| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_mount_volume()
There is a memory leak reported by kmemleak:
unreferenced object 0xffff88810cc65e60 (size 32):
comm "mount.ocfs2", pid 23753, jiffies 4302528942 (age 34735.105s)
hex dump (first 32 bytes):
10 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 ................
01 01 01 01 01 01 01 01 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff8170f73d>] __kmalloc+0x4d/0x150
[<ffffffffa0ac3f51>] ocfs2_compute_replay_slots+0x121/0x330 [ocfs2]
[<ffffffffa0b65165>] ocfs2_check_volume+0x485/0x900 [ocfs2]
[<ffffffffa0b68129>] ocfs2_mount_volume.isra.0+0x1e9/0x650 [ocfs2]
[<ffffffffa0b7160b>] ocfs2_fill_super+0xe0b/0x1740 [ocfs2]
[<ffffffff818e1fe2>] mount_bdev+0x312/0x400
[<ffffffff819a086d>] legacy_get_tree+0xed/0x1d0
[<ffffffff818de82d>] vfs_get_tree+0x7d/0x230
[<ffffffff81957f92>] path_mount+0xd62/0x1760
[<ffffffff81958a5a>] do_mount+0xca/0xe0
[<ffffffff81958d3c>] __x64_sys_mount+0x12c/0x1a0
[<ffffffff82f26f15>] do_syscall_64+0x35/0x80
[<ffffffff8300006a>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
This call stack is related to two problems. Firstly, the ocfs2 super uses
"replay_map" to trace online/offline slots, in order to recover offline
slots during recovery and mount. But when ocfs2_truncate_log_init()
returns an error in ocfs2_mount_volume(), the memory of "replay_map" will
not be freed in error handling path. Secondly, the memory of "replay_map"
will not be freed if d_make_root() returns an error in ocfs2_fill_super().
But the memory of "replay_map" will be freed normally when completing
recovery and mount in ocfs2_complete_mount_recovery().
Fix the first problem by adding error handling path to free "replay_map"
when ocfs2_truncate_log_init() fails. And fix the second problem by
calling ocfs2_free_replay_slots(osb) in the error handling path
"out_dismount". In addition, since ocfs2_free_replay_slots() is static,
it is necessary to remove its static attribute and declare it in header
file. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of qgroup record after failure to add delayed ref head
In the previous code it was possible to incur into a double kfree()
scenario when calling add_delayed_ref_head(). This could happen if the
record was reported to already exist in the
btrfs_qgroup_trace_extent_nolock() call, but then there was an error
later on add_delayed_ref_head(). In this case, since
add_delayed_ref_head() returned an error, the caller went to free the
record. Since add_delayed_ref_head() couldn't set this kfree'd pointer
to NULL, then kfree() would have acted on a non-NULL 'record' object
which was pointing to memory already freed by the callee.
The problem comes from the fact that the responsibility to kfree the
object is on both the caller and the callee at the same time. Hence, the
fix for this is to shift the ownership of the 'qrecord' object out of
the add_delayed_ref_head(). That is, we will never attempt to kfree()
the given object inside of this function, and will expect the caller to
act on the 'qrecord' object on its own. The only exception where the
'qrecord' object cannot be kfree'd is if it was inserted into the
tracing logic, for which we already have the 'qrecord_inserted_ret'
boolean to account for this. Hence, the caller has to kfree the object
only if add_delayed_ref_head() reports not to have inserted it on the
tracing logic.
As a side-effect of the above, we must guarantee that
'qrecord_inserted_ret' is properly initialized at the start of the
function, not at the end, and then set when an actual insert
happens. This way we avoid 'qrecord_inserted_ret' having an invalid
value on an early exit.
The documentation from the add_delayed_ref_head() has also been updated
to reflect on the exact ownership of the 'qrecord' object. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: mts64: fix possible null-ptr-defer in snd_mts64_interrupt
I got a null-ptr-defer error report when I do the following tests
on the qemu platform:
make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m
Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF
Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:
syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 #6
Call Trace:
<IRQ>
snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
parport_irq_handler+0x37/0x50 [parport]
__handle_irq_event_percpu+0x39/0x190
handle_irq_event_percpu+0xa/0x30
handle_irq_event+0x2f/0x50
handle_edge_irq+0x99/0x1b0
__common_interrupt+0x5d/0x100
common_interrupt+0xa0/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
parport_claim+0xbd/0x230 [parport]
snd_mts64_probe+0x14a/0x465 [snd_mts64]
platform_probe+0x3f/0xa0
really_probe+0x129/0x2c0
__driver_probe_device+0x6d/0xc0
driver_probe_device+0x1a/0xa0
__device_attach_driver+0x7a/0xb0
bus_for_each_drv+0x62/0xb0
__device_attach+0xe4/0x180
bus_probe_device+0x82/0xa0
device_add+0x550/0x920
platform_device_add+0x106/0x220
snd_mts64_attach+0x2e/0x80 [snd_mts64]
port_check+0x14/0x20 [parport]
bus_for_each_dev+0x6e/0xc0
__parport_register_driver+0x7c/0xb0 [parport]
snd_mts64_module_init+0x31/0x1000 [snd_mts64]
do_one_initcall+0x3c/0x1f0
do_init_module+0x46/0x1c6
load_module+0x1d8d/0x1e10
__do_sys_finit_module+0xa2/0xf0
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Kernel panic - not syncing: Fatal exception in interrupt
Rebooting in 1 seconds..
The mts wa not initialized during interrupt, we add check for
mts to fix this bug. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: fix mempool alloc size
Convert the max size to bytes to match the units of the divisor that
calculates the worst-case number of PRP entries.
The result is used to determine how many PRP Lists are required. The
code was previously rounding this to 1 list, but we can require 2 in the
worst case. In that scenario, the driver would corrupt memory beyond the
size provided by the mempool.
While unlikely to occur (you'd need a 4MB in exactly 127 phys segments
on a queue that doesn't support SGLs), this memory corruption has been
observed by kfence. |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: ETR: Fix ETR buffer use-after-free issue
When ETR is enabled as CS_MODE_SYSFS, if the buffer size is changed
and enabled again, currently sysfs_buf will point to the newly
allocated memory(buf_new) and free the old memory(buf_old). But the
etr_buf that is being used by the ETR remains pointed to buf_old, not
updated to buf_new. In this case, it will result in a memory
use-after-free issue.
Fix this by checking ETR's mode before updating and releasing buf_old,
if the mode is CS_MODE_SYSFS, then skip updating and releasing it. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: bq27xxx: Fix poll_interval handling and races on remove
Before this patch bq27xxx_battery_teardown() was setting poll_interval = 0
to avoid bq27xxx_battery_update() requeuing the delayed_work item.
There are 2 problems with this:
1. If the driver is unbound through sysfs, rather then the module being
rmmod-ed, this changes poll_interval unexpectedly
2. This is racy, after it being set poll_interval could be changed
before bq27xxx_battery_update() checks it through
/sys/module/bq27xxx_battery/parameters/poll_interval
Fix this by added a removed attribute to struct bq27xxx_device_info and
using that instead of setting poll_interval to 0.
There also is another poll_interval related race on remove(), writing
/sys/module/bq27xxx_battery/parameters/poll_interval will requeue
the delayed_work item for all devices on the bq27xxx_battery_devices
list and the device being removed was only removed from that list
after cancelling the delayed_work item.
Fix this by moving the removal from the bq27xxx_battery_devices list
to before cancelling the delayed_work item. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: efct: Fix possible memleak in efct_device_init()
In efct_device_init(), when efct_scsi_reg_fc_transport() fails,
efct_scsi_tgt_driver_exit() is not called to release memory for
efct_scsi_tgt_driver_init() and causes memleak:
unreferenced object 0xffff8881020ce000 (size 2048):
comm "modprobe", pid 465, jiffies 4294928222 (age 55.872s)
backtrace:
[<0000000021a1ef1b>] kmalloc_trace+0x27/0x110
[<000000004c3ed51c>] target_register_template+0x4fd/0x7b0 [target_core_mod]
[<00000000f3393296>] efct_scsi_tgt_driver_init+0x18/0x50 [efct]
[<00000000115de533>] 0xffffffffc0d90011
[<00000000d608f646>] do_one_initcall+0xd0/0x4e0
[<0000000067828cf1>] do_init_module+0x1cc/0x6a0
... |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-vdpa: fix an iotlb memory leak
Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB")
we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during
release to free all the resources allocated when processing user IOTLB
messages through vhost_vdpa_process_iotlb_update().
That commit changed the handling of IOTLB a bit, and we accidentally
removed some code called during the release.
We partially fixed this with commit 037d4305569a ("vhost-vdpa: call
vhost_vdpa_cleanup during the release") but a potential memory leak is
still there as showed by kmemleak if the application does not send
VHOST_IOTLB_INVALIDATE or crashes:
unreferenced object 0xffff888007fbaa30 (size 16):
comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s)
hex dump (first 16 bytes):
40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA.............
backtrace:
[<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0
[<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa]
[<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost]
[<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa]
[<00000000de1cd4a0>] vfs_write+0x216/0x4b0
[<00000000a2850200>] ksys_write+0x71/0xf0
[<00000000de8e720b>] __x64_sys_write+0x19/0x20
[<0000000018b12cbb>] do_syscall_64+0x3f/0x90
[<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in
vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup()
since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap().
vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap()
on the whole range removes all the entries.
The kmemleak log reported was observed with a vDPA device that has `use_va`
set to true (e.g. VDUSE). This patch has been tested with both types of
devices. |
| In the Linux kernel, the following vulnerability has been resolved:
staging: media: tegra-video: fix device_node use after free
At probe time this code path is followed:
* tegra_csi_init
* tegra_csi_channels_alloc
* for_each_child_of_node(node, channel) -- iterates over channels
* automatically gets 'channel'
* tegra_csi_channel_alloc()
* saves into chan->of_node a pointer to the channel OF node
* automatically gets and puts 'channel'
* now the node saved in chan->of_node has refcount 0, can disappear
* tegra_csi_channels_init
* iterates over channels
* tegra_csi_channel_init -- uses chan->of_node
After that, chan->of_node keeps storing the node until the device is
removed.
of_node_get() the node and of_node_put() it during teardown to avoid any
risk. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ipu3-imgu: Fix NULL pointer dereference in active selection access
What the IMGU driver did was that it first acquired the pointers to active
and try V4L2 subdev state, and only then figured out which one to use.
The problem with that approach and a later patch (see Fixes: tag) is that
as sd_state argument to v4l2_subdev_get_try_crop() et al is NULL, there is
now an attempt to dereference that.
Fix this.
Also rewrap lines a little. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/iommu: Fix notifiers being shared by PCI and VIO buses
fail_iommu_setup() registers the fail_iommu_bus_notifier struct to both
PCI and VIO buses. struct notifier_block is a linked list node, so this
causes any notifiers later registered to either bus type to also be
registered to the other since they share the same node.
This causes issues in (at least) the vgaarb code, which registers a
notifier for PCI buses. pci_notify() ends up being called on a vio
device, converted with to_pci_dev() even though it's not a PCI device,
and finally makes a bad access in vga_arbiter_add_pci_device() as
discovered with KASAN:
BUG: KASAN: slab-out-of-bounds in vga_arbiter_add_pci_device+0x60/0xe00
Read of size 4 at addr c000000264c26fdc by task swapper/0/1
Call Trace:
dump_stack_lvl+0x1bc/0x2b8 (unreliable)
print_report+0x3f4/0xc60
kasan_report+0x244/0x698
__asan_load4+0xe8/0x250
vga_arbiter_add_pci_device+0x60/0xe00
pci_notify+0x88/0x444
notifier_call_chain+0x104/0x320
blocking_notifier_call_chain+0xa0/0x140
device_add+0xac8/0x1d30
device_register+0x58/0x80
vio_register_device_node+0x9ac/0xce0
vio_bus_scan_register_devices+0xc4/0x13c
__machine_initcall_pseries_vio_device_init+0x94/0xf0
do_one_initcall+0x12c/0xaa8
kernel_init_freeable+0xa48/0xba8
kernel_init+0x64/0x400
ret_from_kernel_thread+0x5c/0x64
Fix this by creating separate notifier_block structs for each bus type.
[mpe: Add #ifdef to fix CONFIG_IBMVIO=n build] |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix immediate work request flush to completion queue
Correctly set send queue element opcode during immediate work request
flushing in post sendqueue operation, if the QP is in ERROR state.
An undefined ocode value results in out-of-bounds access to an array
for mapping the opcode between siw internal and RDMA core representation
in work completion generation. It resulted in a KASAN BUG report
of type 'global-out-of-bounds' during NFSoRDMA testing.
This patch further fixes a potential case of a malicious user which may
write undefined values for completion queue elements status or opcode,
if the CQ is memory mapped to user land. It avoids the same out-of-bounds
access to arrays for status and opcode mapping as described above. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: glink: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: silence the warning when evicting inode with dioread_nolock
When evicting an inode with default dioread_nolock, it could be raced by
the unwritten extents converting kworker after writeback some new
allocated dirty blocks. It convert unwritten extents to written, the
extents could be merged to upper level and free extent blocks, so it
could mark the inode dirty again even this inode has been marked
I_FREEING. But the inode->i_io_list check and warning in
ext4_evict_inode() missing this corner case. Fortunately,
ext4_evict_inode() will wait all extents converting finished before this
check, so it will not lead to inode use-after-free problem, every thing
is OK besides this warning. The WARN_ON_ONCE was originally designed
for finding inode use-after-free issues in advance, but if we add
current dioread_nolock case in, it will become not quite useful, so fix
this warning by just remove this check.
======
WARNING: CPU: 7 PID: 1092 at fs/ext4/inode.c:227
ext4_evict_inode+0x875/0xc60
...
RIP: 0010:ext4_evict_inode+0x875/0xc60
...
Call Trace:
<TASK>
evict+0x11c/0x2b0
iput+0x236/0x3a0
do_unlinkat+0x1b4/0x490
__x64_sys_unlinkat+0x4c/0xb0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fa933c1115b
======
rm kworker
ext4_end_io_end()
vfs_unlink()
ext4_unlink()
ext4_convert_unwritten_io_end_vec()
ext4_convert_unwritten_extents()
ext4_map_blocks()
ext4_ext_map_blocks()
ext4_ext_try_to_merge_up()
__mark_inode_dirty()
check !I_FREEING
locked_inode_to_wb_and_lock_list()
iput()
iput_final()
evict()
ext4_evict_inode()
truncate_inode_pages_final() //wait release io_end
inode_io_list_move_locked()
ext4_release_io_end()
trigger WARN_ON_ONCE() |
| In the Linux kernel, the following vulnerability has been resolved:
mmc: mxcmmc: fix return value check of mmc_add_host()
mmc_add_host() may return error, if we ignore its return value, the memory
that allocated in mmc_alloc_host() will be leaked and it will lead a kernel
crash because of deleting not added device in the remove path.
So fix this by checking the return value and goto error path which will call
mmc_free_host(). |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Fix MSDU buffer types handling in RX error path
Currently, packets received on the REO exception ring from
unassociated peers are of MSDU buffer type, while the driver expects
link descriptor type packets. These packets are not parsed further due
to a return check on packet type in ath12k_hal_desc_reo_parse_err(),
but the associated skb is not freed. This may lead to kernel
crashes and buffer leaks.
Hence to fix, update the RX error handler to explicitly drop
MSDU buffer type packets received on the REO exception ring.
This prevents further processing of invalid packets and ensures
stability in the RX error handling path.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.4.1-00199-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Clear the driver reference in usb-phy dev
For the dual-role port, it will assign the phy dev to usb-phy dev and
use the port dev driver as the dev driver of usb-phy.
When we try to destroy the port dev, it will destroy its dev driver
as well. But we did not remove the reference from usb-phy dev. This
might cause the use-after-free issue in KASAN. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Use correct encap attribute during invalidation
With introduction of post action infrastructure most of the users of encap
attribute had been modified in order to obtain the correct attribute by
calling mlx5e_tc_get_encap_attr() helper instead of assuming encap action
is always on default attribute. However, the cited commit didn't modify
mlx5e_invalidate_encap() which prevents it from destroying correct modify
header action which leads to a warning [0]. Fix the issue by using correct
attribute.
[0]:
Feb 21 09:47:35 c-237-177-40-045 kernel: WARNING: CPU: 17 PID: 654 at drivers/net/ethernet/mellanox/mlx5/core/en_tc.c:684 mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core]
Feb 21 09:47:35 c-237-177-40-045 kernel: RIP: 0010:mlx5e_tc_attach_mod_hdr+0x1cc/0x230 [mlx5_core]
Feb 21 09:47:35 c-237-177-40-045 kernel: Call Trace:
Feb 21 09:47:35 c-237-177-40-045 kernel: <TASK>
Feb 21 09:47:35 c-237-177-40-045 kernel: mlx5e_tc_fib_event_work+0x8e3/0x1f60 [mlx5_core]
Feb 21 09:47:35 c-237-177-40-045 kernel: ? mlx5e_take_all_encap_flows+0xe0/0xe0 [mlx5_core]
Feb 21 09:47:35 c-237-177-40-045 kernel: ? lock_downgrade+0x6d0/0x6d0
Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0
Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x273/0x3f0
Feb 21 09:47:35 c-237-177-40-045 kernel: process_one_work+0x7c2/0x1310
Feb 21 09:47:35 c-237-177-40-045 kernel: ? lockdep_hardirqs_on_prepare+0x3f0/0x3f0
Feb 21 09:47:35 c-237-177-40-045 kernel: ? pwq_dec_nr_in_flight+0x230/0x230
Feb 21 09:47:35 c-237-177-40-045 kernel: ? rwlock_bug.part.0+0x90/0x90
Feb 21 09:47:35 c-237-177-40-045 kernel: worker_thread+0x59d/0xec0
Feb 21 09:47:35 c-237-177-40-045 kernel: ? __kthread_parkme+0xd9/0x1d0 |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: use proper req destructor for IPv6
Before, only the destructor from TCP request sock in IPv4 was called
even if the subflow was IPv6.
It is important to use the right destructor to avoid memory leaks with
some advanced IPv6 features, e.g. when the request socks contain
specific IPv6 options. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: limit the level of fs stacking for file-backed mounts
Otherwise, it could cause potential kernel stack overflow (e.g., EROFS
mounting itself). |