| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: associate skb with a device at tx
Syzkaller triggered flow dissector warning with the following:
r0 = openat$ppp(0xffffffffffffff9c, &(0x7f0000000000), 0xc0802, 0x0)
ioctl$PPPIOCNEWUNIT(r0, 0xc004743e, &(0x7f00000000c0))
ioctl$PPPIOCSACTIVE(r0, 0x40107446, &(0x7f0000000240)={0x2, &(0x7f0000000180)=[{0x20, 0x0, 0x0, 0xfffff034}, {0x6}]})
pwritev(r0, &(0x7f0000000040)=[{&(0x7f0000000140)='\x00!', 0x2}], 0x1, 0x0, 0x0)
[ 9.485814] WARNING: CPU: 3 PID: 329 at net/core/flow_dissector.c:1016 __skb_flow_dissect+0x1ee0/0x1fa0
[ 9.485929] skb_get_poff+0x53/0xa0
[ 9.485937] bpf_skb_get_pay_offset+0xe/0x20
[ 9.485944] ? ppp_send_frame+0xc2/0x5b0
[ 9.485949] ? _raw_spin_unlock_irqrestore+0x40/0x60
[ 9.485958] ? __ppp_xmit_process+0x7a/0xe0
[ 9.485968] ? ppp_xmit_process+0x5b/0xb0
[ 9.485974] ? ppp_write+0x12a/0x190
[ 9.485981] ? do_iter_write+0x18e/0x2d0
[ 9.485987] ? __import_iovec+0x30/0x130
[ 9.485997] ? do_pwritev+0x1b6/0x240
[ 9.486016] ? trace_hardirqs_on+0x47/0x50
[ 9.486023] ? __x64_sys_pwritev+0x24/0x30
[ 9.486026] ? do_syscall_64+0x3d/0x80
[ 9.486031] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
Flow dissector tries to find skb net namespace either via device
or via socket. Neigher is set in ppp_send_frame, so let's manually
use ppp->dev. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid crash when inline data creation follows DIO write
When inode is created and written to using direct IO, there is nothing
to clear the EXT4_STATE_MAY_INLINE_DATA flag. Thus when inode gets
truncated later to say 1 byte and written using normal write, we will
try to store the data as inline data. This confuses the code later
because the inode now has both normal block and inline data allocated
and the confusion manifests for example as:
kernel BUG at fs/ext4/inode.c:2721!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN
CPU: 0 PID: 359 Comm: repro Not tainted 5.19.0-rc8-00001-g31ba1e3b8305-dirty #15
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.0-1.fc36 04/01/2014
RIP: 0010:ext4_writepages+0x363d/0x3660
RSP: 0018:ffffc90000ccf260 EFLAGS: 00010293
RAX: ffffffff81e1abcd RBX: 0000008000000000 RCX: ffff88810842a180
RDX: 0000000000000000 RSI: 0000008000000000 RDI: 0000000000000000
RBP: ffffc90000ccf650 R08: ffffffff81e17d58 R09: ffffed10222c680b
R10: dfffe910222c680c R11: 1ffff110222c680a R12: ffff888111634128
R13: ffffc90000ccf880 R14: 0000008410000000 R15: 0000000000000001
FS: 00007f72635d2640(0000) GS:ffff88811b000000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000565243379180 CR3: 000000010aa74000 CR4: 0000000000150eb0
Call Trace:
<TASK>
do_writepages+0x397/0x640
filemap_fdatawrite_wbc+0x151/0x1b0
file_write_and_wait_range+0x1c9/0x2b0
ext4_sync_file+0x19e/0xa00
vfs_fsync_range+0x17b/0x190
ext4_buffered_write_iter+0x488/0x530
ext4_file_write_iter+0x449/0x1b90
vfs_write+0xbcd/0xf40
ksys_write+0x198/0x2c0
__x64_sys_write+0x7b/0x90
do_syscall_64+0x3d/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Fix the problem by clearing EXT4_STATE_MAY_INLINE_DATA when we are doing
direct IO write to a file. |
| In the Linux kernel, the following vulnerability has been resolved:
net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory
Fixes the below NULL pointer dereference:
[...]
[ 14.471200] Call Trace:
[ 14.471562] <TASK>
[ 14.471882] lock_acquire+0x245/0x2e0
[ 14.472416] ? remove_wait_queue+0x12/0x50
[ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50
[ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50
[ 14.474318] ? remove_wait_queue+0x12/0x50
[ 14.474907] remove_wait_queue+0x12/0x50
[ 14.475480] sk_stream_wait_memory+0x20d/0x340
[ 14.476127] ? do_wait_intr_irq+0x80/0x80
[ 14.476704] do_tcp_sendpages+0x287/0x600
[ 14.477283] tcp_bpf_push+0xab/0x260
[ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500
[ 14.478461] ? __local_bh_enable_ip+0x77/0xe0
[ 14.479096] tcp_bpf_send_verdict+0x105/0x470
[ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0
[ 14.480311] sock_sendmsg+0x2d/0x40
[ 14.480822] ____sys_sendmsg+0x1b4/0x1c0
[ 14.481390] ? copy_msghdr_from_user+0x62/0x80
[ 14.482048] ___sys_sendmsg+0x78/0xb0
[ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150
[ 14.483215] ? __do_fault+0x2a/0x1a0
[ 14.483738] ? do_fault+0x15e/0x5d0
[ 14.484246] ? __handle_mm_fault+0x56b/0x1040
[ 14.484874] ? lock_is_held_type+0xdf/0x130
[ 14.485474] ? find_held_lock+0x2d/0x90
[ 14.486046] ? __sys_sendmsg+0x41/0x70
[ 14.486587] __sys_sendmsg+0x41/0x70
[ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350
[ 14.487822] do_syscall_64+0x34/0x80
[ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
The test scenario has the following flow:
thread1 thread2
----------- ---------------
tcp_bpf_sendmsg
tcp_bpf_send_verdict
tcp_bpf_sendmsg_redir sock_close
tcp_bpf_push_locked __sock_release
tcp_bpf_push //inet_release
do_tcp_sendpages sock->ops->release
sk_stream_wait_memory // tcp_close
sk_wait_event sk->sk_prot->close
release_sock(__sk);
***
lock_sock(sk);
__tcp_close
sock_orphan(sk)
sk->sk_wq = NULL
release_sock
****
lock_sock(__sk);
remove_wait_queue(sk_sleep(sk), &wait);
sk_sleep(sk)
//NULL pointer dereference
&rcu_dereference_raw(sk->sk_wq)->wait
While waiting for memory in thread1, the socket is released with its wait
queue because thread2 has closed it. This caused by tcp_bpf_send_verdict
didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1.
We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory
before accessing the wait queue. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid resizing to a partial cluster size
This patch avoids an attempt to resize the filesystem to an
unaligned cluster boundary. An online resize to a size that is not
integral to cluster size results in the last iteration attempting to
grow the fs by a negative amount, which trips a BUG_ON and leaves the fs
with a corrupted in-memory superblock. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/64: Init jump labels before parse_early_param()
On 64-bit, calling jump_label_init() in setup_feature_keys() is too
late because static keys may be used in subroutines of
parse_early_param() which is again subroutine of early_init_devtree().
For example booting with "threadirqs":
static_key_enable_cpuslocked(): static key '0xc000000002953260' used before call to jump_label_init()
WARNING: CPU: 0 PID: 0 at kernel/jump_label.c:166 static_key_enable_cpuslocked+0xfc/0x120
...
NIP static_key_enable_cpuslocked+0xfc/0x120
LR static_key_enable_cpuslocked+0xf8/0x120
Call Trace:
static_key_enable_cpuslocked+0xf8/0x120 (unreliable)
static_key_enable+0x30/0x50
setup_forced_irqthreads+0x28/0x40
do_early_param+0xa0/0x108
parse_args+0x290/0x4e0
parse_early_options+0x48/0x5c
parse_early_param+0x58/0x84
early_init_devtree+0xd4/0x518
early_setup+0xb4/0x214
So call jump_label_init() just before parse_early_param() in
early_init_devtree().
[mpe: Add call trace to change log and minor wording edits.] |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix refcount bug in sk_psock_get (2)
Syzkaller reports refcount bug as follows:
------------[ cut here ]------------
refcount_t: saturated; leaking memory.
WARNING: CPU: 1 PID: 3605 at lib/refcount.c:19 refcount_warn_saturate+0xf4/0x1e0 lib/refcount.c:19
Modules linked in:
CPU: 1 PID: 3605 Comm: syz-executor208 Not tainted 5.18.0-syzkaller-03023-g7e062cda7d90 #0
<TASK>
__refcount_add_not_zero include/linux/refcount.h:163 [inline]
__refcount_inc_not_zero include/linux/refcount.h:227 [inline]
refcount_inc_not_zero include/linux/refcount.h:245 [inline]
sk_psock_get+0x3bc/0x410 include/linux/skmsg.h:439
tls_data_ready+0x6d/0x1b0 net/tls/tls_sw.c:2091
tcp_data_ready+0x106/0x520 net/ipv4/tcp_input.c:4983
tcp_data_queue+0x25f2/0x4c90 net/ipv4/tcp_input.c:5057
tcp_rcv_state_process+0x1774/0x4e80 net/ipv4/tcp_input.c:6659
tcp_v4_do_rcv+0x339/0x980 net/ipv4/tcp_ipv4.c:1682
sk_backlog_rcv include/net/sock.h:1061 [inline]
__release_sock+0x134/0x3b0 net/core/sock.c:2849
release_sock+0x54/0x1b0 net/core/sock.c:3404
inet_shutdown+0x1e0/0x430 net/ipv4/af_inet.c:909
__sys_shutdown_sock net/socket.c:2331 [inline]
__sys_shutdown_sock net/socket.c:2325 [inline]
__sys_shutdown+0xf1/0x1b0 net/socket.c:2343
__do_sys_shutdown net/socket.c:2351 [inline]
__se_sys_shutdown net/socket.c:2349 [inline]
__x64_sys_shutdown+0x50/0x70 net/socket.c:2349
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
During SMC fallback process in connect syscall, kernel will
replaces TCP with SMC. In order to forward wakeup
smc socket waitqueue after fallback, kernel will sets
clcsk->sk_user_data to origin smc socket in
smc_fback_replace_callbacks().
Later, in shutdown syscall, kernel will calls
sk_psock_get(), which treats the clcsk->sk_user_data
as psock type, triggering the refcnt warning.
So, the root cause is that smc and psock, both will use
sk_user_data field. So they will mismatch this field
easily.
This patch solves it by using another bit(defined as
SK_USER_DATA_PSOCK) in PTRMASK, to mark whether
sk_user_data points to a psock object or not.
This patch depends on a PTRMASK introduced in commit f1ff5ce2cd5e
("net, sk_msg: Clear sk_user_data pointer on clone if tagged").
For there will possibly be more flags in the sk_user_data field,
this patch also refactor sk_user_data flags code to be more generic
to improve its maintainability. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Drop snd_BUG_ON() from snd_usbmidi_output_open()
snd_usbmidi_output_open() has a check of the NULL port with
snd_BUG_ON(). snd_BUG_ON() was used as this shouldn't have happened,
but in reality, the NULL port may be seen when the device gives an
invalid endpoint setup at the descriptor, hence the driver skips the
allocation. That is, the check itself is valid and snd_BUG_ON()
should be dropped from there. Otherwise it's confusing as if it were
a real bug, as recently syzbot stumbled on it. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/mempolicy: fix uninit-value in mpol_rebind_policy()
mpol_set_nodemask()(mm/mempolicy.c) does not set up nodemask when
pol->mode is MPOL_LOCAL. Check pol->mode before access
pol->w.cpuset_mems_allowed in mpol_rebind_policy()(mm/mempolicy.c).
BUG: KMSAN: uninit-value in mpol_rebind_policy mm/mempolicy.c:352 [inline]
BUG: KMSAN: uninit-value in mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
mpol_rebind_policy mm/mempolicy.c:352 [inline]
mpol_rebind_task+0x2ac/0x2c0 mm/mempolicy.c:368
cpuset_change_task_nodemask kernel/cgroup/cpuset.c:1711 [inline]
cpuset_attach+0x787/0x15e0 kernel/cgroup/cpuset.c:2278
cgroup_migrate_execute+0x1023/0x1d20 kernel/cgroup/cgroup.c:2515
cgroup_migrate kernel/cgroup/cgroup.c:2771 [inline]
cgroup_attach_task+0x540/0x8b0 kernel/cgroup/cgroup.c:2804
__cgroup1_procs_write+0x5cc/0x7a0 kernel/cgroup/cgroup-v1.c:520
cgroup1_tasks_write+0x94/0xb0 kernel/cgroup/cgroup-v1.c:539
cgroup_file_write+0x4c2/0x9e0 kernel/cgroup/cgroup.c:3852
kernfs_fop_write_iter+0x66a/0x9f0 fs/kernfs/file.c:296
call_write_iter include/linux/fs.h:2162 [inline]
new_sync_write fs/read_write.c:503 [inline]
vfs_write+0x1318/0x2030 fs/read_write.c:590
ksys_write+0x28b/0x510 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0xdb/0x120 fs/read_write.c:652
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was created at:
slab_post_alloc_hook mm/slab.h:524 [inline]
slab_alloc_node mm/slub.c:3251 [inline]
slab_alloc mm/slub.c:3259 [inline]
kmem_cache_alloc+0x902/0x11c0 mm/slub.c:3264
mpol_new mm/mempolicy.c:293 [inline]
do_set_mempolicy+0x421/0xb70 mm/mempolicy.c:853
kernel_set_mempolicy mm/mempolicy.c:1504 [inline]
__do_sys_set_mempolicy mm/mempolicy.c:1510 [inline]
__se_sys_set_mempolicy+0x44c/0xb60 mm/mempolicy.c:1507
__x64_sys_set_mempolicy+0xd8/0x110 mm/mempolicy.c:1507
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:82
entry_SYSCALL_64_after_hwframe+0x44/0xae
KMSAN: uninit-value in mpol_rebind_task (2)
https://syzkaller.appspot.com/bug?id=d6eb90f952c2a5de9ea718a1b873c55cb13b59dc
This patch seems to fix below bug too.
KMSAN: uninit-value in mpol_rebind_mm (2)
https://syzkaller.appspot.com/bug?id=f2fecd0d7013f54ec4162f60743a2b28df40926b
The uninit-value is pol->w.cpuset_mems_allowed in mpol_rebind_policy().
When syzkaller reproducer runs to the beginning of mpol_new(),
mpol_new() mm/mempolicy.c
do_mbind() mm/mempolicy.c
kernel_mbind() mm/mempolicy.c
`mode` is 1(MPOL_PREFERRED), nodes_empty(*nodes) is `true` and `flags`
is 0. Then
mode = MPOL_LOCAL;
...
policy->mode = mode;
policy->flags = flags;
will be executed. So in mpol_set_nodemask(),
mpol_set_nodemask() mm/mempolicy.c
do_mbind()
kernel_mbind()
pol->mode is 4 (MPOL_LOCAL), that `nodemask` in `pol` is not initialized,
which will be accessed in mpol_rebind_policy(). |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Avoid pci_dev_lock() AB/BA deadlock with sriov_numvfs_store()
The sysfs sriov_numvfs_store() path acquires the device lock before the
config space access lock:
sriov_numvfs_store
device_lock # A (1) acquire device lock
sriov_configure
vfio_pci_sriov_configure # (for example)
vfio_pci_core_sriov_configure
pci_disable_sriov
sriov_disable
pci_cfg_access_lock
pci_wait_cfg # B (4) wait for dev->block_cfg_access == 0
Previously, pci_dev_lock() acquired the config space access lock before the
device lock:
pci_dev_lock
pci_cfg_access_lock
dev->block_cfg_access = 1 # B (2) set dev->block_cfg_access = 1
device_lock # A (3) wait for device lock
Any path that uses pci_dev_lock(), e.g., pci_reset_function(), may
deadlock with sriov_numvfs_store() if the operations occur in the sequence
(1) (2) (3) (4).
Avoid the deadlock by reversing the order in pci_dev_lock() so it acquires
the device lock before the config space access lock, the same as the
sriov_numvfs_store() path.
[bhelgaas: combined and adapted commit log from Jay Zhou's independent
subsequent posting:
https://lore.kernel.org/r/[email protected]] |
| In the Linux kernel, the following vulnerability has been resolved:
NFSD: prevent underflow in nfssvc_decode_writeargs()
Smatch complains:
fs/nfsd/nfsxdr.c:341 nfssvc_decode_writeargs()
warn: no lower bound on 'args->len'
Change the type to unsigned to prevent this issue. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix double free race when mount fails in cifs_get_root()
When cifs_get_root() fails during cifs_smb3_do_mount() we call
deactivate_locked_super() which eventually will call delayed_free() which
will free the context.
In this situation we should not proceed to enter the out: section in
cifs_smb3_do_mount() and free the same resources a second time.
[Thu Feb 10 12:59:06 2022] BUG: KASAN: use-after-free in rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] Read of size 8 at addr ffff888364f4d110 by task swapper/1/0
[Thu Feb 10 12:59:06 2022] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G OE 5.17.0-rc3+ #4
[Thu Feb 10 12:59:06 2022] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.0 12/17/2019
[Thu Feb 10 12:59:06 2022] Call Trace:
[Thu Feb 10 12:59:06 2022] <IRQ>
[Thu Feb 10 12:59:06 2022] dump_stack_lvl+0x5d/0x78
[Thu Feb 10 12:59:06 2022] print_address_description.constprop.0+0x24/0x150
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] kasan_report.cold+0x7d/0x117
[Thu Feb 10 12:59:06 2022] ? rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] __asan_load8+0x86/0xa0
[Thu Feb 10 12:59:06 2022] rcu_cblist_dequeue+0x32/0x60
[Thu Feb 10 12:59:06 2022] rcu_core+0x547/0xca0
[Thu Feb 10 12:59:06 2022] ? call_rcu+0x3c0/0x3c0
[Thu Feb 10 12:59:06 2022] ? __this_cpu_preempt_check+0x13/0x20
[Thu Feb 10 12:59:06 2022] ? lock_is_held_type+0xea/0x140
[Thu Feb 10 12:59:06 2022] rcu_core_si+0xe/0x10
[Thu Feb 10 12:59:06 2022] __do_softirq+0x1d4/0x67b
[Thu Feb 10 12:59:06 2022] __irq_exit_rcu+0x100/0x150
[Thu Feb 10 12:59:06 2022] irq_exit_rcu+0xe/0x30
[Thu Feb 10 12:59:06 2022] sysvec_hyperv_stimer0+0x9d/0xc0
...
[Thu Feb 10 12:59:07 2022] Freed by task 58179:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] kasan_set_track+0x25/0x30
[Thu Feb 10 12:59:07 2022] kasan_set_free_info+0x24/0x40
[Thu Feb 10 12:59:07 2022] ____kasan_slab_free+0x137/0x170
[Thu Feb 10 12:59:07 2022] __kasan_slab_free+0x12/0x20
[Thu Feb 10 12:59:07 2022] slab_free_freelist_hook+0xb3/0x1d0
[Thu Feb 10 12:59:07 2022] kfree+0xcd/0x520
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0x149/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thu Feb 10 12:59:07 2022] Last potentially related work creation:
[Thu Feb 10 12:59:07 2022] kasan_save_stack+0x26/0x50
[Thu Feb 10 12:59:07 2022] __kasan_record_aux_stack+0xb6/0xc0
[Thu Feb 10 12:59:07 2022] kasan_record_aux_stack_noalloc+0xb/0x10
[Thu Feb 10 12:59:07 2022] call_rcu+0x76/0x3c0
[Thu Feb 10 12:59:07 2022] cifs_umount+0xce/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] cifs_kill_sb+0xc8/0xe0 [cifs]
[Thu Feb 10 12:59:07 2022] deactivate_locked_super+0x5d/0xd0
[Thu Feb 10 12:59:07 2022] cifs_smb3_do_mount+0xab9/0xbe0 [cifs]
[Thu Feb 10 12:59:07 2022] smb3_get_tree+0x1a0/0x2e0 [cifs]
[Thu Feb 10 12:59:07 2022] vfs_get_tree+0x52/0x140
[Thu Feb 10 12:59:07 2022] path_mount+0x635/0x10c0
[Thu Feb 10 12:59:07 2022] __x64_sys_mount+0x1bf/0x210
[Thu Feb 10 12:59:07 2022] do_syscall_64+0x5c/0xc0
[Thu Feb 10 12:59:07 2022] entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: brcmfmac: fix invalid address access when enabling SCAN log level
The variable i is changed when setting random MAC address and causes
invalid address access when printing the value of pi->reqs[i]->reqid.
We replace reqs index with ri to fix the issue.
[ 136.726473] Unable to handle kernel access to user memory outside uaccess routines at virtual address 0000000000000000
[ 136.737365] Mem abort info:
[ 136.740172] ESR = 0x96000004
[ 136.743359] Exception class = DABT (current EL), IL = 32 bits
[ 136.749294] SET = 0, FnV = 0
[ 136.752481] EA = 0, S1PTW = 0
[ 136.755635] Data abort info:
[ 136.758514] ISV = 0, ISS = 0x00000004
[ 136.762487] CM = 0, WnR = 0
[ 136.765522] user pgtable: 4k pages, 48-bit VAs, pgdp = 000000005c4e2577
[ 136.772265] [0000000000000000] pgd=0000000000000000
[ 136.777160] Internal error: Oops: 96000004 [#1] PREEMPT SMP
[ 136.782732] Modules linked in: brcmfmac(O) brcmutil(O) cfg80211(O) compat(O)
[ 136.789788] Process wificond (pid: 3175, stack limit = 0x00000000053048fb)
[ 136.796664] CPU: 3 PID: 3175 Comm: wificond Tainted: G O 4.19.42-00001-g531a5f5 #1
[ 136.805532] Hardware name: Freescale i.MX8MQ EVK (DT)
[ 136.810584] pstate: 60400005 (nZCv daif +PAN -UAO)
[ 136.815429] pc : brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac]
[ 136.821811] lr : brcmf_pno_config_sched_scans+0x67c/0xa80 [brcmfmac]
[ 136.828162] sp : ffff00000e9a3880
[ 136.831475] x29: ffff00000e9a3890 x28: ffff800020543400
[ 136.836786] x27: ffff8000b1008880 x26: ffff0000012bf6a0
[ 136.842098] x25: ffff80002054345c x24: ffff800088d22400
[ 136.847409] x23: ffff0000012bf638 x22: ffff0000012bf6d8
[ 136.852721] x21: ffff8000aced8fc0 x20: ffff8000ac164400
[ 136.858032] x19: ffff00000e9a3946 x18: 0000000000000000
[ 136.863343] x17: 0000000000000000 x16: 0000000000000000
[ 136.868655] x15: ffff0000093f3b37 x14: 0000000000000050
[ 136.873966] x13: 0000000000003135 x12: 0000000000000000
[ 136.879277] x11: 0000000000000000 x10: ffff000009a61888
[ 136.884589] x9 : 000000000000000f x8 : 0000000000000008
[ 136.889900] x7 : 303a32303d726464 x6 : ffff00000a1f957d
[ 136.895211] x5 : 0000000000000000 x4 : ffff00000e9a3942
[ 136.900523] x3 : 0000000000000000 x2 : ffff0000012cead8
[ 136.905834] x1 : ffff0000012bf6d8 x0 : 0000000000000000
[ 136.911146] Call trace:
[ 136.913623] brcmf_pno_config_sched_scans+0x6cc/0xa80 [brcmfmac]
[ 136.919658] brcmf_pno_start_sched_scan+0xa4/0x118 [brcmfmac]
[ 136.925430] brcmf_cfg80211_sched_scan_start+0x80/0xe0 [brcmfmac]
[ 136.931636] nl80211_start_sched_scan+0x140/0x308 [cfg80211]
[ 136.937298] genl_rcv_msg+0x358/0x3f4
[ 136.940960] netlink_rcv_skb+0xb4/0x118
[ 136.944795] genl_rcv+0x34/0x48
[ 136.947935] netlink_unicast+0x264/0x300
[ 136.951856] netlink_sendmsg+0x2e4/0x33c
[ 136.955781] __sys_sendto+0x120/0x19c |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix use-after-free in ext4_orphan_cleanup
I caught a issue as follows:
==================================================================
BUG: KASAN: use-after-free in __list_add_valid+0x28/0x1a0
Read of size 8 at addr ffff88814b13f378 by task mount/710
CPU: 1 PID: 710 Comm: mount Not tainted 6.1.0-rc3-next #370
Call Trace:
<TASK>
dump_stack_lvl+0x73/0x9f
print_report+0x25d/0x759
kasan_report+0xc0/0x120
__asan_load8+0x99/0x140
__list_add_valid+0x28/0x1a0
ext4_orphan_cleanup+0x564/0x9d0 [ext4]
__ext4_fill_super+0x48e2/0x5300 [ext4]
ext4_fill_super+0x19f/0x3a0 [ext4]
get_tree_bdev+0x27b/0x450
ext4_get_tree+0x19/0x30 [ext4]
vfs_get_tree+0x49/0x150
path_mount+0xaae/0x1350
do_mount+0xe2/0x110
__x64_sys_mount+0xf0/0x190
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
ext4_fill_super
ext4_orphan_cleanup
--- loop1: assume last_orphan is 12 ---
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan)
ext4_truncate --> return 0
ext4_inode_attach_jinode --> return -ENOMEM
iput(inode) --> free inode<12>
--- loop2: last_orphan is still 12 ---
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
// use inode<12> and trigger UAF
To solve this issue, we need to propagate the return value of
ext4_inode_attach_jinode() appropriately. |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-frontends: fix leak of memory fw |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: adp5061: fix out-of-bounds read in adp5061_get_chg_type()
ADP5061_CHG_STATUS_1_CHG_STATUS is masked with 0x07, which means a length
of 8, but adp5061_chg_type array size is 4, may end up reading 4 elements
beyond the end of the adp5061_chg_type[] array. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on in __es_tree_search caused by bad boot loader inode
We got a issue as fllows:
==================================================================
kernel BUG at fs/ext4/extents_status.c:203!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 945 Comm: cat Not tainted 6.0.0-next-20221007-dirty #349
RIP: 0010:ext4_es_end.isra.0+0x34/0x42
RSP: 0018:ffffc9000143b768 EFLAGS: 00010203
RAX: 0000000000000000 RBX: ffff8881769cd0b8 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff8fc27cf7 RDI: 00000000ffffffff
RBP: ffff8881769cd0bc R08: 0000000000000000 R09: ffffc9000143b5f8
R10: 0000000000000001 R11: 0000000000000001 R12: ffff8881769cd0a0
R13: ffff8881768e5668 R14: 00000000768e52f0 R15: 0000000000000000
FS: 00007f359f7f05c0(0000)GS:ffff88842fd00000(0000)knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f359f5a2000 CR3: 000000017130c000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__es_tree_search.isra.0+0x6d/0xf5
ext4_es_cache_extent+0xfa/0x230
ext4_cache_extents+0xd2/0x110
ext4_find_extent+0x5d5/0x8c0
ext4_ext_map_blocks+0x9c/0x1d30
ext4_map_blocks+0x431/0xa50
ext4_mpage_readpages+0x48e/0xe40
ext4_readahead+0x47/0x50
read_pages+0x82/0x530
page_cache_ra_unbounded+0x199/0x2a0
do_page_cache_ra+0x47/0x70
page_cache_ra_order+0x242/0x400
ondemand_readahead+0x1e8/0x4b0
page_cache_sync_ra+0xf4/0x110
filemap_get_pages+0x131/0xb20
filemap_read+0xda/0x4b0
generic_file_read_iter+0x13a/0x250
ext4_file_read_iter+0x59/0x1d0
vfs_read+0x28f/0x460
ksys_read+0x73/0x160
__x64_sys_read+0x1e/0x30
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
==================================================================
In the above issue, ioctl invokes the swap_inode_boot_loader function to
swap inode<5> and inode<12>. However, inode<5> contain incorrect imode and
disordered extents, and i_nlink is set to 1. The extents check for inode in
the ext4_iget function can be bypassed bacause 5 is EXT4_BOOT_LOADER_INO.
While links_count is set to 1, the extents are not initialized in
swap_inode_boot_loader. After the ioctl command is executed successfully,
the extents are swapped to inode<12>, in this case, run the `cat` command
to view inode<12>. And Bug_ON is triggered due to the incorrect extents.
When the boot loader inode is not initialized, its imode can be one of the
following:
1) the imode is a bad type, which is marked as bad_inode in ext4_iget and
set to S_IFREG.
2) the imode is good type but not S_IFREG.
3) the imode is S_IFREG.
The BUG_ON may be triggered by bypassing the check in cases 1 and 2.
Therefore, when the boot loader inode is bad_inode or its imode is not
S_IFREG, initialize the inode to avoid triggering the BUG. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix pci_device_is_present() for VFs by checking PF
pci_device_is_present() previously didn't work for VFs because it reads the
Vendor and Device ID, which are 0xffff for VFs, which looks like they
aren't present. Check the PF instead.
Wei Gong reported that if virtio I/O is in progress when the driver is
unbound or "0" is written to /sys/.../sriov_numvfs, the virtio I/O
operation hangs, which may result in output like this:
task:bash state:D stack: 0 pid: 1773 ppid: 1241 flags:0x00004002
Call Trace:
schedule+0x4f/0xc0
blk_mq_freeze_queue_wait+0x69/0xa0
blk_mq_freeze_queue+0x1b/0x20
blk_cleanup_queue+0x3d/0xd0
virtblk_remove+0x3c/0xb0 [virtio_blk]
virtio_dev_remove+0x4b/0x80
...
device_unregister+0x1b/0x60
unregister_virtio_device+0x18/0x30
virtio_pci_remove+0x41/0x80
pci_device_remove+0x3e/0xb0
This happened because pci_device_is_present(VF) returned "false" in
virtio_pci_remove(), so it called virtio_break_device(). The broken vq
meant that vring_interrupt() skipped the vq.callback() that would have
completed the virtio I/O operation via virtblk_done().
[bhelgaas: commit log, simplify to always use pci_physfn(), add stable tag] |
| In the Linux kernel, the following vulnerability has been resolved:
media: dvb-usb: fix memory leak in dvb_usb_adapter_init()
Syzbot reports a memory leak in "dvb_usb_adapter_init()".
The leak is due to not accounting for and freeing current iteration's
adapter->priv in case of an error. Currently if an error occurs,
it will exit before incrementing "num_adapters_initalized",
which is used as a reference counter to free all adap->priv
in "dvb_usb_adapter_exit()". There are multiple error paths that
can exit from before incrementing the counter. Including the
error handling paths for "dvb_usb_adapter_stream_init()",
"dvb_usb_adapter_dvb_init()" and "dvb_usb_adapter_frontend_init()"
within "dvb_usb_adapter_init()".
This means that in case of an error in any of these functions the
current iteration is not accounted for and the current iteration's
adap->priv is not freed.
Fix this by freeing the current iteration's adap->priv in the
"stream_init_err:" label in the error path. The rest of the
(accounted for) adap->priv objects are freed in dvb_usb_adapter_exit()
as expected using the num_adapters_initalized variable.
Syzbot report:
BUG: memory leak
unreferenced object 0xffff8881172f1a00 (size 512):
comm "kworker/0:2", pid 139, jiffies 4294994873 (age 10.960s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff844af012>] dvb_usb_adapter_init drivers/media/usb/dvb-usb/dvb-usb-init.c:75 [inline]
[<ffffffff844af012>] dvb_usb_init drivers/media/usb/dvb-usb/dvb-usb-init.c:184 [inline]
[<ffffffff844af012>] dvb_usb_device_init.cold+0x4e5/0x79e drivers/media/usb/dvb-usb/dvb-usb-init.c:308
[<ffffffff830db21d>] dib0700_probe+0x8d/0x1b0 drivers/media/usb/dvb-usb/dib0700_core.c:883
[<ffffffff82d3fdc7>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396
[<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline]
[<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621
[<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline]
[<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752
[<ffffffff8274af6a>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:782
[<ffffffff8274b786>] __device_attach_driver+0xf6/0x140 drivers/base/dd.c:899
[<ffffffff82747c87>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427
[<ffffffff8274b352>] __device_attach+0x122/0x260 drivers/base/dd.c:970
[<ffffffff827498f6>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487
[<ffffffff82745cdb>] device_add+0x5fb/0xdf0 drivers/base/core.c:3405
[<ffffffff82d3d202>] usb_set_configuration+0x8f2/0xb80 drivers/usb/core/message.c:2170
[<ffffffff82d4dbfc>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238
[<ffffffff82d3f49c>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293
[<ffffffff8274ab37>] call_driver_probe drivers/base/dd.c:542 [inline]
[<ffffffff8274ab37>] really_probe.part.0+0xe7/0x310 drivers/base/dd.c:621
[<ffffffff8274ae6c>] really_probe drivers/base/dd.c:583 [inline]
[<ffffffff8274ae6c>] __driver_probe_device+0x10c/0x1e0 drivers/base/dd.c:752 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential memory leak in ext4_fc_record_modified_inode()
As krealloc may return NULL, in this case 'state->fc_modified_inodes'
may not be freed by krealloc, but 'state->fc_modified_inodes' already
set NULL. Then will lead to 'state->fc_modified_inodes' memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: core: Use different devices for resource allocation and DT lookup
Following by the below discussion, there's the potential UAF issue
between regulator and mfd.
https://lore.kernel.org/all/[email protected]/
From the analysis of Yingliang
CPU A |CPU B
mt6370_probe() |
devm_mfd_add_devices() |
|mt6370_regulator_probe()
| regulator_register()
| //allocate init_data and add it to devres
| regulator_of_get_init_data()
i2c_unregister_device() |
device_del() |
devres_release_all() |
// init_data is freed |
release_nodes() |
| // using init_data causes UAF
| regulator_register()
It's common to use mfd core to create child device for the regulator.
In order to do the DT lookup for init data, the child that registered
the regulator would pass its parent as the parameter. And this causes
init data resource allocated to its parent, not itself. The issue happen
when parent device is going to release and regulator core is still doing
some operation of init data constraint for the regulator of child device.
To fix it, this patch expand 'regulator_register' API to use the
different devices for init data allocation and DT lookup. |