| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
i3c: mipi-i3c-hci: Fix out of bounds access in hci_dma_irq_handler
Do not loop over ring headers in hci_dma_irq_handler() that are not
allocated and enabled in hci_dma_init(). Otherwise out of bounds access
will occur from rings->headers[i] access when i >= number of allocated
ring headers. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix oob in ntfs_listxattr
The length of name cannot exceed the space occupied by ea. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: ipc: Disable and reenable ACPI GPE bit
The EHL (Elkhart Lake) based platforms provide a OOB (Out of band)
service, which allows to wakup device when the system is in S5 (Soft-Off
state). This OOB service can be enabled/disabled from BIOS settings. When
enabled, the ISH device gets PME wake capability. To enable PME wakeup,
driver also needs to enable ACPI GPE bit.
On resume, BIOS will clear the wakeup bit. So driver need to re-enable it
in resume function to keep the next wakeup capability. But this BIOS
clearing of wakeup bit doesn't decrement internal OS GPE reference count,
so this reenabling on every resume will cause reference count to overflow.
So first disable and reenable ACPI GPE bit using acpi_disable_gpe(). |
| In the Linux kernel, the following vulnerability has been resolved:
nfc: nci: assert requested protocol is valid
The protocol is used in a bit mask to determine if the protocol is
supported. Assert the provided protocol is less than the maximum
defined so it doesn't potentially perform a shift-out-of-bounds and
provide a clearer error for undefined protocols vs unsupported ones. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/alternatives: Disable KASAN in apply_alternatives()
Fei has reported that KASAN triggers during apply_alternatives() on
a 5-level paging machine:
BUG: KASAN: out-of-bounds in rcu_is_watching()
Read of size 4 at addr ff110003ee6419a0 by task swapper/0/0
...
__asan_load4()
rcu_is_watching()
trace_hardirqs_on()
text_poke_early()
apply_alternatives()
...
On machines with 5-level paging, cpu_feature_enabled(X86_FEATURE_LA57)
gets patched. It includes KASAN code, where KASAN_SHADOW_START depends on
__VIRTUAL_MASK_SHIFT, which is defined with cpu_feature_enabled().
KASAN gets confused when apply_alternatives() patches the
KASAN_SHADOW_START users. A test patch that makes KASAN_SHADOW_START
static, by replacing __VIRTUAL_MASK_SHIFT with 56, works around the issue.
Fix it for real by disabling KASAN while the kernel is patching alternatives.
[ mingo: updated the changelog ] |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pseries/memhp: Fix access beyond end of drmem array
dlpar_memory_remove_by_index() may access beyond the bounds of the
drmem lmb array when the LMB lookup fails to match an entry with the
given DRC index. When the search fails, the cursor is left pointing to
&drmem_info->lmbs[drmem_info->n_lmbs], which is one element past the
last valid entry in the array. The debug message at the end of the
function then dereferences this pointer:
pr_debug("Failed to hot-remove memory at %llx\n",
lmb->base_addr);
This was found by inspection and confirmed with KASAN:
pseries-hotplug-mem: Attempting to hot-remove LMB, drc index 1234
==================================================================
BUG: KASAN: slab-out-of-bounds in dlpar_memory+0x298/0x1658
Read of size 8 at addr c000000364e97fd0 by task bash/949
dump_stack_lvl+0xa4/0xfc (unreliable)
print_report+0x214/0x63c
kasan_report+0x140/0x2e0
__asan_load8+0xa8/0xe0
dlpar_memory+0x298/0x1658
handle_dlpar_errorlog+0x130/0x1d0
dlpar_store+0x18c/0x3e0
kobj_attr_store+0x68/0xa0
sysfs_kf_write+0xc4/0x110
kernfs_fop_write_iter+0x26c/0x390
vfs_write+0x2d4/0x4e0
ksys_write+0xac/0x1a0
system_call_exception+0x268/0x530
system_call_vectored_common+0x15c/0x2ec
Allocated by task 1:
kasan_save_stack+0x48/0x80
kasan_set_track+0x34/0x50
kasan_save_alloc_info+0x34/0x50
__kasan_kmalloc+0xd0/0x120
__kmalloc+0x8c/0x320
kmalloc_array.constprop.0+0x48/0x5c
drmem_init+0x2a0/0x41c
do_one_initcall+0xe0/0x5c0
kernel_init_freeable+0x4ec/0x5a0
kernel_init+0x30/0x1e0
ret_from_kernel_user_thread+0x14/0x1c
The buggy address belongs to the object at c000000364e80000
which belongs to the cache kmalloc-128k of size 131072
The buggy address is located 0 bytes to the right of
allocated 98256-byte region [c000000364e80000, c000000364e97fd0)
==================================================================
pseries-hotplug-mem: Failed to hot-remove memory at 0
Log failed lookups with a separate message and dereference the
cursor only when it points to a valid entry. |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: validate extended element ID is present
Before attempting to parse an extended element, verify that
the extended element ID is present. |
| In the Linux kernel, the following vulnerability has been resolved:
vduse: check that offset is within bounds in get_config()
This condition checks "len" but it does not check "offset" and that
could result in an out of bounds read if "offset > dev->config_size".
The problem is that since both variables are unsigned the
"dev->config_size - offset" subtraction would result in a very high
unsigned value.
I think these checks might not be necessary because "len" and "offset"
are supposed to already have been validated using the
vhost_vdpa_config_validate() function. But I do not know the code
perfectly, and I like to be safe. |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: dwmac-rk: fix oob read in rk_gmac_setup
KASAN reports an out-of-bounds read in rk_gmac_setup on the line:
while (ops->regs[i]) {
This happens for most platforms since the regs flexible array member is
empty, so the memory after the ops structure is being read here. It
seems that mostly this happens to contain zero anyway, so we get lucky
and everything still works.
To avoid adding redundant data to nearly all the ops structures, add a
new flag to indicate whether the regs field is valid and avoid this loop
when it is not. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: Fix stack-out-of-bounds memory access from ioapic_write_indirect()
KASAN reports the following issue:
BUG: KASAN: stack-out-of-bounds in kvm_make_vcpus_request_mask+0x174/0x440 [kvm]
Read of size 8 at addr ffffc9001364f638 by task qemu-kvm/4798
CPU: 0 PID: 4798 Comm: qemu-kvm Tainted: G X --------- ---
Hardware name: AMD Corporation DAYTONA_X/DAYTONA_X, BIOS RYM0081C 07/13/2020
Call Trace:
dump_stack+0xa5/0xe6
print_address_description.constprop.0+0x18/0x130
? kvm_make_vcpus_request_mask+0x174/0x440 [kvm]
__kasan_report.cold+0x7f/0x114
? kvm_make_vcpus_request_mask+0x174/0x440 [kvm]
kasan_report+0x38/0x50
kasan_check_range+0xf5/0x1d0
kvm_make_vcpus_request_mask+0x174/0x440 [kvm]
kvm_make_scan_ioapic_request_mask+0x84/0xc0 [kvm]
? kvm_arch_exit+0x110/0x110 [kvm]
? sched_clock+0x5/0x10
ioapic_write_indirect+0x59f/0x9e0 [kvm]
? static_obj+0xc0/0xc0
? __lock_acquired+0x1d2/0x8c0
? kvm_ioapic_eoi_inject_work+0x120/0x120 [kvm]
The problem appears to be that 'vcpu_bitmap' is allocated as a single long
on stack and it should really be KVM_MAX_VCPUS long. We also seem to clear
the lower 16 bits of it with bitmap_zero() for no particular reason (my
guess would be that 'bitmap' and 'vcpu_bitmap' variables in
kvm_bitmap_or_dest_vcpus() caused the confusion: while the later is indeed
16-bit long, the later should accommodate all possible vCPUs). |
| In the Linux kernel, the following vulnerability has been resolved:
coresight: tmc-etf: Fix global-out-of-bounds in tmc_update_etf_buffer()
commit 6f755e85c332 ("coresight: Add helper for inserting synchronization
packets") removed trailing '\0' from barrier_pkt array and updated the
call sites like etb_update_buffer() to have proper checks for barrier_pkt
size before read but missed updating tmc_update_etf_buffer() which still
reads barrier_pkt past the array size resulting in KASAN out-of-bounds
bug. Fix this by adding a check for barrier_pkt size before accessing
like it is done in etb_update_buffer().
BUG: KASAN: global-out-of-bounds in tmc_update_etf_buffer+0x4b8/0x698
Read of size 4 at addr ffffffd05b7d1030 by task perf/2629
Call trace:
dump_backtrace+0x0/0x27c
show_stack+0x20/0x2c
dump_stack+0x11c/0x188
print_address_description+0x3c/0x4a4
__kasan_report+0x140/0x164
kasan_report+0x10/0x18
__asan_report_load4_noabort+0x1c/0x24
tmc_update_etf_buffer+0x4b8/0x698
etm_event_stop+0x248/0x2d8
etm_event_del+0x20/0x2c
event_sched_out+0x214/0x6f0
group_sched_out+0xd0/0x270
ctx_sched_out+0x2ec/0x518
__perf_event_task_sched_out+0x4fc/0xe6c
__schedule+0x1094/0x16a0
preempt_schedule_irq+0x88/0x170
arm64_preempt_schedule_irq+0xf0/0x18c
el1_irq+0xe8/0x180
perf_event_exec+0x4d8/0x56c
setup_new_exec+0x204/0x400
load_elf_binary+0x72c/0x18c0
search_binary_handler+0x13c/0x420
load_script+0x500/0x6c4
search_binary_handler+0x13c/0x420
exec_binprm+0x118/0x654
__do_execve_file+0x77c/0xba4
__arm64_compat_sys_execve+0x98/0xac
el0_svc_common+0x1f8/0x5e0
el0_svc_compat_handler+0x84/0xb0
el0_svc_compat+0x10/0x50
The buggy address belongs to the variable:
barrier_pkt+0x10/0x40
Memory state around the buggy address:
ffffffd05b7d0f00: fa fa fa fa 04 fa fa fa fa fa fa fa 00 00 00 00
ffffffd05b7d0f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
>ffffffd05b7d1000: 00 00 00 00 00 00 fa fa fa fa fa fa 00 00 00 03
^
ffffffd05b7d1080: fa fa fa fa 00 02 fa fa fa fa fa fa 03 fa fa fa
ffffffd05b7d1100: fa fa fa fa 00 00 00 00 05 fa fa fa fa fa fa fa
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
net: validate lwtstate->data before returning from skb_tunnel_info()
skb_tunnel_info() returns pointer of lwtstate->data as ip_tunnel_info
type without validation. lwtstate->data can have various types such as
mpls_iptunnel_encap, etc and these are not compatible.
So skb_tunnel_info() should validate before returning that pointer.
Splat looks like:
BUG: KASAN: slab-out-of-bounds in vxlan_get_route+0x418/0x4b0 [vxlan]
Read of size 2 at addr ffff888106ec2698 by task ping/811
CPU: 1 PID: 811 Comm: ping Not tainted 5.13.0+ #1195
Call Trace:
dump_stack_lvl+0x56/0x7b
print_address_description.constprop.8.cold.13+0x13/0x2ee
? vxlan_get_route+0x418/0x4b0 [vxlan]
? vxlan_get_route+0x418/0x4b0 [vxlan]
kasan_report.cold.14+0x83/0xdf
? vxlan_get_route+0x418/0x4b0 [vxlan]
vxlan_get_route+0x418/0x4b0 [vxlan]
[ ... ]
vxlan_xmit_one+0x148b/0x32b0 [vxlan]
[ ... ]
vxlan_xmit+0x25c5/0x4780 [vxlan]
[ ... ]
dev_hard_start_xmit+0x1ae/0x6e0
__dev_queue_xmit+0x1f39/0x31a0
[ ... ]
neigh_xmit+0x2f9/0x940
mpls_xmit+0x911/0x1600 [mpls_iptunnel]
lwtunnel_xmit+0x18f/0x450
ip_finish_output2+0x867/0x2040
[ ... ] |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix tail_call_reachable rejection for interpreter when jit failed
During testing of f263a81451c1 ("bpf: Track subprog poke descriptors correctly
and fix use-after-free") under various failure conditions, for example, when
jit_subprogs() fails and tries to clean up the program to be run under the
interpreter, we ran into the following freeze:
[...]
#127/8 tailcall_bpf2bpf_3:FAIL
[...]
[ 92.041251] BUG: KASAN: slab-out-of-bounds in ___bpf_prog_run+0x1b9d/0x2e20
[ 92.042408] Read of size 8 at addr ffff88800da67f68 by task test_progs/682
[ 92.043707]
[ 92.044030] CPU: 1 PID: 682 Comm: test_progs Tainted: G O 5.13.0-53301-ge6c08cb33a30-dirty #87
[ 92.045542] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014
[ 92.046785] Call Trace:
[ 92.047171] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.047773] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.048389] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.049019] ? ktime_get+0x117/0x130
[...] // few hundred [similar] lines more
[ 92.659025] ? ktime_get+0x117/0x130
[ 92.659845] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.660738] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.661528] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.662378] ? print_usage_bug+0x50/0x50
[ 92.663221] ? print_usage_bug+0x50/0x50
[ 92.664077] ? bpf_ksym_find+0x9c/0xe0
[ 92.664887] ? ktime_get+0x117/0x130
[ 92.665624] ? kernel_text_address+0xf5/0x100
[ 92.666529] ? __kernel_text_address+0xe/0x30
[ 92.667725] ? unwind_get_return_address+0x2f/0x50
[ 92.668854] ? ___bpf_prog_run+0x15d4/0x2e20
[ 92.670185] ? ktime_get+0x117/0x130
[ 92.671130] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.672020] ? __bpf_prog_run_args32+0x8b/0xb0
[ 92.672860] ? __bpf_prog_run_args64+0xc0/0xc0
[ 92.675159] ? ktime_get+0x117/0x130
[ 92.677074] ? lock_is_held_type+0xd5/0x130
[ 92.678662] ? ___bpf_prog_run+0x15d4/0x2e20
[ 92.680046] ? ktime_get+0x117/0x130
[ 92.681285] ? __bpf_prog_run32+0x6b/0x90
[ 92.682601] ? __bpf_prog_run64+0x90/0x90
[ 92.683636] ? lock_downgrade+0x370/0x370
[ 92.684647] ? mark_held_locks+0x44/0x90
[ 92.685652] ? ktime_get+0x117/0x130
[ 92.686752] ? lockdep_hardirqs_on+0x79/0x100
[ 92.688004] ? ktime_get+0x117/0x130
[ 92.688573] ? __cant_migrate+0x2b/0x80
[ 92.689192] ? bpf_test_run+0x2f4/0x510
[ 92.689869] ? bpf_test_timer_continue+0x1c0/0x1c0
[ 92.690856] ? rcu_read_lock_bh_held+0x90/0x90
[ 92.691506] ? __kasan_slab_alloc+0x61/0x80
[ 92.692128] ? eth_type_trans+0x128/0x240
[ 92.692737] ? __build_skb+0x46/0x50
[ 92.693252] ? bpf_prog_test_run_skb+0x65e/0xc50
[ 92.693954] ? bpf_prog_test_run_raw_tp+0x2d0/0x2d0
[ 92.694639] ? __fget_light+0xa1/0x100
[ 92.695162] ? bpf_prog_inc+0x23/0x30
[ 92.695685] ? __sys_bpf+0xb40/0x2c80
[ 92.696324] ? bpf_link_get_from_fd+0x90/0x90
[ 92.697150] ? mark_held_locks+0x24/0x90
[ 92.698007] ? lockdep_hardirqs_on_prepare+0x124/0x220
[ 92.699045] ? finish_task_switch+0xe6/0x370
[ 92.700072] ? lockdep_hardirqs_on+0x79/0x100
[ 92.701233] ? finish_task_switch+0x11d/0x370
[ 92.702264] ? __switch_to+0x2c0/0x740
[ 92.703148] ? mark_held_locks+0x24/0x90
[ 92.704155] ? __x64_sys_bpf+0x45/0x50
[ 92.705146] ? do_syscall_64+0x35/0x80
[ 92.706953] ? entry_SYSCALL_64_after_hwframe+0x44/0xae
[...]
Turns out that the program rejection from e411901c0b77 ("bpf: allow for tailcalls
in BPF subprograms for x64 JIT") is buggy since env->prog->aux->tail_call_reachable
is never true. Commit ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall
handling in JIT") added a tracker into check_max_stack_depth() which propagates
the tail_call_reachable condition throughout the subprograms. This info is then
assigned to the subprogram's
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix another slab-out-of-bounds in fib6_nh_flush_exceptions
While running the self-tests on a KASAN enabled kernel, I observed a
slab-out-of-bounds splat very similar to the one reported in
commit 821bbf79fe46 ("ipv6: Fix KASAN: slab-out-of-bounds Read in
fib6_nh_flush_exceptions").
We additionally need to take care of fib6_metrics initialization
failure when the caller provides an nh.
The fix is similar, explicitly free the route instead of calling
fib6_info_release on a half-initialized object. |
| In the Linux kernel, the following vulnerability has been resolved:
media: ngene: Fix out-of-bounds bug in ngene_command_config_free_buf()
Fix an 11-year old bug in ngene_command_config_free_buf() while
addressing the following warnings caught with -Warray-bounds:
arch/alpha/include/asm/string.h:22:16: warning: '__builtin_memcpy' offset [12, 16] from the object at 'com' is out of the bounds of referenced subobject 'config' with type 'unsigned char' at offset 10 [-Warray-bounds]
arch/x86/include/asm/string_32.h:182:25: warning: '__builtin_memcpy' offset [12, 16] from the object at 'com' is out of the bounds of referenced subobject 'config' with type 'unsigned char' at offset 10 [-Warray-bounds]
The problem is that the original code is trying to copy 6 bytes of
data into a one-byte size member _config_ of the wrong structue
FW_CONFIGURE_BUFFERS, in a single call to memcpy(). This causes a
legitimate compiler warning because memcpy() overruns the length
of &com.cmd.ConfigureBuffers.config. It seems that the right
structure is FW_CONFIGURE_FREE_BUFFERS, instead, because it contains
6 more members apart from the header _hdr_. Also, the name of
the function ngene_command_config_free_buf() suggests that the actual
intention is to ConfigureFreeBuffers, instead of ConfigureBuffers
(which takes place in the function ngene_command_config_buf(), above).
Fix this by enclosing those 6 members of struct FW_CONFIGURE_FREE_BUFFERS
into new struct config, and use &com.cmd.ConfigureFreeBuffers.config as
the destination address, instead of &com.cmd.ConfigureBuffers.config,
when calling memcpy().
This also helps with the ongoing efforts to globally enable
-Warray-bounds and get us closer to being able to tighten the
FORTIFY_SOURCE routines on memcpy(). |
| In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: core: Validate channel ID when processing command completions
MHI reads the channel ID from the event ring element sent by the
device which can be any value between 0 and 255. In order to
prevent any out of bound accesses, add a check against the maximum
number of channels supported by the controller and those channels
not configured yet so as to skip processing of that event ring
element. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: bcm2835: Fix out-of-bounds access with more than 4 slaves
Commit 571e31fa60b3 ("spi: bcm2835: Cache CS register value for
->prepare_message()") limited the number of slaves to 3 at compile-time.
The limitation was necessitated by a statically-sized array prepare_cs[]
in the driver private data which contains a per-slave register value.
The commit sought to enforce the limitation at run-time by setting the
controller's num_chipselect to 3: Slaves with a higher chipselect are
rejected by spi_add_device().
However the commit neglected that num_chipselect only limits the number
of *native* chipselects. If GPIO chipselects are specified in the
device tree for more than 3 slaves, num_chipselect is silently raised by
of_spi_get_gpio_numbers() and the result are out-of-bounds accesses to
the statically-sized array prepare_cs[].
As a bandaid fix which is backportable to stable, raise the number of
allowed slaves to 24 (which "ought to be enough for anybody"), enforce
the limitation on slave ->setup and revert num_chipselect to 3 (which is
the number of native chipselects supported by the controller).
An upcoming for-next commit will allow an arbitrary number of slaves. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Correct the length check which causes memory corruption
We've suffered from severe kernel crashes due to memory corruption on
our production environment, like,
Call Trace:
[1640542.554277] general protection fault: 0000 [#1] SMP PTI
[1640542.554856] CPU: 17 PID: 26996 Comm: python Kdump: loaded Tainted:G
[1640542.556629] RIP: 0010:kmem_cache_alloc+0x90/0x190
[1640542.559074] RSP: 0018:ffffb16faa597df8 EFLAGS: 00010286
[1640542.559587] RAX: 0000000000000000 RBX: 0000000000400200 RCX:
0000000006e931bf
[1640542.560323] RDX: 0000000006e931be RSI: 0000000000400200 RDI:
ffff9a45ff004300
[1640542.560996] RBP: 0000000000400200 R08: 0000000000023420 R09:
0000000000000000
[1640542.561670] R10: 0000000000000000 R11: 0000000000000000 R12:
ffffffff9a20608d
[1640542.562366] R13: ffff9a45ff004300 R14: ffff9a45ff004300 R15:
696c662f65636976
[1640542.563128] FS: 00007f45d7c6f740(0000) GS:ffff9a45ff840000(0000)
knlGS:0000000000000000
[1640542.563937] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[1640542.564557] CR2: 00007f45d71311a0 CR3: 000000189d63e004 CR4:
00000000003606e0
[1640542.565279] DR0: 0000000000000000 DR1: 0000000000000000 DR2:
0000000000000000
[1640542.566069] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7:
0000000000000400
[1640542.566742] Call Trace:
[1640542.567009] anon_vma_clone+0x5d/0x170
[1640542.567417] __split_vma+0x91/0x1a0
[1640542.567777] do_munmap+0x2c6/0x320
[1640542.568128] vm_munmap+0x54/0x70
[1640542.569990] __x64_sys_munmap+0x22/0x30
[1640542.572005] do_syscall_64+0x5b/0x1b0
[1640542.573724] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[1640542.575642] RIP: 0033:0x7f45d6e61e27
James Wang has reproduced it stably on the latest 4.19 LTS.
After some debugging, we finally proved that it's due to ftrace
buffer out-of-bound access using a debug tool as follows:
[ 86.775200] BUG: Out-of-bounds write at addr 0xffff88aefe8b7000
[ 86.780806] no_context+0xdf/0x3c0
[ 86.784327] __do_page_fault+0x252/0x470
[ 86.788367] do_page_fault+0x32/0x140
[ 86.792145] page_fault+0x1e/0x30
[ 86.795576] strncpy_from_unsafe+0x66/0xb0
[ 86.799789] fetch_memory_string+0x25/0x40
[ 86.804002] fetch_deref_string+0x51/0x60
[ 86.808134] kprobe_trace_func+0x32d/0x3a0
[ 86.812347] kprobe_dispatcher+0x45/0x50
[ 86.816385] kprobe_ftrace_handler+0x90/0xf0
[ 86.820779] ftrace_ops_assist_func+0xa1/0x140
[ 86.825340] 0xffffffffc00750bf
[ 86.828603] do_sys_open+0x5/0x1f0
[ 86.832124] do_syscall_64+0x5b/0x1b0
[ 86.835900] entry_SYSCALL_64_after_hwframe+0x44/0xa9
commit b220c049d519 ("tracing: Check length before giving out
the filter buffer") adds length check to protect trace data
overflow introduced in 0fc1b09ff1ff, seems that this fix can't prevent
overflow entirely, the length check should also take the sizeof
entry->array[0] into account, since this array[0] is filled the
length of trace data and occupy addtional space and risk overflow. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: synproxy: Fix out of bounds when parsing TCP options
The TCP option parser in synproxy (synproxy_parse_options) could read
one byte out of bounds. When the length is 1, the execution flow gets
into the loop, reads one byte of the opcode, and if the opcode is
neither TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds
the length of 1.
This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack
out of bounds when parsing TCP options.").
v2 changes:
Added an early return when length < 0 to avoid calling
skb_header_pointer with negative length. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: Fix out of bounds when parsing TCP options
The TCP option parser in mptcp (mptcp_get_options) could read one byte
out of bounds. When the length is 1, the execution flow gets into the
loop, reads one byte of the opcode, and if the opcode is neither
TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the
length of 1.
This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack
out of bounds when parsing TCP options."). |