Search Results (16669 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50777 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe of_phy_find_device() return device node with refcount incremented. Call put_device() to relese it when not needed anymore.
CVE-2023-54046 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: essiv - Handle EBUSY correctly As it is essiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of essiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2022-50732 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8192u: Fix use after free in ieee80211_rx() We cannot dereference the "skb" pointer after calling ieee80211_monitor_rx(), because it is a use after free.
CVE-2022-50759 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: i2c: ov5648: Free V4L2 fwnode data on unbind The V4L2 fwnode data structure doesn't get freed on unbind, which leads to a memleak.
CVE-2022-50713 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: visconti: Fix memory leak in visconti_register_pll() @pll->rate_table has allocated memory by kmemdup(), if clk_hw_register() fails, it should be freed, otherwise it will cause memory leak issue, this patch fixes it.
CVE-2023-54080 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: skip splitting and logical rewriting on pre-alloc write When doing a relocation, there is a chance that at the time of btrfs_reloc_clone_csums(), there is no checksum for the corresponding region. In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item and so ordered_extent's logical is set to some invalid value. Then, btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a block group and will hit an assert or a null pointer dereference as following. This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16 times) with a null_blk setup. The device's zone size and capacity is set to 32 MB and the storage size is set to 5 GB on my setup. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1 Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015 Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00 > 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00 RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088 RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827 R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000 R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0 Call Trace: <TASK> ? die_addr+0x3c/0xa0 ? exc_general_protection+0x148/0x220 ? asm_exc_general_protection+0x22/0x30 ? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs] ? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs] btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs] ? rcu_is_watching+0x11/0xb0 ? lock_release+0x47a/0x620 ? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs] ? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs] ? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs] ? __smp_call_single_queue+0x124/0x350 ? rcu_is_watching+0x11/0xb0 btrfs_work_helper+0x19f/0xc60 [btrfs] ? __pfx_try_to_wake_up+0x10/0x10 ? _raw_spin_unlock_irq+0x24/0x50 ? rcu_is_watching+0x11/0xb0 process_one_work+0x8c1/0x1430 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? __pfx_do_raw_spin_lock+0x10/0x10 ? _raw_spin_lock_irq+0x52/0x60 worker_thread+0x100/0x12c0 ? __kthread_parkme+0xc1/0x1f0 ? __pfx_worker_thread+0x10/0x10 kthread+0x2ea/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x30/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> On the zoned mode, writing to pre-allocated region means data relocation write. Such write always uses WRITE command so there is no need of splitting and rewriting logical address. Thus, we can just skip the function for the case.
CVE-2025-68370 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: coresight: tmc: add the handle of the event to the path The handle is essential for retrieving the AUX_EVENT of each CPU and is required in perf mode. It has been added to the coresight_path so that dependent devices can access it from the path when needed. The existing bug can be reproduced with: perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null Showing an oops as follows: Unable to handle kernel paging request at virtual address 000f6e84934ed19e Call trace: tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P) catu_enable_hw+0xbc/0x3d0 [coresight_catu] catu_enable+0x70/0xe0 [coresight_catu] coresight_enable_path+0xb0/0x258 [coresight]
CVE-2023-54087 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ubi: Fix possible null-ptr-deref in ubi_free_volume() It willl cause null-ptr-deref in the following case: uif_init() ubi_add_volume() cdev_add() -> if it fails, call kill_volumes() device_register() kill_volumes() -> if ubi_add_volume() fails call this function ubi_free_volume() cdev_del() device_unregister() -> trying to delete a not added device, it causes null-ptr-deref So in ubi_free_volume(), it delete devices whether they are added or not, it will causes null-ptr-deref. Handle the error case whlie calling ubi_add_volume() to fix this problem. If add volume fails, set the corresponding vol to null, so it can not be accessed in kill_volumes() and release the resource in ubi_add_volume() error path.
CVE-2023-54130 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed a build warning by turning a comment into a WARN_ON(), but it turns out that syzbot then complains because it can trigger said warning with a corrupted hfs image. The warning actually does warn about a bad situation, but we are much better off just handling it as the error it is. So rather than warn about us doing bad things, stop doing the bad things and return -EIO. While at it, also fix a memory leak that was introduced by an earlier fix for a similar syzbot warning situation, and add a check for one case that historically wasn't handled at all (ie neither comment nor subsequent WARN_ON).
CVE-2023-54095 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Fix notifiers being shared by PCI and VIO buses fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both PCI and VIO buses. struct notifier_block is a linked list node, so this causes any notifiers later registered to either bus type to also be registered to the other since they share the same node. This causes issues in (at least) the vgaarb code, which registers a notifier for PCI buses. pci_notify() ends up being called on a vio device, converted with to_pci_dev() even though it's not a PCI device, and finally makes a bad access in vga_arbiter_add_pci_device() as discovered with KASAN: BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00 Read of size 4 at addr c000000264c26fdc by task swapper/0/1 Call Trace: dump_stack_lvl+0x1bc/0x2b8 (unreliable) print_report+0x3f4/0xc60 kasan_report+0x244/0x698 __asan_load4+0xe8/0x250 vga_arbiter_add_pci_device+0x60/0xe00 pci_notify+0x88/0x444 notifier_call_chain+0x104/0x320 blocking_notifier_call_chain+0xa0/0x140 device_add+0xac8/0x1d30 device_register+0x58/0x80 vio_register_device_node+0x9ac/0xce0 vio_bus_scan_register_devices+0xc4/0x13c __machine_initcall_pseries_vio_device_init+0x94/0xf0 do_one_initcall+0x12c/0xaa8 kernel_init_freeable+0xa48/0xba8 kernel_init+0x64/0x400 ret_from_kernel_thread+0x5c/0x64 Fix this by creating separate notifier_block structs for each bus type. [mpe: Add #ifdef to fix CONFIG_IBMVIO=n build]
CVE-2022-50727 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: efct: Fix possible memleak in efct_device_init() In efct_device_init(), when efct_scsi_reg_fc_transport() fails, efct_scsi_tgt_driver_exit() is not called to release memory for efct_scsi_tgt_driver_init() and causes memleak: unreferenced object 0xffff8881020ce000 (size 2048): comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s) backtrace: [<0000000021a1ef1b>] kmalloc_trace+0x27/0x110 [<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod] [<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct] [<00000000115de533>] 0xffffffffc0d90011 [<00000000d608f646>] do_one_initcall+0xd0/0x4e0 [<0000000067828cf1>] do_init_module+0x1cc/0x6a0 ...
CVE-2022-50774 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: crypto: qat - fix DMA transfer direction When CONFIG_DMA_API_DEBUG is selected, while running the crypto self test on the QAT crypto algorithms, the function add_dma_entry() reports a warning similar to the one below, saying that overlapping mappings are not supported. This occurs in tests where the input and the output scatter list point to the same buffers (i.e. two different scatter lists which point to the same chunks of memory). The logic that implements the mapping uses the flag DMA_BIDIRECTIONAL for both the input and the output scatter lists which leads to overlapped write mappings. These are not supported by the DMA layer. Fix by specifying the correct DMA transfer directions when mapping buffers. For in-place operations where the input scatter list matches the output scatter list, buffers are mapped once with DMA_BIDIRECTIONAL, otherwise input buffers are mapped using the flag DMA_TO_DEVICE and output buffers are mapped with DMA_FROM_DEVICE. Overlapping a read mapping with a write mapping is a valid case in dma-coherent devices like QAT. The function that frees and unmaps the buffers, qat_alg_free_bufl() has been changed accordingly to the changes to the mapping function. DMA-API: 4xxx 0000:06:00.0: cacheline tracking EEXIST, overlapping mappings aren't supported WARNING: CPU: 53 PID: 4362 at kernel/dma/debug.c:570 add_dma_entry+0x1e9/0x270 ... Call Trace: dma_map_page_attrs+0x82/0x2d0 ? preempt_count_add+0x6a/0xa0 qat_alg_sgl_to_bufl+0x45b/0x990 [intel_qat] qat_alg_aead_dec+0x71/0x250 [intel_qat] crypto_aead_decrypt+0x3d/0x70 test_aead_vec_cfg+0x649/0x810 ? number+0x310/0x3a0 ? vsnprintf+0x2a3/0x550 ? scnprintf+0x42/0x70 ? valid_sg_divisions.constprop.0+0x86/0xa0 ? test_aead_vec+0xdf/0x120 test_aead_vec+0xdf/0x120 alg_test_aead+0x185/0x400 alg_test+0x3d8/0x500 ? crypto_acomp_scomp_free_ctx+0x30/0x30 ? __schedule+0x32a/0x12a0 ? ttwu_queue_wakelist+0xbf/0x110 ? _raw_spin_unlock_irqrestore+0x23/0x40 ? try_to_wake_up+0x83/0x570 ? _raw_spin_unlock_irqrestore+0x23/0x40 ? __set_cpus_allowed_ptr_locked+0xea/0x1b0 ? crypto_acomp_scomp_free_ctx+0x30/0x30 cryptomgr_test+0x27/0x50 kthread+0xe6/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30
CVE-2022-50754 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: apparmor: fix a memleak in multi_transaction_new() In multi_transaction_new(), the variable t is not freed or passed out on the failure of copy_from_user(t->data, buf, size), which could lead to a memleak. Fix this bug by adding a put_multi_transaction(t) in the error path.
CVE-2025-68360 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks MT7996 driver can use both wed and wed_hif2 devices to offload traffic from/to the wireless NIC. In the current codebase we assume to always use the primary wed device in wed callbacks resulting in the following crash if the hw runs wed_hif2 (e.g. 6GHz link). [ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a [ 297.464928] Mem abort info: [ 297.467722] ESR = 0x0000000096000005 [ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits [ 297.476766] SET = 0, FnV = 0 [ 297.479809] EA = 0, S1PTW = 0 [ 297.482940] FSC = 0x05: level 1 translation fault [ 297.487809] Data abort info: [ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000 [ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000 [ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP [ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0 [ 297.723908] Tainted: [O]=OOT_MODULE [ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT) [ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table] [ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80 [ 297.757126] sp : ffffffc080fe3ae0 [ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7 [ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00 [ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018 [ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000 [ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000 [ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da [ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200 [ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002 [ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000 [ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8 [ 297.831686] Call trace: [ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76] [ 297.839254] mtk_wed_flow_remove+0x58/0x80 [ 297.843342] mtk_flow_offload_cmd+0x434/0x574 [ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40 [ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table] [ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table] [ 297.864463] process_one_work+0x174/0x300 [ 297.868465] worker_thread+0x278/0x430 [ 297.872204] kthread+0xd8/0xdc [ 297.875251] ret_from_fork+0x10/0x20 [ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421) [ 297.884901] ---[ end trace 0000000000000000 ]--- Fix the issue detecting the proper wed reference to use running wed callabacks.
CVE-2022-50752 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk() When running chunk-sized reads on disks with badblocks duplicate bio free/puts are observed: ============================================================================= BUG bio-200 (Not tainted): Object already free ----------------------------------------------------------------------------- Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504 __slab_alloc.constprop.0+0x5a/0xb0 kmem_cache_alloc+0x31e/0x330 mempool_alloc_slab+0x17/0x20 mempool_alloc+0x100/0x2b0 bio_alloc_bioset+0x181/0x460 do_mpage_readpage+0x776/0xd00 mpage_readahead+0x166/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 force_page_cache_ra+0x181/0x1c0 page_cache_sync_ra+0x65/0xb0 filemap_get_pages+0x1df/0xaf0 filemap_read+0x1e1/0x700 blkdev_read_iter+0x1e5/0x330 vfs_read+0x42a/0x570 Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 raid5_make_request+0x2259/0x2450 md_handle_request+0x402/0x600 md_submit_bio+0xd9/0x120 __submit_bio+0x11f/0x1b0 submit_bio_noacct_nocheck+0x204/0x480 submit_bio_noacct+0x32e/0xc70 submit_bio+0x98/0x1a0 mpage_readahead+0x250/0x320 blkdev_readahead+0x15/0x20 read_pages+0x13f/0x5f0 page_cache_ra_unbounded+0x18d/0x220 Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff) CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014 Workqueue: raid5wq raid5_do_work Call Trace: <TASK> dump_stack_lvl+0x5a/0x78 dump_stack+0x10/0x16 print_trailer+0x158/0x165 object_err+0x35/0x50 free_debug_processing.cold+0xb7/0xbe __slab_free+0x1ae/0x330 kmem_cache_free+0x46d/0x490 mempool_free_slab+0x17/0x20 mempool_free+0x66/0x190 bio_free+0x78/0x90 bio_put+0x100/0x1a0 mpage_end_io+0x36/0x150 bio_endio+0x2fd/0x360 md_end_io_acct+0x7e/0x90 bio_endio+0x2fd/0x360 handle_failed_stripe+0x960/0xb80 handle_stripe+0x1348/0x3760 handle_active_stripes.constprop.0+0x72a/0xaf0 raid5_do_work+0x177/0x330 process_one_work+0x616/0xb20 worker_thread+0x2bd/0x6f0 kthread+0x179/0x1b0 ret_from_fork+0x22/0x30 </TASK> The double free is caused by an unnecessary bio_put() in the if(is_badblock(...)) error path in raid5_read_one_chunk(). The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c ("md/raid5: move checking badblock before clone bio in raid5_read_one_chunk"). The previous code checked and freed align_bio which required a bio_put. After the move that is no longer needed as raid_bio is returned to the control of the common io path which performs its own endio resulting in a double free on bad device blocks.
CVE-2025-68726 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: crypto: aead - Fix reqsize handling Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg") introduced cra_reqsize field in crypto_alg struct to replace type specific reqsize fields. It looks like this was introduced specifically for ahash and acomp from the commit description as subsequent commits add necessary changes in these alg frameworks. However, this is being recommended for use in all crypto algs instead of setting reqsize using crypto_*_set_reqsize(). Using cra_reqsize in aead algorithms, hence, causes memory corruptions and crashes as the underlying functions in the algorithm framework have not been updated to set the reqsize properly from cra_reqsize. [1] Add proper set_reqsize calls in the aead init function to properly initialize reqsize for these algorithms in the framework. [1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b
CVE-2023-54071 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: use work to update rate to avoid RCU warning The ieee80211_ops::sta_rc_update must be atomic, because ieee80211_chan_bw_change() holds rcu_read lock while calling drv_sta_rc_update(), so create a work to do original things. Voluntary context switch within RCU read-side critical section! WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318 rcu_note_context_switch+0x571/0x5d0 CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE Workqueue: phy3 ieee80211_chswitch_work [mac80211] RIP: 0010:rcu_note_context_switch+0x571/0x5d0 Call Trace: <TASK> __schedule+0xb0/0x1460 ? __mod_timer+0x116/0x360 schedule+0x5a/0xc0 schedule_timeout+0x87/0x150 ? trace_raw_output_tick_stop+0x60/0x60 wait_for_completion_timeout+0x7b/0x140 usb_start_wait_urb+0x82/0x160 [usbcore usb_control_msg+0xe3/0x140 [usbcore rtw_usb_read+0x88/0xe0 [rtw_usb rtw_usb_read8+0xf/0x10 [rtw_usb rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core drv_sta_rc_update+0x7c/0x160 [mac80211 ieee80211_chan_bw_change+0xfb/0x110 [mac80211 ieee80211_change_chanctx+0x38/0x130 [mac80211 ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211 ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211 ieee80211_chswitch_work+0x95/0x170 [mac80211 process_one_work+0x201/0x410 worker_thread+0x4a/0x3b0 ? process_one_work+0x410/0x410 kthread+0xe1/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK>
CVE-2022-50756 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix mempool alloc size Convert the max size to bytes to match the units of the divisor that calculates the worst-case number of PRP entries. The result is used to determine how many PRP Lists are required. The code was previously rounding this to 1 list, but we can require 2 in the worst case. In that scenario, the driver would corrupt memory beyond the size provided by the mempool. While unlikely to occur (you'd need a 4MB in exactly 127 phys segments on a queue that doesn't support SGLs), this memory corruption has been observed by kfence.
CVE-2023-54112 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: kcm: Fix memory leak in error path of kcm_sendmsg() syzbot reported a memory leak like below: BUG: memory leak unreferenced object 0xffff88810b088c00 (size 240): comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s) hex dump (first 32 bytes): 00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634 [<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline] [<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815 [<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline] [<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748 [<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494 [<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548 [<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577 [<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80 [<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append newly allocated skbs to 'head'. If some bytes are copied, an error occurred, and jumped to out_error label, 'last_skb' is left unmodified. A later kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the 'head' frag_list and causing the leak. This patch fixes this issue by properly updating the last allocated skb in 'last_skb'.
CVE-2022-50780 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed When the ops_init() interface is invoked to initialize the net, but ops->init() fails, data is released. However, the ptr pointer in net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked to release the net, invalid address access occurs. The process is as follows: setup_net() ops_init() data = kzalloc(...) ---> alloc "data" net_assign_generic() ---> assign "date" to ptr in net->gen ... ops->init() ---> failed ... kfree(data); ---> ptr in net->gen is invalid ... ops_exit_list() ... nfqnl_nf_hook_drop() *q = nfnl_queue_pernet(net) ---> q is invalid The following is the Call Trace information: BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280 Read of size 8 at addr ffff88810396b240 by task ip/15855 Call Trace: <TASK> dump_stack_lvl+0x8e/0xd1 print_report+0x155/0x454 kasan_report+0xba/0x1f0 nfqnl_nf_hook_drop+0x264/0x280 nf_queue_nf_hook_drop+0x8b/0x1b0 __nf_unregister_net_hook+0x1ae/0x5a0 nf_unregister_net_hooks+0xde/0x130 ops_exit_list+0xb0/0x170 setup_net+0x7ac/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 </TASK> Allocated by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0xa1/0xb0 __kmalloc+0x49/0xb0 ops_init+0xe7/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Freed by task 15855: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x40 ____kasan_slab_free+0x155/0x1b0 slab_free_freelist_hook+0x11b/0x220 __kmem_cache_free+0xa4/0x360 ops_init+0xb9/0x410 setup_net+0x5aa/0xbd0 copy_net_ns+0x2e6/0x6b0 create_new_namespaces+0x382/0xa50 unshare_nsproxy_namespaces+0xa6/0x1c0 ksys_unshare+0x3a4/0x7e0 __x64_sys_unshare+0x2d/0x40 do_syscall_64+0x35/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0