| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In Python (aka CPython) up to 3.10.8, the mailcap module does not add escape characters into commands discovered in the system mailcap file. This may allow attackers to inject shell commands into applications that call mailcap.findmatch with untrusted input (if they lack validation of user-provided filenames or arguments). The fix is also back-ported to 3.7, 3.8, 3.9 |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.4, tvOS 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4, Safari 18.4. Processing maliciously crafted web content may lead to an unexpected Safari crash. |
| A buffer overflow issue was addressed with improved memory handling. This issue is fixed in tvOS 18.4, Safari 18.4, iPadOS 17.7.6, iOS 18.4 and iPadOS 18.4, macOS Sequoia 15.4. Processing maliciously crafted web content may lead to an unexpected process crash. |
| A permissions issue was addressed with additional restrictions. This issue is fixed in Safari 18.4, iOS 18.4 and iPadOS 18.4. Loading a malicious iframe may lead to a cross-site scripting attack. |
| This issue was addressed through improved state management. This issue is fixed in visionOS 2.3, Safari 18.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Processing maliciously crafted web content may lead to an unexpected process crash. |
| The issue was addressed with improved memory handling. This issue is fixed in visionOS 2.3, Safari 18.3, iOS 18.3 and iPadOS 18.3, macOS Sequoia 15.3, watchOS 11.3, tvOS 18.3. Processing web content may lead to a denial-of-service. |
| A privacy issue was addressed with improved handling of files. This issue is fixed in macOS Sequoia 15.3, Safari 18.3, iOS 18.3 and iPadOS 18.3. Copying a URL from Web Inspector may lead to command injection. |
| The issue was addressed with improved access restrictions to the file system. This issue is fixed in macOS Sequoia 15.3, Safari 18.3, iOS 18.3 and iPadOS 18.3, visionOS 2.3. A maliciously crafted webpage may be able to fingerprint the user. |
| A memory leak could occur when a remote peer abruptly closes the socket without sending a GOAWAY notification. Additionally, if an invalid header was detected by nghttp2, causing the connection to be terminated by the peer, the same leak was triggered. This flaw could lead to increased memory consumption and potential denial of service under certain conditions.
This vulnerability affects HTTP/2 Server users on Node.js v18.x, v20.x, v22.x and v23.x. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array
The loop that detects/populates cache information already has a bounds
check on the array size but does not account for cache levels with
separate data/instructions cache. Fix this by incrementing the index
for any populated leaf (instead of any populated level). |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc: fix softlockup in __read_vmcore (part 2)
Since commit 5cbcb62dddf5 ("fs/proc: fix softlockup in __read_vmcore") the
number of softlockups in __read_vmcore at kdump time have gone down, but
they still happen sometimes.
In a memory constrained environment like the kdump image, a softlockup is
not just a harmless message, but it can interfere with things like RCU
freeing memory, causing the crashdump to get stuck.
The second loop in __read_vmcore has a lot more opportunities for natural
sleep points, like scheduling out while waiting for a data write to
happen, but apparently that is not always enough.
Add a cond_resched() to the second loop in __read_vmcore to (hopefully)
get rid of the softlockups. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: serial: quatech2: fix null-ptr-deref in qt2_process_read_urb()
This patch addresses a null-ptr-deref in qt2_process_read_urb() due to
an incorrect bounds check in the following:
if (newport > serial->num_ports) {
dev_err(&port->dev,
"%s - port change to invalid port: %i\n",
__func__, newport);
break;
}
The condition doesn't account for the valid range of the serial->port
buffer, which is from 0 to serial->num_ports - 1. When newport is equal
to serial->num_ports, the assignment of "port" in the
following code is out-of-bounds and NULL:
serial_priv->current_port = newport;
port = serial->port[serial_priv->current_port];
The fix checks if newport is greater than or equal to serial->num_ports
indicating it is out-of-bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: discard packets if the transport changes
If the socket has been de-assigned or assigned to another transport,
we must discard any packets received because they are not expected
and would cause issues when we access vsk->transport.
A possible scenario is described by Hyunwoo Kim in the attached link,
where after a first connect() interrupted by a signal, and a second
connect() failed, we can find `vsk->transport` at NULL, leading to a
NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
pmdomain: imx8mp-blk-ctrl: add missing loop break condition
Currently imx8mp_blk_ctrl_remove() will continue the for loop
until an out-of-bounds exception occurs.
pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : dev_pm_domain_detach+0x8/0x48
lr : imx8mp_blk_ctrl_shutdown+0x58/0x90
sp : ffffffc084f8bbf0
x29: ffffffc084f8bbf0 x28: ffffff80daf32ac0 x27: 0000000000000000
x26: ffffffc081658d78 x25: 0000000000000001 x24: ffffffc08201b028
x23: ffffff80d0db9490 x22: ffffffc082340a78 x21: 00000000000005b0
x20: ffffff80d19bc180 x19: 000000000000000a x18: ffffffffffffffff
x17: ffffffc080a39e08 x16: ffffffc080a39c98 x15: 4f435f464f006c72
x14: 0000000000000004 x13: ffffff80d0172110 x12: 0000000000000000
x11: ffffff80d0537740 x10: ffffff80d05376c0 x9 : ffffffc0808ed2d8
x8 : ffffffc084f8bab0 x7 : 0000000000000000 x6 : 0000000000000000
x5 : ffffff80d19b9420 x4 : fffffffe03466e60 x3 : 0000000080800077
x2 : 0000000000000000 x1 : 0000000000000001 x0 : 0000000000000000
Call trace:
dev_pm_domain_detach+0x8/0x48
platform_shutdown+0x2c/0x48
device_shutdown+0x158/0x268
kernel_restart_prepare+0x40/0x58
kernel_kexec+0x58/0xe8
__do_sys_reboot+0x198/0x258
__arm64_sys_reboot+0x2c/0x40
invoke_syscall+0x5c/0x138
el0_svc_common.constprop.0+0x48/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x38/0xc8
el0t_64_sync_handler+0x120/0x130
el0t_64_sync+0x190/0x198
Code: 8128c2d0 ffffffc0 aa1e03e9 d503201f |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: prevent null-ptr-deref in vsock_*[has_data|has_space]
Recent reports have shown how we sometimes call vsock_*_has_data()
when a vsock socket has been de-assigned from a transport (see attached
links), but we shouldn't.
Previous commits should have solved the real problems, but we may have
more in the future, so to avoid null-ptr-deref, we can return 0
(no space, no data available) but with a warning.
This way the code should continue to run in a nearly consistent state
and have a warning that allows us to debug future problems. |
| In the Linux kernel, the following vulnerability has been resolved:
afs: Fix the maximum cell name length
The kafs filesystem limits the maximum length of a cell to 256 bytes, but a
problem occurs if someone actually does that: kafs tries to create a
directory under /proc/net/afs/ with the name of the cell, but that fails
with a warning:
WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:405
because procfs limits the maximum filename length to 255.
However, the DNS limits the maximum lookup length and, by extension, the
maximum cell name, to 255 less two (length count and trailing NUL).
Fix this by limiting the maximum acceptable cellname length to 253. This
also allows us to be sure we can create the "/afs/.<cell>/" mountpoint too.
Further, split the YFS VL record cell name maximum to be the 256 allowed by
the protocol and ignore the record retrieved by YFSVL.GetCellName if it
exceeds 253. |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server as well as unauthorized update, insert or delete access to some of MySQL Server accessible data. CVSS 3.1 Base Score 5.5 (Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:L/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: InnoDB). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server as well as unauthorized update, insert or delete access to some of MySQL Server accessible data. CVSS 3.1 Base Score 5.5 (Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:L/A:H). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Security: Privileges). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of MySQL Server accessible data as well as unauthorized read access to a subset of MySQL Server accessible data. CVSS 3.1 Base Score 3.8 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:L/I:L/A:N). |
| Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Packaging). Supported versions that are affected are 8.0.40 and prior, 8.4.3 and prior and 9.1.0 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H). |