| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
media: max9286: Free control handler
The control handler is leaked in some probe-time error paths, as well as
in the remove path. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix possible null-ptr-deref in ubi_free_volume()
It willl cause null-ptr-deref in the following case:
uif_init()
ubi_add_volume()
cdev_add() -> if it fails, call kill_volumes()
device_register()
kill_volumes() -> if ubi_add_volume() fails call this function
ubi_free_volume()
cdev_del()
device_unregister() -> trying to delete a not added device,
it causes null-ptr-deref
So in ubi_free_volume(), it delete devices whether they are added
or not, it will causes null-ptr-deref.
Handle the error case whlie calling ubi_add_volume() to fix this
problem. If add volume fails, set the corresponding vol to null,
so it can not be accessed in kill_volumes() and release the
resource in ubi_add_volume() error path. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix refcount leak in hns_roce_mmap
rdma_user_mmap_entry_get_pgoff() takes the reference.
Add missing rdma_user_mmap_entry_put() to release the reference.
Acked-by Haoyue Xu <[email protected]> |
| In the Linux kernel, the following vulnerability has been resolved:
iommufd: Do not add the same hwpt to the ioas->hwpt_list twice
The hwpt is added to the hwpt_list only during its creation, it is never
added again. This hunk is some missed leftover from rework. Adding it
twice will corrupt the linked list in some cases.
It effects HWPT specific attachment, which is something the test suite
cannot cover until we can create a legitimate struct device with a
non-system iommu "driver" (ie we need the bus removed from the iommu code) |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: use proper req destructor for IPv6
Before, only the destructor from TCP request sock in IPv4 was called
even if the subflow was IPv6.
It is important to use the right destructor to avoid memory leaks with
some advanced IPv6 features, e.g. when the request socks contain
specific IPv6 options. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: ocxl: fix possible refcount leak in afu_ioctl()
eventfd_ctx_put need to be called to put the refcount that gotten by
eventfd_ctx_fdget when ocxl_irq_set_handler fails. |
| In the Linux kernel, the following vulnerability has been resolved:
ubifs: Fix memleak when insert_old_idx() failed
Following process will cause a memleak for copied up znode:
dirty_cow_znode
zn = copy_znode(c, znode);
err = insert_old_idx(c, zbr->lnum, zbr->offs);
if (unlikely(err))
return ERR_PTR(err); // No one refers to zn.
Fetch a reproducer in [Link].
Function copy_znode() is split into 2 parts: resource allocation
and znode replacement, insert_old_idx() is split in similar way,
so resource cleanup could be done in error handling path without
corrupting metadata(mem & disk).
It's okay that old index inserting is put behind of add_idx_dirt(),
old index is used in layout_leb_in_gaps(), so the two processes do
not depend on each other. |
| In the Linux kernel, the following vulnerability has been resolved:
amdgpu/pm: prevent array underflow in vega20_odn_edit_dpm_table()
In the PP_OD_EDIT_VDDC_CURVE case the "input_index" variable is capped at
2 but not checked for negative values so it results in an out of bounds
read. This value comes from the user via sysfs. |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Add validation for lmac type
Upon physical link change, firmware reports to the kernel about the
change along with the details like speed, lmac_type_id, etc.
Kernel derives lmac_type based on lmac_type_id received from firmware.
In a few scenarios, firmware returns an invalid lmac_type_id, which
is resulting in below kernel panic. This patch adds the missing
validation of the lmac_type_id field.
Internal error: Oops: 96000005 [#1] PREEMPT SMP
[ 35.321595] Modules linked in:
[ 35.328982] CPU: 0 PID: 31 Comm: kworker/0:1 Not tainted
5.4.210-g2e3169d8e1bc-dirty #17
[ 35.337014] Hardware name: Marvell CN103XX board (DT)
[ 35.344297] Workqueue: events work_for_cpu_fn
[ 35.352730] pstate: 40400089 (nZcv daIf +PAN -UAO)
[ 35.360267] pc : strncpy+0x10/0x30
[ 35.366595] lr : cgx_link_change_handler+0x90/0x180 |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: mxcmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix DMA-API call trace on NVMe LS requests
The following message and call trace was seen with debug kernels:
DMA-API: qla2xxx 0000:41:00.0: device driver failed to check map
error [device address=0x00000002a3ff38d8] [size=1024 bytes] [mapped as
single]
WARNING: CPU: 0 PID: 2930 at kernel/dma/debug.c:1017
check_unmap+0xf42/0x1990
Call Trace:
debug_dma_unmap_page+0xc9/0x100
qla_nvme_ls_unmap+0x141/0x210 [qla2xxx]
Remove DMA mapping from the driver altogether, as it is already done by FC
layer. This prevents the warning. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Avoid UBSAN error on true_sectors_per_clst()
syzbot reported UBSAN error as below:
[ 76.901829][ T6677] ================================================================================
[ 76.903908][ T6677] UBSAN: shift-out-of-bounds in fs/ntfs3/super.c:675:13
[ 76.905363][ T6677] shift exponent -247 is negative
This patch avoid this error. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix possible use-after-free in async command interface
mlx5_cmd_cleanup_async_ctx should return only after all its callback
handlers were completed. Before this patch, the below race between
mlx5_cmd_cleanup_async_ctx and mlx5_cmd_exec_cb_handler was possible and
lead to a use-after-free:
1. mlx5_cmd_cleanup_async_ctx is called while num_inflight is 2 (i.e.
elevated by 1, a single inflight callback).
2. mlx5_cmd_cleanup_async_ctx decreases num_inflight to 1.
3. mlx5_cmd_exec_cb_handler is called, decreases num_inflight to 0 and
is about to call wake_up().
4. mlx5_cmd_cleanup_async_ctx calls wait_event, which returns
immediately as the condition (num_inflight == 0) holds.
5. mlx5_cmd_cleanup_async_ctx returns.
6. The caller of mlx5_cmd_cleanup_async_ctx frees the mlx5_async_ctx
object.
7. mlx5_cmd_exec_cb_handler goes on and calls wake_up() on the freed
object.
Fix it by syncing using a completion object. Mark it completed when
num_inflight reaches 0.
Trace:
BUG: KASAN: use-after-free in do_raw_spin_lock+0x23d/0x270
Read of size 4 at addr ffff888139cd12f4 by task swapper/5/0
CPU: 5 PID: 0 Comm: swapper/5 Not tainted 6.0.0-rc3_for_upstream_debug_2022_08_30_13_10 #1
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0x57/0x7d
print_report.cold+0x2d5/0x684
? do_raw_spin_lock+0x23d/0x270
kasan_report+0xb1/0x1a0
? do_raw_spin_lock+0x23d/0x270
do_raw_spin_lock+0x23d/0x270
? rwlock_bug.part.0+0x90/0x90
? __delete_object+0xb8/0x100
? lock_downgrade+0x6e0/0x6e0
_raw_spin_lock_irqsave+0x43/0x60
? __wake_up_common_lock+0xb9/0x140
__wake_up_common_lock+0xb9/0x140
? __wake_up_common+0x650/0x650
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kasan_set_track+0x21/0x30
? destroy_tis_callback+0x53/0x70 [mlx5_core]
? kfree+0x1ba/0x520
? do_raw_spin_unlock+0x54/0x220
mlx5_cmd_exec_cb_handler+0x136/0x1a0 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
? mlx5_cmd_cleanup_async_ctx+0x220/0x220 [mlx5_core]
mlx5_cmd_comp_handler+0x65a/0x12b0 [mlx5_core]
? dump_command+0xcc0/0xcc0 [mlx5_core]
? lockdep_hardirqs_on_prepare+0x400/0x400
? cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
cmd_comp_notifier+0x7e/0xb0 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
mlx5_eq_async_int+0x3ce/0xa20 [mlx5_core]
atomic_notifier_call_chain+0xd7/0x1d0
? irq_release+0x140/0x140 [mlx5_core]
irq_int_handler+0x19/0x30 [mlx5_core]
__handle_irq_event_percpu+0x1f2/0x620
handle_irq_event+0xb2/0x1d0
handle_edge_irq+0x21e/0xb00
__common_interrupt+0x79/0x1a0
common_interrupt+0x78/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:default_idle+0x42/0x60
Code: c1 83 e0 07 48 c1 e9 03 83 c0 03 0f b6 14 11 38 d0 7c 04 84 d2 75 14 8b 05 eb 47 22 02 85 c0 7e 07 0f 00 2d e0 9f 48 00 fb f4 <c3> 48 c7 c7 80 08 7f 85 e8 d1 d3 3e fe eb de 66 66 2e 0f 1f 84 00
RSP: 0018:ffff888100dbfdf0 EFLAGS: 00000242
RAX: 0000000000000001 RBX: ffffffff84ecbd48 RCX: 1ffffffff0afe110
RDX: 0000000000000004 RSI: 0000000000000000 RDI: ffffffff835cc9bc
RBP: 0000000000000005 R08: 0000000000000001 R09: ffff88881dec4ac3
R10: ffffed1103bd8958 R11: 0000017d0ca571c9 R12: 0000000000000005
R13: ffffffff84f024e0 R14: 0000000000000000 R15: dffffc0000000000
? default_idle_call+0xcc/0x450
default_idle_call+0xec/0x450
do_idle+0x394/0x450
? arch_cpu_idle_exit+0x40/0x40
? do_idle+0x17/0x450
cpu_startup_entry+0x19/0x20
start_secondary+0x221/0x2b0
? set_cpu_sibling_map+0x2070/0x2070
secondary_startup_64_no_verify+0xcd/0xdb
</TASK>
Allocated by task 49502:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
kvmalloc_node+0x48/0xe0
mlx5e_bulk_async_init+0x35/0x110 [mlx5_core]
mlx5e_tls_priv_tx_list_cleanup+0x84/0x3e0 [mlx5_core]
mlx5e_ktls_cleanup_tx+0x38f/0x760 [mlx5_core]
mlx5e_cleanup_nic_tx+0xa7/0x100 [mlx5_core]
mlx5e_detach_netdev+0x1c
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
rcu: dump vmalloc memory info safely
Currently, for double invoke call_rcu(), will dump rcu_head objects memory
info, if the objects is not allocated from the slab allocator, the
vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to
be held, since the call_rcu() can be invoked in interrupt context,
therefore, there is a possibility of spinlock deadlock scenarios.
And in Preempt-RT kernel, the rcutorture test also trigger the following
lockdep warning:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
RCU nest depth: 1, expected: 1
3 locks held by swapper/0/1:
#0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0
#1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370
#2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70
irq event stamp: 565512
hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940
hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370
softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170
softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0
Preemption disabled at:
[<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370
CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x68/0xb0
dump_stack+0x14/0x20
__might_resched+0x1aa/0x280
? __pfx_rcu_torture_err_cb+0x10/0x10
rt_spin_lock+0x53/0x130
? find_vmap_area+0x1f/0x70
find_vmap_area+0x1f/0x70
vmalloc_dump_obj+0x20/0x60
mem_dump_obj+0x22/0x90
__call_rcu_common+0x5bf/0x940
? debug_smp_processor_id+0x1b/0x30
call_rcu_hurry+0x14/0x20
rcu_torture_init+0x1f82/0x2370
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_leak_cb+0x10/0x10
? __pfx_rcu_torture_init+0x10/0x10
do_one_initcall+0x6c/0x300
? debug_smp_processor_id+0x1b/0x30
kernel_init_freeable+0x2b9/0x540
? __pfx_kernel_init+0x10/0x10
kernel_init+0x1f/0x150
ret_from_fork+0x40/0x50
? __pfx_kernel_init+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
The previous patch fixes this by using the deadlock-safe best-effort
version of find_vm_area. However, in case of failure print the fact that
the pointer was a vmalloc pointer so that we print at least something. |
| In the Linux kernel, the following vulnerability has been resolved:
driver: soc: xilinx: use _safe loop iterator to avoid a use after free
The hash_for_each_possible() loop dereferences "eve_data" to get the
next item on the list. However the loop frees eve_data so it leads to
a use after free. Use hash_for_each_possible_safe() instead. |
| In the Linux kernel, the following vulnerability has been resolved:
spmi: Add a check for remove callback when removing a SPMI driver
When removing a SPMI driver, there can be a crash due to NULL pointer
dereference if it does not have a remove callback defined. This is
one such call trace observed when removing the QCOM SPMI PMIC driver:
dump_backtrace.cfi_jt+0x0/0x8
dump_stack_lvl+0xd8/0x16c
panic+0x188/0x498
__cfi_slowpath+0x0/0x214
__cfi_slowpath+0x1dc/0x214
spmi_drv_remove+0x16c/0x1e0
device_release_driver_internal+0x468/0x79c
driver_detach+0x11c/0x1a0
bus_remove_driver+0xc4/0x124
driver_unregister+0x58/0x84
cleanup_module+0x1c/0xc24 [qcom_spmi_pmic]
__do_sys_delete_module+0x3ec/0x53c
__arm64_sys_delete_module+0x18/0x28
el0_svc_common+0xdc/0x294
el0_svc+0x38/0x9c
el0_sync_handler+0x8c/0xf0
el0_sync+0x1b4/0x1c0
If a driver has all its resources allocated through devm_() APIs and
does not need any other explicit cleanup, it would not require a
remove callback to be defined. Hence, add a check for remove callback
presence before calling it when removing a SPMI driver. |
| In the Linux kernel, the following vulnerability has been resolved:
audit: fix possible soft lockup in __audit_inode_child()
Tracefs or debugfs maybe cause hundreds to thousands of PATH records,
too many PATH records maybe cause soft lockup.
For example:
1. CONFIG_KASAN=y && CONFIG_PREEMPTION=n
2. auditctl -a exit,always -S open -k key
3. sysctl -w kernel.watchdog_thresh=5
4. mkdir /sys/kernel/debug/tracing/instances/test
There may be a soft lockup as follows:
watchdog: BUG: soft lockup - CPU#45 stuck for 7s! [mkdir:15498]
Kernel panic - not syncing: softlockup: hung tasks
Call trace:
dump_backtrace+0x0/0x30c
show_stack+0x20/0x30
dump_stack+0x11c/0x174
panic+0x27c/0x494
watchdog_timer_fn+0x2bc/0x390
__run_hrtimer+0x148/0x4fc
__hrtimer_run_queues+0x154/0x210
hrtimer_interrupt+0x2c4/0x760
arch_timer_handler_phys+0x48/0x60
handle_percpu_devid_irq+0xe0/0x340
__handle_domain_irq+0xbc/0x130
gic_handle_irq+0x78/0x460
el1_irq+0xb8/0x140
__audit_inode_child+0x240/0x7bc
tracefs_create_file+0x1b8/0x2a0
trace_create_file+0x18/0x50
event_create_dir+0x204/0x30c
__trace_add_new_event+0xac/0x100
event_trace_add_tracer+0xa0/0x130
trace_array_create_dir+0x60/0x140
trace_array_create+0x1e0/0x370
instance_mkdir+0x90/0xd0
tracefs_syscall_mkdir+0x68/0xa0
vfs_mkdir+0x21c/0x34c
do_mkdirat+0x1b4/0x1d4
__arm64_sys_mkdirat+0x4c/0x60
el0_svc_common.constprop.0+0xa8/0x240
do_el0_svc+0x8c/0xc0
el0_svc+0x20/0x30
el0_sync_handler+0xb0/0xb4
el0_sync+0x160/0x180
Therefore, we add cond_resched() to __audit_inode_child() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
devlink: hold region lock when flushing snapshots
Netdevsim triggers a splat on reload, when it destroys regions
with snapshots pending:
WARNING: CPU: 1 PID: 787 at net/core/devlink.c:6291 devlink_region_snapshot_del+0x12e/0x140
CPU: 1 PID: 787 Comm: devlink Not tainted 6.1.0-07460-g7ae9888d6e1c #580
RIP: 0010:devlink_region_snapshot_del+0x12e/0x140
Call Trace:
<TASK>
devl_region_destroy+0x70/0x140
nsim_dev_reload_down+0x2f/0x60 [netdevsim]
devlink_reload+0x1f7/0x360
devlink_nl_cmd_reload+0x6ce/0x860
genl_family_rcv_msg_doit.isra.0+0x145/0x1c0
This is the locking assert in devlink_region_snapshot_del(),
we're supposed to be holding the region->snapshot_lock here. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add check for cstate
As kzalloc may fail and return NULL pointer,
it should be better to check cstate
in order to avoid the NULL pointer dereference
in __drm_atomic_helper_crtc_reset.
Patchwork: https://patchwork.freedesktop.org/patch/514163/ |
| In the Linux kernel, the following vulnerability has been resolved:
media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init()
KASAN reports a use-after-free:
BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
Call Trace:
...
dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core]
vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge]
platform_probe+0xb6/0x170
...
Allocated by task 1238:
...
dvb_register_device+0x1a7/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
Freed by task 1238:
dvb_register_device+0x6d2/0xa70 [dvb_core]
dvb_dmxdev_init+0x2af/0x4a0 [dvb_core]
vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge]
...
It is because the error handling in vidtv_bridge_dvb_init() is wrong.
First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but
goto fail_dmx(_dev): calls release functions again, which causes
use-after-free.
Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause
out-of-bound when i finished its loop (i == NUM_FE). And the loop
releasing is wrong, although now NUM_FE is 1 so it won't cause problem.
Fix this by correctly releasing everything. |