| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/rw: defer fsnotify calls to task context
We can't call these off the kiocb completion as that might be off
soft/hard irq context. Defer the calls to when we process the
task_work for this request. That avoids valid complaints like:
stack backtrace:
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 6.0.0-rc6-syzkaller-00321-g105a36f3694e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_usage_bug kernel/locking/lockdep.c:3961 [inline]
valid_state kernel/locking/lockdep.c:3973 [inline]
mark_lock_irq kernel/locking/lockdep.c:4176 [inline]
mark_lock.part.0.cold+0x18/0xd8 kernel/locking/lockdep.c:4632
mark_lock kernel/locking/lockdep.c:4596 [inline]
mark_usage kernel/locking/lockdep.c:4527 [inline]
__lock_acquire+0x11d9/0x56d0 kernel/locking/lockdep.c:5007
lock_acquire kernel/locking/lockdep.c:5666 [inline]
lock_acquire+0x1ab/0x570 kernel/locking/lockdep.c:5631
__fs_reclaim_acquire mm/page_alloc.c:4674 [inline]
fs_reclaim_acquire+0x115/0x160 mm/page_alloc.c:4688
might_alloc include/linux/sched/mm.h:271 [inline]
slab_pre_alloc_hook mm/slab.h:700 [inline]
slab_alloc mm/slab.c:3278 [inline]
__kmem_cache_alloc_lru mm/slab.c:3471 [inline]
kmem_cache_alloc+0x39/0x520 mm/slab.c:3491
fanotify_alloc_fid_event fs/notify/fanotify/fanotify.c:580 [inline]
fanotify_alloc_event fs/notify/fanotify/fanotify.c:813 [inline]
fanotify_handle_event+0x1130/0x3f40 fs/notify/fanotify/fanotify.c:948
send_to_group fs/notify/fsnotify.c:360 [inline]
fsnotify+0xafb/0x1680 fs/notify/fsnotify.c:570
__fsnotify_parent+0x62f/0xa60 fs/notify/fsnotify.c:230
fsnotify_parent include/linux/fsnotify.h:77 [inline]
fsnotify_file include/linux/fsnotify.h:99 [inline]
fsnotify_access include/linux/fsnotify.h:309 [inline]
__io_complete_rw_common+0x485/0x720 io_uring/rw.c:195
io_complete_rw+0x1a/0x1f0 io_uring/rw.c:228
iomap_dio_complete_work fs/iomap/direct-io.c:144 [inline]
iomap_dio_bio_end_io+0x438/0x5e0 fs/iomap/direct-io.c:178
bio_endio+0x5f9/0x780 block/bio.c:1564
req_bio_endio block/blk-mq.c:695 [inline]
blk_update_request+0x3fc/0x1300 block/blk-mq.c:825
scsi_end_request+0x7a/0x9a0 drivers/scsi/scsi_lib.c:541
scsi_io_completion+0x173/0x1f70 drivers/scsi/scsi_lib.c:971
scsi_complete+0x122/0x3b0 drivers/scsi/scsi_lib.c:1438
blk_complete_reqs+0xad/0xe0 block/blk-mq.c:1022
__do_softirq+0x1d3/0x9c6 kernel/softirq.c:571
invoke_softirq kernel/softirq.c:445 [inline]
__irq_exit_rcu+0x123/0x180 kernel/softirq.c:650
irq_exit_rcu+0x5/0x20 kernel/softirq.c:662
common_interrupt+0xa9/0xc0 arch/x86/kernel/irq.c:240 |
| In the Linux kernel, the following vulnerability has been resolved:
SMB3: Add missing locks to protect deferred close file list
cifs_del_deferred_close function has a critical section which modifies
the deferred close file list. We must acquire deferred_lock before
calling cifs_del_deferred_close function. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7921s: fix slab-out-of-bounds access in sdio host
SDIO may need addtional 511 bytes to align bus operation. If the tailroom
of this skb is not big enough, we would access invalid memory region.
For low level operation, increase skb size to keep valid memory access in
SDIO host.
Error message:
[69.951] BUG: KASAN: slab-out-of-bounds in sg_copy_buffer+0xe9/0x1a0
[69.951] Read of size 64 at addr ffff88811c9cf000 by task kworker/u16:7/451
[69.951] CPU: 4 PID: 451 Comm: kworker/u16:7 Tainted: G W OE 6.1.0-rc5 #1
[69.951] Workqueue: kvub300c vub300_cmndwork_thread [vub300]
[69.951] Call Trace:
[69.951] <TASK>
[69.952] dump_stack_lvl+0x49/0x63
[69.952] print_report+0x171/0x4a8
[69.952] kasan_report+0xb4/0x130
[69.952] kasan_check_range+0x149/0x1e0
[69.952] memcpy+0x24/0x70
[69.952] sg_copy_buffer+0xe9/0x1a0
[69.952] sg_copy_to_buffer+0x12/0x20
[69.952] __command_write_data.isra.0+0x23c/0xbf0 [vub300]
[69.952] vub300_cmndwork_thread+0x17f3/0x58b0 [vub300]
[69.952] process_one_work+0x7ee/0x1320
[69.952] worker_thread+0x53c/0x1240
[69.952] kthread+0x2b8/0x370
[69.952] ret_from_fork+0x1f/0x30
[69.952] </TASK>
[69.952] Allocated by task 854:
[69.952] kasan_save_stack+0x26/0x50
[69.952] kasan_set_track+0x25/0x30
[69.952] kasan_save_alloc_info+0x1b/0x30
[69.952] __kasan_kmalloc+0x87/0xa0
[69.952] __kmalloc_node_track_caller+0x63/0x150
[69.952] kmalloc_reserve+0x31/0xd0
[69.952] __alloc_skb+0xfc/0x2b0
[69.952] __mt76_mcu_msg_alloc+0xbf/0x230 [mt76]
[69.952] mt76_mcu_send_and_get_msg+0xab/0x110 [mt76]
[69.952] __mt76_mcu_send_firmware.cold+0x94/0x15d [mt76]
[69.952] mt76_connac_mcu_send_ram_firmware+0x415/0x54d [mt76_connac_lib]
[69.952] mt76_connac2_load_ram.cold+0x118/0x4bc [mt76_connac_lib]
[69.952] mt7921_run_firmware.cold+0x2e9/0x405 [mt7921_common]
[69.952] mt7921s_mcu_init+0x45/0x80 [mt7921s]
[69.953] mt7921_init_work+0xe1/0x2a0 [mt7921_common]
[69.953] process_one_work+0x7ee/0x1320
[69.953] worker_thread+0x53c/0x1240
[69.953] kthread+0x2b8/0x370
[69.953] ret_from_fork+0x1f/0x30
[69.953] The buggy address belongs to the object at ffff88811c9ce800
which belongs to the cache kmalloc-2k of size 2048
[69.953] The buggy address is located 0 bytes to the right of
2048-byte region [ffff88811c9ce800, ffff88811c9cf000)
[69.953] Memory state around the buggy address:
[69.953] ffff88811c9cef00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] ffff88811c9cef80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
[69.953] >ffff88811c9cf000: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ^
[69.953] ffff88811c9cf080: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
[69.953] ffff88811c9cf100: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc |
| In the Linux kernel, the following vulnerability has been resolved:
spi: ch341: fix out-of-bounds memory access in ch341_transfer_one
Discovered by Atuin - Automated Vulnerability Discovery Engine.
The 'len' variable is calculated as 'min(32, trans->len + 1)',
which includes the 1-byte command header.
When copying data from 'trans->tx_buf' to 'ch341->tx_buf + 1', using 'len'
as the length is incorrect because:
1. It causes an out-of-bounds read from 'trans->tx_buf' (which has size
'trans->len', i.e., 'len - 1' in this context).
2. It can cause an out-of-bounds write to 'ch341->tx_buf' if 'len' is
CH341_PACKET_LENGTH (32). Writing 32 bytes to ch341->tx_buf + 1
overflows the buffer.
Fix this by copying 'len - 1' bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix stack overflow when LRO is disabled for virtual interfaces
When the virtual interface's feature is updated, it synchronizes the
updated feature for its own lower interface.
This propagation logic should be worked as the iteration, not recursively.
But it works recursively due to the netdev notification unexpectedly.
This problem occurs when it disables LRO only for the team and bonding
interface type.
team0
|
+------+------+-----+-----+
| | | | |
team1 team2 team3 ... team200
If team0's LRO feature is updated, it generates the NETDEV_FEAT_CHANGE
event to its own lower interfaces(team1 ~ team200).
It is worked by netdev_sync_lower_features().
So, the NETDEV_FEAT_CHANGE notification logic of each lower interface
work iteratively.
But generated NETDEV_FEAT_CHANGE event is also sent to the upper
interface too.
upper interface(team0) generates the NETDEV_FEAT_CHANGE event for its own
lower interfaces again.
lower and upper interfaces receive this event and generate this
event again and again.
So, the stack overflow occurs.
But it is not the infinite loop issue.
Because the netdev_sync_lower_features() updates features before
generating the NETDEV_FEAT_CHANGE event.
Already synchronized lower interfaces skip notification logic.
So, it is just the problem that iteration logic is changed to the
recursive unexpectedly due to the notification mechanism.
Reproducer:
ip link add team0 type team
ethtool -K team0 lro on
for i in {1..200}
do
ip link add team$i master team0 type team
ethtool -K team$i lro on
done
ethtool -K team0 lro off
In order to fix it, the notifier_ctx member of bonding/team is introduced. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/xen: Fix memory leak in xen_init_lock_cpu()
In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(),
if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead
to a memory leak issue, fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
misc: ocxl: fix possible refcount leak in afu_ioctl()
eventfd_ctx_put need to be called to put the refcount that gotten by
eventfd_ctx_fdget when ocxl_irq_set_handler fails. |
| In the Linux kernel, the following vulnerability has been resolved:
rpmsg: glink: Add check for kstrdup
Add check for the return value of kstrdup() and return the error
if it fails in order to avoid NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
regulator: stm32-pwr: fix of_iomap leak
Smatch reports:
drivers/regulator/stm32-pwr.c:166 stm32_pwr_regulator_probe() warn:
'base' from of_iomap() not released on lines: 151,166.
In stm32_pwr_regulator_probe(), base is not released
when devm_kzalloc() fails to allocate memory or
devm_regulator_register() fails to register a new regulator device,
which may cause a leak.
To fix this issue, replace of_iomap() with
devm_platform_ioremap_resource(). devm_platform_ioremap_resource()
is a specialized function for platform devices.
It allows 'base' to be automatically released whether the probe
function succeeds or fails.
Besides, use IS_ERR(base) instead of !base
as the return value of devm_platform_ioremap_resource()
can either be a pointer to the remapped memory or
an ERR_PTR() encoded error code if the operation fails. |
| In the Linux kernel, the following vulnerability has been resolved:
perf/x86: Fix NULL event access and potential PEBS record loss
When intel_pmu_drain_pebs_icl() is called to drain PEBS records, the
perf_event_overflow() could be called to process the last PEBS record.
While perf_event_overflow() could trigger the interrupt throttle and
stop all events of the group, like what the below call-chain shows.
perf_event_overflow()
-> __perf_event_overflow()
->__perf_event_account_interrupt()
-> perf_event_throttle_group()
-> perf_event_throttle()
-> event->pmu->stop()
-> x86_pmu_stop()
The side effect of stopping the events is that all corresponding event
pointers in cpuc->events[] array are cleared to NULL.
Assume there are two PEBS events (event a and event b) in a group. When
intel_pmu_drain_pebs_icl() calls perf_event_overflow() to process the
last PEBS record of PEBS event a, interrupt throttle is triggered and
all pointers of event a and event b are cleared to NULL. Then
intel_pmu_drain_pebs_icl() tries to process the last PEBS record of
event b and encounters NULL pointer access.
To avoid this issue, move cpuc->events[] clearing from x86_pmu_stop()
to x86_pmu_del(). It's safe since cpuc->active_mask or
cpuc->pebs_enabled is always checked before access the event pointer
from cpuc->events[]. |
| In the Linux kernel, the following vulnerability has been resolved:
md/raid5: Remove unnecessary bio_put() in raid5_read_one_chunk()
When running chunk-sized reads on disks with badblocks duplicate bio
free/puts are observed:
=============================================================================
BUG bio-200 (Not tainted): Object already free
-----------------------------------------------------------------------------
Allocated in mempool_alloc_slab+0x17/0x20 age=3 cpu=2 pid=7504
__slab_alloc.constprop.0+0x5a/0xb0
kmem_cache_alloc+0x31e/0x330
mempool_alloc_slab+0x17/0x20
mempool_alloc+0x100/0x2b0
bio_alloc_bioset+0x181/0x460
do_mpage_readpage+0x776/0xd00
mpage_readahead+0x166/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
force_page_cache_ra+0x181/0x1c0
page_cache_sync_ra+0x65/0xb0
filemap_get_pages+0x1df/0xaf0
filemap_read+0x1e1/0x700
blkdev_read_iter+0x1e5/0x330
vfs_read+0x42a/0x570
Freed in mempool_free_slab+0x17/0x20 age=3 cpu=2 pid=7504
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
raid5_make_request+0x2259/0x2450
md_handle_request+0x402/0x600
md_submit_bio+0xd9/0x120
__submit_bio+0x11f/0x1b0
submit_bio_noacct_nocheck+0x204/0x480
submit_bio_noacct+0x32e/0xc70
submit_bio+0x98/0x1a0
mpage_readahead+0x250/0x320
blkdev_readahead+0x15/0x20
read_pages+0x13f/0x5f0
page_cache_ra_unbounded+0x18d/0x220
Slab 0xffffea000481b600 objects=21 used=0 fp=0xffff8881206d8940 flags=0x17ffffc0010201(locked|slab|head|node=0|zone=2|lastcpupid=0x1fffff)
CPU: 0 PID: 34525 Comm: kworker/u24:2 Not tainted 6.0.0-rc2-localyes-265166-gf11c5343fa3f #143
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-1ubuntu1.1 04/01/2014
Workqueue: raid5wq raid5_do_work
Call Trace:
<TASK>
dump_stack_lvl+0x5a/0x78
dump_stack+0x10/0x16
print_trailer+0x158/0x165
object_err+0x35/0x50
free_debug_processing.cold+0xb7/0xbe
__slab_free+0x1ae/0x330
kmem_cache_free+0x46d/0x490
mempool_free_slab+0x17/0x20
mempool_free+0x66/0x190
bio_free+0x78/0x90
bio_put+0x100/0x1a0
mpage_end_io+0x36/0x150
bio_endio+0x2fd/0x360
md_end_io_acct+0x7e/0x90
bio_endio+0x2fd/0x360
handle_failed_stripe+0x960/0xb80
handle_stripe+0x1348/0x3760
handle_active_stripes.constprop.0+0x72a/0xaf0
raid5_do_work+0x177/0x330
process_one_work+0x616/0xb20
worker_thread+0x2bd/0x6f0
kthread+0x179/0x1b0
ret_from_fork+0x22/0x30
</TASK>
The double free is caused by an unnecessary bio_put() in the
if(is_badblock(...)) error path in raid5_read_one_chunk().
The error path was moved ahead of bio_alloc_clone() in c82aa1b76787c
("md/raid5: move checking badblock before clone bio in
raid5_read_one_chunk"). The previous code checked and freed align_bio
which required a bio_put. After the move that is no longer needed as
raid_bio is returned to the control of the common io path which
performs its own endio resulting in a double free on bad device blocks. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panel/panel-sitronix-st7701: Remove panel on DSI attach failure
In case mipi_dsi_attach() fails, call drm_panel_remove() to
avoid memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix NULL pointer dereference on fastopen early fallback
In case of early fallback to TCP, subflow_syn_recv_sock() deletes
the subflow context before returning the newly allocated sock to
the caller.
The fastopen path does not cope with the above unconditionally
dereferencing the subflow context. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: mts64: fix possible null-ptr-defer in snd_mts64_interrupt
I got a null-ptr-defer error report when I do the following tests
on the qemu platform:
make defconfig and CONFIG_PARPORT=m, CONFIG_PARPORT_PC=m,
CONFIG_SND_MTS64=m
Then making test scripts:
cat>test_mod1.sh<<EOF
modprobe snd-mts64
modprobe snd-mts64
EOF
Executing the script, perhaps several times, we will get a null-ptr-defer
report, as follow:
syzkaller:~# ./test_mod.sh
snd_mts64: probe of snd_mts64.0 failed with error -5
modprobe: ERROR: could not insert 'snd_mts64': No such device
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 0 PID: 205 Comm: modprobe Not tainted 6.1.0-rc8-00588-g76dcd734eca2 #6
Call Trace:
<IRQ>
snd_mts64_interrupt+0x24/0xa0 [snd_mts64]
parport_irq_handler+0x37/0x50 [parport]
__handle_irq_event_percpu+0x39/0x190
handle_irq_event_percpu+0xa/0x30
handle_irq_event+0x2f/0x50
handle_edge_irq+0x99/0x1b0
__common_interrupt+0x5d/0x100
common_interrupt+0xa0/0xc0
</IRQ>
<TASK>
asm_common_interrupt+0x22/0x40
RIP: 0010:_raw_write_unlock_irqrestore+0x11/0x30
parport_claim+0xbd/0x230 [parport]
snd_mts64_probe+0x14a/0x465 [snd_mts64]
platform_probe+0x3f/0xa0
really_probe+0x129/0x2c0
__driver_probe_device+0x6d/0xc0
driver_probe_device+0x1a/0xa0
__device_attach_driver+0x7a/0xb0
bus_for_each_drv+0x62/0xb0
__device_attach+0xe4/0x180
bus_probe_device+0x82/0xa0
device_add+0x550/0x920
platform_device_add+0x106/0x220
snd_mts64_attach+0x2e/0x80 [snd_mts64]
port_check+0x14/0x20 [parport]
bus_for_each_dev+0x6e/0xc0
__parport_register_driver+0x7c/0xb0 [parport]
snd_mts64_module_init+0x31/0x1000 [snd_mts64]
do_one_initcall+0x3c/0x1f0
do_init_module+0x46/0x1c6
load_module+0x1d8d/0x1e10
__do_sys_finit_module+0xa2/0xf0
do_syscall_64+0x37/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
</TASK>
Kernel panic - not syncing: Fatal exception in interrupt
Rebooting in 1 seconds..
The mts wa not initialized during interrupt, we add check for
mts to fix this bug. |
| In the Linux kernel, the following vulnerability has been resolved:
fs: drop peer group ids under namespace lock
When cleaning up peer group ids in the failure path we need to make sure
to hold on to the namespace lock. Otherwise another thread might just
turn the mount from a shared into a non-shared mount concurrently. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix immediate work request flush to completion queue
Correctly set send queue element opcode during immediate work request
flushing in post sendqueue operation, if the QP is in ERROR state.
An undefined ocode value results in out-of-bounds access to an array
for mapping the opcode between siw internal and RDMA core representation
in work completion generation. It resulted in a KASAN BUG report
of type 'global-out-of-bounds' during NFSoRDMA testing.
This patch further fixes a potential case of a malicious user which may
write undefined values for completion queue elements status or opcode,
if the CQ is memory mapped to user land. It avoids the same out-of-bounds
access to arrays for status and opcode mapping as described above. |
| In the Linux kernel, the following vulnerability has been resolved:
configfs: fix possible memory leak in configfs_create_dir()
kmemleak reported memory leaks in configfs_create_dir():
unreferenced object 0xffff888009f6af00 (size 192):
comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
backtrace:
kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
new_fragment (./include/linux/slab.h:600 fs/configfs/dir.c:163)
configfs_register_subsystem (fs/configfs/dir.c:1857)
basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
do_one_initcall (init/main.c:1296)
do_init_module (kernel/module/main.c:2455)
...
unreferenced object 0xffff888003ba7180 (size 96):
comm "modprobe", pid 3777, jiffies 4295537735 (age 233.784s)
backtrace:
kmem_cache_alloc (mm/slub.c:3250 mm/slub.c:3256 mm/slub.c:3263 mm/slub.c:3273)
configfs_new_dirent (./include/linux/slab.h:723 fs/configfs/dir.c:194)
configfs_make_dirent (fs/configfs/dir.c:248)
configfs_create_dir (fs/configfs/dir.c:296)
configfs_attach_group.isra.28 (fs/configfs/dir.c:816 fs/configfs/dir.c:852)
configfs_register_subsystem (fs/configfs/dir.c:1881)
basic_write (drivers/hwtracing/stm/p_basic.c:14) stm_p_basic
do_one_initcall (init/main.c:1296)
do_init_module (kernel/module/main.c:2455)
...
This is because the refcount is not correct in configfs_make_dirent().
For normal stage, the refcount is changing as:
configfs_register_subsystem()
configfs_create_dir()
configfs_make_dirent()
configfs_new_dirent() # set s_count = 1
dentry->d_fsdata = configfs_get(sd); # s_count = 2
...
configfs_unregister_subsystem()
configfs_remove_dir()
remove_dir()
configfs_remove_dirent() # s_count = 1
dput() ...
*dentry_unlink_inode()*
configfs_d_iput() # s_count = 0, release
However, if we failed in configfs_create():
configfs_register_subsystem()
configfs_create_dir()
configfs_make_dirent() # s_count = 2
...
configfs_create() # fail
->out_remove:
configfs_remove_dirent(dentry)
configfs_put(sd) # s_count = 1
return PTR_ERR(inode);
There is no inode in the error path, so the configfs_d_iput() is lost
and makes sd and fragment memory leaked.
To fix this, when we failed in configfs_create(), manually call
configfs_put(sd) to keep the refcount correct. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost-vdpa: fix an iotlb memory leak
Before commit 3d5698793897 ("vhost-vdpa: introduce asid based IOTLB")
we called vhost_vdpa_iotlb_unmap(v, iotlb, 0ULL, 0ULL - 1) during
release to free all the resources allocated when processing user IOTLB
messages through vhost_vdpa_process_iotlb_update().
That commit changed the handling of IOTLB a bit, and we accidentally
removed some code called during the release.
We partially fixed this with commit 037d4305569a ("vhost-vdpa: call
vhost_vdpa_cleanup during the release") but a potential memory leak is
still there as showed by kmemleak if the application does not send
VHOST_IOTLB_INVALIDATE or crashes:
unreferenced object 0xffff888007fbaa30 (size 16):
comm "blkio-bench", pid 914, jiffies 4294993521 (age 885.500s)
hex dump (first 16 bytes):
40 73 41 07 80 88 ff ff 00 00 00 00 00 00 00 00 @sA.............
backtrace:
[<0000000087736d2a>] kmem_cache_alloc_trace+0x142/0x1c0
[<0000000060740f50>] vhost_vdpa_process_iotlb_msg+0x68c/0x901 [vhost_vdpa]
[<0000000083e8e205>] vhost_chr_write_iter+0xc0/0x4a0 [vhost]
[<000000008f2f414a>] vhost_vdpa_chr_write_iter+0x18/0x20 [vhost_vdpa]
[<00000000de1cd4a0>] vfs_write+0x216/0x4b0
[<00000000a2850200>] ksys_write+0x71/0xf0
[<00000000de8e720b>] __x64_sys_write+0x19/0x20
[<0000000018b12cbb>] do_syscall_64+0x3f/0x90
[<00000000986ec465>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
Let's fix this calling vhost_vdpa_iotlb_unmap() on the whole range in
vhost_vdpa_remove_as(). We move that call before vhost_dev_cleanup()
since we need a valid v->vdev.mm in vhost_vdpa_pa_unmap().
vhost_iotlb_reset() call can be removed, since vhost_vdpa_iotlb_unmap()
on the whole range removes all the entries.
The kmemleak log reported was observed with a vDPA device that has `use_va`
set to true (e.g. VDUSE). This patch has been tested with both types of
devices. |
| In the Linux kernel, the following vulnerability has been resolved:
media: rcar_fdp1: Fix refcount leak in probe and remove function
rcar_fcp_get() take reference, which should be balanced with
rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and
the error paths of fdp1_probe() to fix this.
[hverkuil: resolve merge conflict, remove() is now void] |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: fix potential memory leak in mlx5e_init_rep_rx
The memory pointed to by the priv->rx_res pointer is not freed in the error
path of mlx5e_init_rep_rx, which can lead to a memory leak. Fix by freeing
the memory in the error path, thereby making the error path identical to
mlx5e_cleanup_rep_rx(). |