000
x26: ffff0000d800ad50 x25: ffff0000d800abe0 x24: ffff0000d800abf0
x23: ffff0000e0032468 x22: ffff0000e00324d4 x21: ffff0000d800abf0
x20: ffff0000d800abf8 x19: ffff0000d800abf0 x18: ffff800093d363c0
x17: 000000000000d476 x16: ffff8000805519dc x15: ffff7000127a6cc8
x14: 1ffff000127a6cc8 x13: 0000000000000004 x12: ffffffffffffffff
x11: ffff7000127a6cc8 x10: 0000000000ff0100 x9 : 0000000000000000
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffff80009287aa08 x4 : 0000000000000008 x3 : ffff80008034c7fc
x2 : ffff0000e0032468 x1 : 00000000da0e46b8 x0 : ffff0000e0032470
Call trace:
__list_del include/linux/list.h:195 [inline]
__list_del_entry include/linux/list.h:218 [inline]
list_move_tail include/linux/list.h:310 [inline]
fq_tin_dequeue include/net/fq_impl.h:112 [inline]
ieee80211_tx_dequeue+0x6b8/0x3b4c net/mac80211/tx.c:3854
wake_tx_push_queue net/mac80211/util.c:294 [inline]
ieee80211_handle_wake_tx_queue+0x118/0x274 net/mac80211/util.c:315
drv_wake_tx_queue net/mac80211/driver-ops.h:1350 [inline]
schedule_and_wake_txq net/mac80211/driver-ops.h:1357 [inline]
ieee80211_queue_skb+0x18e8/0x2244 net/mac80211/tx.c:1664
ieee80211_tx+0x260/0x400 net/mac80211/tx.c:1966
ieee80211_xmit+0x278/0x354 net/mac80211/tx.c:2062
__ieee80211_subif_start_xmit+0xab8/0x122c net/mac80211/tx.c:4338
ieee80211_subif_start_xmit+0xe0/0x438 net/mac80211/tx.c:4532
__netdev_start_xmit include/linux/netdevice.h:4903 [inline]
netdev_start_xmit include/linux/netdevice.h:4917 [inline]
xmit_one net/core/dev.c:3531 [inline]
dev_hard_start_xmit+0x27c/0x938 net/core/dev.c:3547
__dev_queue_xmit+0x1678/0x33fc net/core/dev.c:4341
dev_queue_xmit include/linux/netdevice.h:3091 [inline]
neigh_resolve_output+0x558/0x658 net/core/neighbour.c:1563
neigh_output include/net/neighbour.h:542 [inline]
ip6_fini
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net: ntb_netdev: Move ntb_netdev_rx_handler() to call netif_rx() from __netif_rx()
The following is emitted when using idxd (DSA) dmanegine as the data
mover for ntb_transport that ntb_netdev uses.
[74412.546922] BUG: using smp_processor_id() in preemptible [00000000] code: irq/52-idxd-por/14526
[74412.556784] caller is netif_rx_internal+0x42/0x130
[74412.562282] CPU: 6 PID: 14526 Comm: irq/52-idxd-por Not tainted 6.9.5 #5
[74412.569870] Hardware name: Intel Corporation ArcherCity/ArcherCity, BIOS EGSDCRB1.E9I.1752.P05.2402080856 02/08/2024
[74412.581699] Call Trace:
[74412.584514] <TASK>
[74412.586933] dump_stack_lvl+0x55/0x70
[74412.591129] check_preemption_disabled+0xc8/0xf0
[74412.596374] netif_rx_internal+0x42/0x130
[74412.600957] __netif_rx+0x20/0xd0
[74412.604743] ntb_netdev_rx_handler+0x66/0x150 [ntb_netdev]
[74412.610985] ntb_complete_rxc+0xed/0x140 [ntb_transport]
[74412.617010] ntb_rx_copy_callback+0x53/0x80 [ntb_transport]
[74412.623332] idxd_dma_complete_txd+0xe3/0x160 [idxd]
[74412.628963] idxd_wq_thread+0x1a6/0x2b0 [idxd]
[74412.634046] irq_thread_fn+0x21/0x60
[74412.638134] ? irq_thread+0xa8/0x290
[74412.642218] irq_thread+0x1a0/0x290
[74412.646212] ? __pfx_irq_thread_fn+0x10/0x10
[74412.651071] ? __pfx_irq_thread_dtor+0x10/0x10
[74412.656117] ? __pfx_irq_thread+0x10/0x10
[74412.660686] kthread+0x100/0x130
[74412.664384] ? __pfx_kthread+0x10/0x10
[74412.668639] ret_from_fork+0x31/0x50
[74412.672716] ? __pfx_kthread+0x10/0x10
[74412.676978] ret_from_fork_asm+0x1a/0x30
[74412.681457] </TASK>
The cause is due to the idxd driver interrupt completion handler uses
threaded interrupt and the threaded handler is not hard or soft interrupt
context. However __netif_rx() can only be called from interrupt context.
Change the call to netif_rx() in order to allow completion via normal
context for dmaengine drivers that utilize threaded irq handling.
While the following commit changed from netif_rx() to __netif_rx(),
baebdf48c360 ("net: dev: Makes sure netif_rx() can be invoked in any context."),
the change should've been a noop instead. However, the code precedes this
fix should've been using netif_rx_ni() or netif_rx_any_context(). |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again"
Patch series "mm: Avoid possible overflows in dirty throttling".
Dirty throttling logic assumes dirty limits in page units fit into
32-bits. This patch series makes sure this is true (see patch 2/2 for
more details).
This patch (of 2):
This reverts commit 9319b647902cbd5cc884ac08a8a6d54ce111fc78.
The commit is broken in several ways. Firstly, the removed (u64) cast
from the multiplication will introduce a multiplication overflow on 32-bit
archs if wb_thresh * bg_thresh >= 1<<32 (which is actually common - the
default settings with 4GB of RAM will trigger this). Secondly, the
div64_u64() is unnecessarily expensive on 32-bit archs. We have
div64_ul() in case we want to be safe & cheap. Thirdly, if dirty
thresholds are larger than 1<<32 pages, then dirty balancing is going to
blow up in many other spectacular ways anyway so trying to fix one
possible overflow is just moot. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix null pointer dereference in nouveau_connector_get_modes
In nouveau_connector_get_modes(), the return value of drm_mode_duplicate()
is assigned to mode, which will lead to a possible NULL pointer
dereference on failure of drm_mode_duplicate(). Add a check to avoid npd. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: fix deadlock in create_pinctrl() when handling -EPROBE_DEFER
In create_pinctrl(), pinctrl_maps_mutex is acquired before calling
add_setting(). If add_setting() returns -EPROBE_DEFER, create_pinctrl()
calls pinctrl_free(). However, pinctrl_free() attempts to acquire
pinctrl_maps_mutex, which is already held by create_pinctrl(), leading to
a potential deadlock.
This patch resolves the issue by releasing pinctrl_maps_mutex before
calling pinctrl_free(), preventing the deadlock.
This bug was discovered and resolved using Coverity Static Analysis
Security Testing (SAST) by Synopsys, Inc. |
| In the Linux kernel, the following vulnerability has been resolved:
ftruncate: pass a signed offset
The old ftruncate() syscall, using the 32-bit off_t misses a sign
extension when called in compat mode on 64-bit architectures. As a
result, passing a negative length accidentally succeeds in truncating
to file size between 2GiB and 4GiB.
Changing the type of the compat syscall to the signed compat_off_t
changes the behavior so it instead returns -EINVAL.
The native entry point, the truncate() syscall and the corresponding
loff_t based variants are all correct already and do not suffer
from this mistake. |
| In the Linux kernel, the following vulnerability has been resolved:
xdp: Remove WARN() from __xdp_reg_mem_model()
syzkaller reports a warning in __xdp_reg_mem_model().
The warning occurs only if __mem_id_init_hash_table() returns an error. It
returns the error in two cases:
1. memory allocation fails;
2. rhashtable_init() fails when some fields of rhashtable_params
struct are not initialized properly.
The second case cannot happen since there is a static const rhashtable_params
struct with valid fields. So, warning is only triggered when there is a
problem with memory allocation.
Thus, there is no sense in using WARN() to handle this error and it can be
safely removed.
WARNING: CPU: 0 PID: 5065 at net/core/xdp.c:299 __xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
CPU: 0 PID: 5065 Comm: syz-executor883 Not tainted 6.8.0-syzkaller-05271-gf99c5f563c17 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
RIP: 0010:__xdp_reg_mem_model+0x2d9/0x650 net/core/xdp.c:299
Call Trace:
xdp_reg_mem_model+0x22/0x40 net/core/xdp.c:344
xdp_test_run_setup net/bpf/test_run.c:188 [inline]
bpf_test_run_xdp_live+0x365/0x1e90 net/bpf/test_run.c:377
bpf_prog_test_run_xdp+0x813/0x11b0 net/bpf/test_run.c:1267
bpf_prog_test_run+0x33a/0x3b0 kernel/bpf/syscall.c:4240
__sys_bpf+0x48d/0x810 kernel/bpf/syscall.c:5649
__do_sys_bpf kernel/bpf/syscall.c:5738 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5736 [inline]
__x64_sys_bpf+0x7c/0x90 kernel/bpf/syscall.c:5736
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
Found by Linux Verification Center (linuxtesting.org) with syzkaller. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fully validate NFT_DATA_VALUE on store to data registers
register store validation for NFT_DATA_VALUE is conditional, however,
the datatype is always either NFT_DATA_VALUE or NFT_DATA_VERDICT. This
only requires a new helper function to infer the register type from the
set datatype so this conditional check can be removed. Otherwise,
pointer to chain object can be leaked through the registers. |