| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: xgmiitorgmii: Fix refcount leak in xgmiitorgmii_probe
of_phy_find_device() return device node with refcount incremented.
Call put_device() to relese it when not needed anymore. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: essiv - Handle EBUSY correctly
As it is essiv only handles the special return value of EINPROGERSS,
which means that in all other cases it will free data related to the
request.
However, as the caller of essiv may specify MAY_BACKLOG, we also need
to expect EBUSY and treat it in the same way. Otherwise backlogged
requests will trigger a use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8192u: Fix use after free in ieee80211_rx()
We cannot dereference the "skb" pointer after calling
ieee80211_monitor_rx(), because it is a use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: ov5648: Free V4L2 fwnode data on unbind
The V4L2 fwnode data structure doesn't get freed on unbind, which leads to
a memleak. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: visconti: Fix memory leak in visconti_register_pll()
@pll->rate_table has allocated memory by kmemdup(), if clk_hw_register()
fails, it should be freed, otherwise it will cause memory leak issue,
this patch fixes it. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: skip splitting and logical rewriting on pre-alloc write
When doing a relocation, there is a chance that at the time of
btrfs_reloc_clone_csums(), there is no checksum for the corresponding
region.
In this case, btrfs_finish_ordered_zoned()'s sum points to an invalid item
and so ordered_extent's logical is set to some invalid value. Then,
btrfs_lookup_block_group() in btrfs_zone_finish_endio() failed to find a
block group and will hit an assert or a null pointer dereference as
following.
This can be reprodcued by running btrfs/028 several times (e.g, 4 to 16
times) with a null_blk setup. The device's zone size and capacity is set to
32 MB and the storage size is set to 5 GB on my setup.
KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f]
CPU: 6 PID: 3105720 Comm: kworker/u16:13 Tainted: G W 6.5.0-rc6-kts+ #1
Hardware name: Supermicro Super Server/X10SRL-F, BIOS 2.0 12/17/2015
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
Code: 41 54 49 89 fc 55 48 89 f5 53 e8 57 7d fc ff 48 8d b8 88 00 00 00 48 89 c3 48 b8 00 00 00 00 00
> 3c 02 00 0f 85 02 01 00 00 f6 83 88 00 00 00 01 0f 84 a8 00 00
RSP: 0018:ffff88833cf87b08 EFLAGS: 00010206
RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000011 RSI: 0000000000000004 RDI: 0000000000000088
RBP: 0000000000000002 R08: 0000000000000001 R09: ffffed102877b827
R10: ffff888143bdc13b R11: ffff888125b1cbc0 R12: ffff888143bdc000
R13: 0000000000007000 R14: ffff888125b1cba8 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff88881e500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3ed85223d5 CR3: 00000001519b4005 CR4: 00000000001706e0
Call Trace:
<TASK>
? die_addr+0x3c/0xa0
? exc_general_protection+0x148/0x220
? asm_exc_general_protection+0x22/0x30
? btrfs_zone_finish_endio.part.0+0x34/0x160 [btrfs]
? btrfs_zone_finish_endio.part.0+0x19/0x160 [btrfs]
btrfs_finish_one_ordered+0x7b8/0x1de0 [btrfs]
? rcu_is_watching+0x11/0xb0
? lock_release+0x47a/0x620
? btrfs_finish_ordered_zoned+0x59b/0x800 [btrfs]
? __pfx_btrfs_finish_one_ordered+0x10/0x10 [btrfs]
? btrfs_finish_ordered_zoned+0x358/0x800 [btrfs]
? __smp_call_single_queue+0x124/0x350
? rcu_is_watching+0x11/0xb0
btrfs_work_helper+0x19f/0xc60 [btrfs]
? __pfx_try_to_wake_up+0x10/0x10
? _raw_spin_unlock_irq+0x24/0x50
? rcu_is_watching+0x11/0xb0
process_one_work+0x8c1/0x1430
? __pfx_lock_acquire+0x10/0x10
? __pfx_process_one_work+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? _raw_spin_lock_irq+0x52/0x60
worker_thread+0x100/0x12c0
? __kthread_parkme+0xc1/0x1f0
? __pfx_worker_thread+0x10/0x10
kthread+0x2ea/0x3c0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
On the zoned mode, writing to pre-allocated region means data relocation
write. Such write always uses WRITE command so there is no need of splitting
and rewriting logical address. Thus, we can just skip the function for the
case. |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: tmc: add the handle of the event to the path
The handle is essential for retrieving the AUX_EVENT of each CPU and is
required in perf mode. It has been added to the coresight_path so that
dependent devices can access it from the path when needed.
The existing bug can be reproduced with:
perf record -e cs_etm//k -C 0-9 dd if=/dev/zero of=/dev/null
Showing an oops as follows:
Unable to handle kernel paging request at virtual address 000f6e84934ed19e
Call trace:
tmc_etr_get_buffer+0x30/0x80 [coresight_tmc] (P)
catu_enable_hw+0xbc/0x3d0 [coresight_catu]
catu_enable+0x70/0xe0 [coresight_catu]
coresight_enable_path+0xb0/0x258 [coresight] |
| In the Linux kernel, the following vulnerability has been resolved:
ubi: Fix possible null-ptr-deref in ubi_free_volume()
It willl cause null-ptr-deref in the following case:
uif_init()
ubi_add_volume()
cdev_add() -> if it fails, call kill_volumes()
device_register()
kill_volumes() -> if ubi_add_volume() fails call this function
ubi_free_volume()
cdev_del()
device_unregister() -> trying to delete a not added device,
it causes null-ptr-deref
So in ubi_free_volume(), it delete devices whether they are added
or not, it will causes null-ptr-deref.
Handle the error case whlie calling ubi_add_volume() to fix this
problem. If add volume fails, set the corresponding vol to null,
so it can not be accessed in kill_volumes() and release the
resource in ubi_add_volume() error path. |
| In the Linux kernel, the following vulnerability has been resolved:
hfs/hfsplus: avoid WARN_ON() for sanity check, use proper error handling
Commit 55d1cbbbb29e ("hfs/hfsplus: use WARN_ON for sanity check") fixed
a build warning by turning a comment into a WARN_ON(), but it turns out
that syzbot then complains because it can trigger said warning with a
corrupted hfs image.
The warning actually does warn about a bad situation, but we are much
better off just handling it as the error it is. So rather than warn
about us doing bad things, stop doing the bad things and return -EIO.
While at it, also fix a memory leak that was introduced by an earlier
fix for a similar syzbot warning situation, and add a check for one case
that historically wasn't handled at all (ie neither comment nor
subsequent WARN_ON). |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/iommu: Fix notifiers being shared by PCI and VIO buses
fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both
PCI and VIO buses. struct notifier_block is a linked list node, so this
causes any notifiers later registered to either bus type to also be
registered to the other since they share the same node.
This causes issues in (at least) the vgaarb code, which registers a
notifier for PCI buses. pci_notify() ends up being called on a vio
device, converted with to_pci_dev() even though it's not a PCI device,
and finally makes a bad access in vga_arbiter_add_pci_device() as
discovered with KASAN:
BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00
Read of size 4 at addr c000000264c26fdc by task swapper/0/1
Call Trace:
dump_stack_lvl+0x1bc/0x2b8 (unreliable)
print_report+0x3f4/0xc60
kasan_report+0x244/0x698
__asan_load4+0xe8/0x250
vga_arbiter_add_pci_device+0x60/0xe00
pci_notify+0x88/0x444
notifier_call_chain+0x104/0x320
blocking_notifier_call_chain+0xa0/0x140
device_add+0xac8/0x1d30
device_register+0x58/0x80
vio_register_device_node+0x9ac/0xce0
vio_bus_scan_register_devices+0xc4/0x13c
__machine_initcall_pseries_vio_device_init+0x94/0xf0
do_one_initcall+0x12c/0xaa8
kernel_init_freeable+0xa48/0xba8
kernel_init+0x64/0x400
ret_from_kernel_thread+0x5c/0x64
Fix this by creating separate notifier_block structs for each bus type.
[mpe: Add #ifdef to fix CONFIG_IBMVIO=n build] |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: efct: Fix possible memleak in efct_device_init()
In efct_device_init(), when efct_scsi_reg_fc_transport() fails,
efct_scsi_tgt_driver_exit() is not called to release memory for
efct_scsi_tgt_driver_init() and causes memleak:
unreferenced object 0xffff8881020ce000 (size 2048):
comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s)
backtrace:
[<0000000021a1ef1b>] kmalloc_trace+0x27/0x110
[<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod]
[<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct]
[<00000000115de533>] 0xffffffffc0d90011
[<00000000d608f646>] do_one_initcall+0xd0/0x4e0
[<0000000067828cf1>] do_init_module+0x1cc/0x6a0
... |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - fix DMA transfer direction
When CONFIG_DMA_API_DEBUG is selected, while running the crypto self
test on the QAT crypto algorithms, the function add_dma_entry() reports
a warning similar to the one below, saying that overlapping mappings
are not supported. This occurs in tests where the input and the output
scatter list point to the same buffers (i.e. two different scatter lists
which point to the same chunks of memory).
The logic that implements the mapping uses the flag DMA_BIDIRECTIONAL
for both the input and the output scatter lists which leads to
overlapped write mappings. These are not supported by the DMA layer.
Fix by specifying the correct DMA transfer directions when mapping
buffers. For in-place operations where the input scatter list
matches the output scatter list, buffers are mapped once with
DMA_BIDIRECTIONAL, otherwise input buffers are mapped using the flag
DMA_TO_DEVICE and output buffers are mapped with DMA_FROM_DEVICE.
Overlapping a read mapping with a write mapping is a valid case in
dma-coherent devices like QAT.
The function that frees and unmaps the buffers, qat_alg_free_bufl()
has been changed accordingly to the changes to the mapping function.
DMA-API: 4xxx 0000:06:00.0: cacheline tracking EEXIST, overlapping mappings aren't supported
WARNING: CPU: 53 PID: 4362 at kernel/dma/debug.c:570 add_dma_entry+0x1e9/0x270
...
Call Trace:
dma_map_page_attrs+0x82/0x2d0
? preempt_count_add+0x6a/0xa0
qat_alg_sgl_to_bufl+0x45b/0x990 [intel_qat]
qat_alg_aead_dec+0x71/0x250 [intel_qat]
crypto_aead_decrypt+0x3d/0x70
test_aead_vec_cfg+0x649/0x810
? number+0x310/0x3a0
? vsnprintf+0x2a3/0x550
? scnprintf+0x42/0x70
? valid_sg_divisions.constprop.0+0x86/0xa0
? test_aead_vec+0xdf/0x120
test_aead_vec+0xdf/0x120
alg_test_aead+0x185/0x400
alg_test+0x3d8/0x500
? crypto_acomp_scomp_free_ctx+0x30/0x30
? __schedule+0x32a/0x12a0
? ttwu_queue_wakelist+0xbf/0x110
? _raw_spin_unlock_irqrestore+0x23/0x40
? try_to_wake_up+0x83/0x570
? _raw_spin_unlock_irqrestore+0x23/0x40
? __set_cpus_allowed_ptr_locked+0xea/0x1b0
? crypto_acomp_scomp_free_ctx+0x30/0x30
cryptomgr_test+0x27/0x50
kthread+0xe6/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30 |
| In the Linux kernel, the following vulnerability has been resolved:
apparmor: fix a memleak in multi_transaction_new()
In multi_transaction_new(), the variable t is not freed or passed out
on the failure of copy_from_user(t->data, buf, size), which could lead
to a memleak.
Fix this bug by adding a put_multi_transaction(t) in the error path. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: wed: use proper wed reference in mt76 wed driver callabacks
MT7996 driver can use both wed and wed_hif2 devices to offload traffic
from/to the wireless NIC. In the current codebase we assume to always
use the primary wed device in wed callbacks resulting in the following
crash if the hw runs wed_hif2 (e.g. 6GHz link).
[ 297.455876] Unable to handle kernel read from unreadable memory at virtual address 000000000000080a
[ 297.464928] Mem abort info:
[ 297.467722] ESR = 0x0000000096000005
[ 297.471461] EC = 0x25: DABT (current EL), IL = 32 bits
[ 297.476766] SET = 0, FnV = 0
[ 297.479809] EA = 0, S1PTW = 0
[ 297.482940] FSC = 0x05: level 1 translation fault
[ 297.487809] Data abort info:
[ 297.490679] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 297.496156] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 297.501196] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 297.506500] user pgtable: 4k pages, 39-bit VAs, pgdp=0000000107480000
[ 297.512927] [000000000000080a] pgd=08000001097fb003, p4d=08000001097fb003, pud=08000001097fb003, pmd=0000000000000000
[ 297.523532] Internal error: Oops: 0000000096000005 [#1] SMP
[ 297.715393] CPU: 2 UID: 0 PID: 45 Comm: kworker/u16:2 Tainted: G O 6.12.50 #0
[ 297.723908] Tainted: [O]=OOT_MODULE
[ 297.727384] Hardware name: Banana Pi BPI-R4 (2x SFP+) (DT)
[ 297.732857] Workqueue: nf_ft_offload_del nf_flow_rule_route_ipv6 [nf_flow_table]
[ 297.740254] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 297.747205] pc : mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.752688] lr : mtk_wed_flow_remove+0x58/0x80
[ 297.757126] sp : ffffffc080fe3ae0
[ 297.760430] x29: ffffffc080fe3ae0 x28: ffffffc080fe3be0 x27: 00000000deadbef7
[ 297.767557] x26: ffffff80c5ebca00 x25: 0000000000000001 x24: ffffff80c85f4c00
[ 297.774683] x23: ffffff80c1875b78 x22: ffffffc080d42cd0 x21: ffffffc080660018
[ 297.781809] x20: ffffff80c6a076d0 x19: ffffff80c6a043c8 x18: 0000000000000000
[ 297.788935] x17: 0000000000000000 x16: 0000000000000001 x15: 0000000000000000
[ 297.796060] x14: 0000000000000019 x13: ffffff80c0ad8ec0 x12: 00000000fa83b2da
[ 297.803185] x11: ffffff80c02700c0 x10: ffffff80c0ad8ec0 x9 : ffffff81fef96200
[ 297.810311] x8 : ffffff80c02700c0 x7 : ffffff80c02700d0 x6 : 0000000000000002
[ 297.817435] x5 : 0000000000000400 x4 : 0000000000000000 x3 : 0000000000000000
[ 297.824561] x2 : 0000000000000001 x1 : 0000000000000800 x0 : ffffff80c6a063c8
[ 297.831686] Call trace:
[ 297.834123] mt76_wed_offload_disable+0x64/0xa0 [mt76]
[ 297.839254] mtk_wed_flow_remove+0x58/0x80
[ 297.843342] mtk_flow_offload_cmd+0x434/0x574
[ 297.847689] mtk_wed_setup_tc_block_cb+0x30/0x40
[ 297.852295] nf_flow_offload_ipv6_hook+0x7f4/0x964 [nf_flow_table]
[ 297.858466] nf_flow_rule_route_ipv6+0x438/0x4a4 [nf_flow_table]
[ 297.864463] process_one_work+0x174/0x300
[ 297.868465] worker_thread+0x278/0x430
[ 297.872204] kthread+0xd8/0xdc
[ 297.875251] ret_from_fork+0x10/0x20
[ 297.878820] Code: 928b5ae0 8b000273 91400a60 f943fa61 (79401421)
[ 297.884901] ---[ end trace 0000000000000000 ]---
Fix the issue detecting the proper wed reference to use running wed
callabacks. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk()
When running chunk-sized reads on disks with badblocks duplicate bio
free/puts are observed:
=============================================================================
BUG bio-200 (Not tainted): Object already free
-----------------------------------------------------------------------------
Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504
__slab_alloc.constprop.0+0x5a/0xb0
kmem_cache_alloc+0x31e/0x330
mempool_alloc_slab+0x17/0x20
mempool_alloc+0x100/0x2b0
bio_alloc_bioset+0x181/0x460
do_mpage_readpage+0x776/0xd00
mpage_readahead+0x166/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
force_page_cache_ra+0x181/0x1c0
page_cache_sync_ra+0x65/0xb0
filemap_get_pages+0x1df/0xaf0
filemap_read+0x1e1/0x700
blkdev_read_iter+0x1e5/0x330
vfs_read+0x42a/0x570
Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
raid5_make_request+0x2259/0x2450
md_handle_request+0x402/0x600
md_submit_bio+0xd9/0x120
__submit_bio+0x11f/0x1b0
submit_bio_noacct_nocheck+0x204/0x480
submit_bio_noacct+0x32e/0xc70
submit_bio+0x98/0x1a0
mpage_readahead+0x250/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff)
CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Workqueue: raid5wq raid5_do_work
Call Trace:
<TASK>
dump_stack_lvl+0x5a/0x78
dump_stack+0x10/0x16
print_trailer+0x158/0x165
object_err+0x35/0x50
free_debug_processing.cold+0xb7/0xbe
__slab_free+0x1ae/0x330
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
mpage_end_io+0x36/0x150
bio_endio+0x2fd/0x360
md_end_io_acct+0x7e/0x90
bio_endio+0x2fd/0x360
handle_failed_stripe+0x960/0xb80
handle_stripe+0x1348/0x3760
handle_active_stripes.constprop.0+0x72a/0xaf0
raid5_do_work+0x177/0x330
process_one_work+0x616/0xb20
worker_thread+0x2bd/0x6f0
kthread+0x179/0x1b0
ret_from_fork+0x22/0x30
</TASK>
The double free is caused by an unnecessary bio_put() in the
if(is_badblock(...)) error path in raid5_read_one_chunk().
The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c
("md/raid5: move checking badblock before clone bio in
raid5_read_one_chunk"). The previous code checked and freed align_bio
which required a bio_put. After the move that is no longer needed as
raid_bio is returned to the control of the common io path which
performs its own endio resulting in a double free on bad device blocks. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: aead - Fix reqsize handling
Commit afddce13ce81d ("crypto: api - Add reqsize to crypto_alg")
introduced cra_reqsize field in crypto_alg struct to replace type
specific reqsize fields. It looks like this was introduced specifically
for ahash and acomp from the commit description as subsequent commits
add necessary changes in these alg frameworks.
However, this is being recommended for use in all crypto algs
instead of setting reqsize using crypto_*_set_reqsize(). Using
cra_reqsize in aead algorithms, hence, causes memory corruptions and
crashes as the underlying functions in the algorithm framework have not
been updated to set the reqsize properly from cra_reqsize. [1]
Add proper set_reqsize calls in the aead init function to properly
initialize reqsize for these algorithms in the framework.
[1]: https://gist.github.com/Pratham-T/24247446f1faf4b7843e4014d5089f6b |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: use work to update rate to avoid RCU warning
The ieee80211_ops::sta_rc_update must be atomic, because
ieee80211_chan_bw_change() holds rcu_read lock while calling
drv_sta_rc_update(), so create a work to do original things.
Voluntary context switch within RCU read-side critical section!
WARNING: CPU: 0 PID: 4621 at kernel/rcu/tree_plugin.h:318
rcu_note_context_switch+0x571/0x5d0
CPU: 0 PID: 4621 Comm: kworker/u16:2 Tainted: G W OE
Workqueue: phy3 ieee80211_chswitch_work [mac80211]
RIP: 0010:rcu_note_context_switch+0x571/0x5d0
Call Trace:
<TASK>
__schedule+0xb0/0x1460
? __mod_timer+0x116/0x360
schedule+0x5a/0xc0
schedule_timeout+0x87/0x150
? trace_raw_output_tick_stop+0x60/0x60
wait_for_completion_timeout+0x7b/0x140
usb_start_wait_urb+0x82/0x160 [usbcore
usb_control_msg+0xe3/0x140 [usbcore
rtw_usb_read+0x88/0xe0 [rtw_usb
rtw_usb_read8+0xf/0x10 [rtw_usb
rtw_fw_send_h2c_command+0xa0/0x170 [rtw_core
rtw_fw_send_ra_info+0xc9/0xf0 [rtw_core
drv_sta_rc_update+0x7c/0x160 [mac80211
ieee80211_chan_bw_change+0xfb/0x110 [mac80211
ieee80211_change_chanctx+0x38/0x130 [mac80211
ieee80211_vif_use_reserved_switch+0x34e/0x900 [mac80211
ieee80211_link_use_reserved_context+0x88/0xe0 [mac80211
ieee80211_chswitch_work+0x95/0x170 [mac80211
process_one_work+0x201/0x410
worker_thread+0x4a/0x3b0
? process_one_work+0x410/0x410
kthread+0xe1/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix mempool alloc size
Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.
The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.
While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
kcm: Fix memory leak in error path of kcm_sendmsg()
syzbot reported a memory leak like below:
BUG: memory leak
unreferenced object 0xffff88810b088c00 (size 240):
comm "syz-executor186", pid 5012, jiffies 4294943306 (age 13.680s)
hex dump (first 32 bytes):
00 89 08 0b 81 88 ff ff 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff83e5d5ff>] __alloc_skb+0x1ef/0x230 net/core/skbuff.c:634
[<ffffffff84606e59>] alloc_skb include/linux/skbuff.h:1289 [inline]
[<ffffffff84606e59>] kcm_sendmsg+0x269/0x1050 net/kcm/kcmsock.c:815
[<ffffffff83e479c6>] sock_sendmsg_nosec net/socket.c:725 [inline]
[<ffffffff83e479c6>] sock_sendmsg+0x56/0xb0 net/socket.c:748
[<ffffffff83e47f55>] ____sys_sendmsg+0x365/0x470 net/socket.c:2494
[<ffffffff83e4c389>] ___sys_sendmsg+0xc9/0x130 net/socket.c:2548
[<ffffffff83e4c536>] __sys_sendmsg+0xa6/0x120 net/socket.c:2577
[<ffffffff84ad7bb8>] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[<ffffffff84ad7bb8>] do_syscall_64+0x38/0xb0 arch/x86/entry/common.c:80
[<ffffffff84c0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
In kcm_sendmsg(), kcm_tx_msg(head)->last_skb is used as a cursor to append
newly allocated skbs to 'head'. If some bytes are copied, an error occurred,
and jumped to out_error label, 'last_skb' is left unmodified. A later
kcm_sendmsg() will use an obsoleted 'last_skb' reference, corrupting the
'head' frag_list and causing the leak.
This patch fixes this issue by properly updating the last allocated skb in
'last_skb'. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix UAF issue in nfqnl_nf_hook_drop() when ops_init() failed
When the ops_init() interface is invoked to initialize the net, but
ops->init() fails, data is released. However, the ptr pointer in
net->gen is invalid. In this case, when nfqnl_nf_hook_drop() is invoked
to release the net, invalid address access occurs.
The process is as follows:
setup_net()
ops_init()
data = kzalloc(...) ---> alloc "data"
net_assign_generic() ---> assign "date" to ptr in net->gen
...
ops->init() ---> failed
...
kfree(data); ---> ptr in net->gen is invalid
...
ops_exit_list()
...
nfqnl_nf_hook_drop()
*q = nfnl_queue_pernet(net) ---> q is invalid
The following is the Call Trace information:
BUG: KASAN: use-after-free in nfqnl_nf_hook_drop+0x264/0x280
Read of size 8 at addr ffff88810396b240 by task ip/15855
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
nfqnl_nf_hook_drop+0x264/0x280
nf_queue_nf_hook_drop+0x8b/0x1b0
__nf_unregister_net_hook+0x1ae/0x5a0
nf_unregister_net_hooks+0xde/0x130
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
Allocated by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc+0x49/0xb0
ops_init+0xe7/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 15855:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
ops_init+0xb9/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |