Search Results (16707 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50732 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: staging: rtl8192u: Fix use after free in ieee80211_rx() We cannot dereference the "skb" pointer after calling ieee80211_monitor_rx(), because it is a use after free.
CVE-2023-54060 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommufd: Set end correctly when doing batch carry Even though the test suite covers this it somehow became obscured that this wasn't working. The test iommufd_ioas.mock_domain.access_domain_destory would blow up rarely. end should be set to 1 because this just pushed an item, the carry, to the pfns list. Sometimes the test would blow up with: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 5 PID: 584 Comm: iommufd Not tainted 6.5.0-rc1-dirty #1236 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:batch_unpin+0xa2/0x100 [iommufd] Code: 17 48 81 fe ff ff 07 00 77 70 48 8b 15 b7 be 97 e2 48 85 d2 74 14 48 8b 14 fa 48 85 d2 74 0b 40 0f b6 f6 48 c1 e6 04 48 01 f2 <48> 8b 3a 48 c1 e0 06 89 ca 48 89 de 48 83 e7 f0 48 01 c7 e8 96 dc RSP: 0018:ffffc90001677a58 EFLAGS: 00010246 RAX: 00007f7e2646f000 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000000 RSI: 00000000fefc4c8d RDI: 0000000000fefc4c RBP: ffffc90001677a80 R08: 0000000000000048 R09: 0000000000000200 R10: 0000000000030b98 R11: ffffffff81f3bb40 R12: 0000000000000001 R13: ffff888101f75800 R14: ffffc90001677ad0 R15: 00000000000001fe FS: 00007f9323679740(0000) GS:ffff8881ba540000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105ede003 CR4: 00000000003706a0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? show_regs+0x5c/0x70 ? __die+0x1f/0x60 ? page_fault_oops+0x15d/0x440 ? lock_release+0xbc/0x240 ? exc_page_fault+0x4a4/0x970 ? asm_exc_page_fault+0x27/0x30 ? batch_unpin+0xa2/0x100 [iommufd] ? batch_unpin+0xba/0x100 [iommufd] __iopt_area_unfill_domain+0x198/0x430 [iommufd] ? __mutex_lock+0x8c/0xb80 ? __mutex_lock+0x6aa/0xb80 ? xa_erase+0x28/0x30 ? iopt_table_remove_domain+0x162/0x320 [iommufd] ? lock_release+0xbc/0x240 iopt_area_unfill_domain+0xd/0x10 [iommufd] iopt_table_remove_domain+0x195/0x320 [iommufd] iommufd_hw_pagetable_destroy+0xb3/0x110 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_device_detach+0xc5/0x140 [iommufd] iommufd_selftest_destroy+0x1f/0x70 [iommufd] iommufd_object_destroy_user+0x8e/0xf0 [iommufd] iommufd_destroy+0x3a/0x50 [iommufd] iommufd_fops_ioctl+0xfb/0x170 [iommufd] __x64_sys_ioctl+0x40d/0x9a0 do_syscall_64+0x3c/0x80 entry_SYSCALL_64_after_hwframe+0x46/0xb0
CVE-2023-54044 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: spmi: Add a check for remove callback when removing a SPMI driver When removing a SPMI driver, there can be a crash due to NULL pointer dereference if it does not have a remove callback defined. This is one such call trace observed when removing the QCOM SPMI PMIC driver: dump_backtrace.cfi_jt+0x0/0x8 dump_stack_lvl+0xd8/0x16c panic+0x188/0x498 __cfi_slowpath+0x0/0x214 __cfi_slowpath+0x1dc/0x214 spmi_drv_remove+0x16c/0x1e0 device_release_driver_internal+0x468/0x79c driver_detach+0x11c/0x1a0 bus_remove_driver+0xc4/0x124 driver_unregister+0x58/0x84 cleanup_module+0x1c/0xc24 [qcom_spmi_pmic] __do_sys_delete_module+0x3ec/0x53c __arm64_sys_delete_module+0x18/0x28 el0_svc_common+0xdc/0x294 el0_svc+0x38/0x9c el0_sync_handler+0x8c/0xf0 el0_sync+0x1b4/0x1c0 If a driver has all its resources allocated through devm_() APIs and does not need any other explicit cleanup, it would not require a remove callback to be defined. Hence, add a check for remove callback presence before calling it when removing a SPMI driver.
CVE-2023-54055 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/irdma: Fix memory leak of PBLE objects On rmmod of irdma, the PBLE object memory is not being freed. PBLE object memory are not statically pre-allocated at function initialization time unlike other HMC objects. PBLEs objects and the Segment Descriptors (SD) for it can be dynamically allocated during scale up and SD's remain allocated till function deinitialization. Fix this leak by adding IRDMA_HMC_IW_PBLE to the iw_hmc_obj_types[] table and skip pbles in irdma_create_hmc_obj but not in irdma_del_hmc_objects().
CVE-2023-54052 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix skb leak by txs missing in AMSDU txs may be dropped if the frame is aggregated in AMSDU. When the problem shows up, some SKBs would be hold in driver to cause network stopped temporarily. Even if the problem can be recovered by txs timeout handling, mt7921 still need to disable txs in AMSDU to avoid this issue.
CVE-2023-54109 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: rcar_fdp1: Fix refcount leak in probe and remove function rcar_fcp_get() take reference, which should be balanced with rcar_fcp_put(). Add missing rcar_fcp_put() in fdp1_remove and the error paths of fdp1_probe() to fix this. [hverkuil: resolve merge conflict, remove() is now void]
CVE-2023-54114 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: nsh: Use correct mac_offset to unwind gso skb in nsh_gso_segment() As the call trace shows, skb_panic was caused by wrong skb->mac_header in nsh_gso_segment(): invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 3 PID: 2737 Comm: syz Not tainted 6.3.0-next-20230505 #1 RIP: 0010:skb_panic+0xda/0xe0 call Trace: skb_push+0x91/0xa0 nsh_gso_segment+0x4f3/0x570 skb_mac_gso_segment+0x19e/0x270 __skb_gso_segment+0x1e8/0x3c0 validate_xmit_skb+0x452/0x890 validate_xmit_skb_list+0x99/0xd0 sch_direct_xmit+0x294/0x7c0 __dev_queue_xmit+0x16f0/0x1d70 packet_xmit+0x185/0x210 packet_snd+0xc15/0x1170 packet_sendmsg+0x7b/0xa0 sock_sendmsg+0x14f/0x160 The root cause is: nsh_gso_segment() use skb->network_header - nhoff to reset mac_header in skb_gso_error_unwind() if inner-layer protocol gso fails. However, skb->network_header may be reset by inner-layer protocol gso function e.g. mpls_gso_segment. skb->mac_header reset by the inaccurate network_header will be larger than skb headroom. nsh_gso_segment nhoff = skb->network_header - skb->mac_header; __skb_pull(skb,nsh_len) skb_mac_gso_segment mpls_gso_segment skb_reset_network_header(skb);//skb->network_header+=nsh_len return -EINVAL; skb_gso_error_unwind skb_push(skb, nsh_len); skb->mac_header = skb->network_header - nhoff; // skb->mac_header > skb->headroom, cause skb_push panic Use correct mac_offset to restore mac_header and get rid of nhoff.
CVE-2023-54046 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: essiv - Handle EBUSY correctly As it is essiv only handles the special return value of EINPROGERSS, which means that in all other cases it will free data related to the request. However, as the caller of essiv may specify MAY_BACKLOG, we also need to expect EBUSY and treat it in the same way. Otherwise backlogged requests will trigger a use-after-free.
CVE-2023-54048 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: Prevent handling any completions after qp destroy HW may generate completions that indicates QP is destroyed. Driver should not be scheduling any more completion handlers for this QP, after the QP is destroyed. Since CQs are active during the QP destroy, driver may still schedule completion handlers. This can cause a race where the destroy_cq and poll_cq running simultaneously. Snippet of kernel panic while doing bnxt_re driver load unload in loop. This indicates a poll after the CQ is freed.  [77786.481636] Call Trace: [77786.481640]  <TASK> [77786.481644]  bnxt_re_poll_cq+0x14a/0x620 [bnxt_re] [77786.481658]  ? kvm_clock_read+0x14/0x30 [77786.481693]  __ib_process_cq+0x57/0x190 [ib_core] [77786.481728]  ib_cq_poll_work+0x26/0x80 [ib_core] [77786.481761]  process_one_work+0x1e5/0x3f0 [77786.481768]  worker_thread+0x50/0x3a0 [77786.481785]  ? __pfx_worker_thread+0x10/0x10 [77786.481790]  kthread+0xe2/0x110 [77786.481794]  ? __pfx_kthread+0x10/0x10 [77786.481797]  ret_from_fork+0x2c/0x50 To avoid this, complete all completion handlers before returning the destroy QP. If free_cq is called soon after destroy_qp, IB stack will cancel the CQ work before invoking the destroy_cq verb and this will prevent any race mentioned.
CVE-2023-54063 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Fix OOB read in indx_insert_into_buffer Syzbot reported a OOB read bug: BUG: KASAN: slab-out-of-bounds in indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 Read of size 17168 at addr ffff8880255e06c0 by task syz-executor308/3630 Call Trace: <TASK> memmove+0x25/0x60 mm/kasan/shadow.c:54 indx_insert_into_buffer+0xaa3/0x13b0 fs/ntfs3/index.c:1755 indx_insert_entry+0x446/0x6b0 fs/ntfs3/index.c:1863 ntfs_create_inode+0x1d3f/0x35c0 fs/ntfs3/inode.c:1548 ntfs_create+0x3e/0x60 fs/ntfs3/namei.c:100 lookup_open fs/namei.c:3413 [inline] If the member struct INDEX_BUFFER *index of struct indx_node is incorrect, that is, the value of __le32 used is greater than the value of __le32 total in struct INDEX_HDR. Therefore, OOB read occurs when memmove is called in indx_insert_into_buffer(). Fix this by adding a check in hdr_find_e().
CVE-2022-50765 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: RISC-V: kexec: Fix memory leak of elf header buffer This is reported by kmemleak detector: unreferenced object 0xff2000000403d000 (size 4096): comm "kexec", pid 146, jiffies 4294900633 (age 64.792s) hex dump (first 32 bytes): 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 .ELF............ 04 00 f3 00 01 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<00000000566ca97c>] kmemleak_vmalloc+0x3c/0xbe [<00000000979283d8>] __vmalloc_node_range+0x3ac/0x560 [<00000000b4b3712a>] __vmalloc_node+0x56/0x62 [<00000000854f75e2>] vzalloc+0x2c/0x34 [<00000000e9a00db9>] crash_prepare_elf64_headers+0x80/0x30c [<0000000067e8bf48>] elf_kexec_load+0x3e8/0x4ec [<0000000036548e09>] kexec_image_load_default+0x40/0x4c [<0000000079fbe1b4>] sys_kexec_file_load+0x1c4/0x322 [<0000000040c62c03>] ret_from_syscall+0x0/0x2 In elf_kexec_load(), a buffer is allocated via vzalloc() to store elf headers. While it's not freed back to system when kdump kernel is reloaded or unloaded, or when image->elf_header is successfully set and then fails to load kdump kernel for some reason. Fix it by freeing the buffer in arch_kimage_file_post_load_cleanup().
CVE-2023-54113 1 Linux 1 Linux Kernel 2025-12-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: rcu: dump vmalloc memory info safely Currently, for double invoke call_rcu(), will dump rcu_head objects memory info, if the objects is not allocated from the slab allocator, the vmalloc_dump_obj() will be invoke and the vmap_area_lock spinlock need to be held, since the call_rcu() can be invoked in interrupt context, therefore, there is a possibility of spinlock deadlock scenarios. And in Preempt-RT kernel, the rcutorture test also trigger the following lockdep warning: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0 preempt_count: 1, expected: 0 RCU nest depth: 1, expected: 1 3 locks held by swapper/0/1: #0: ffffffffb534ee80 (fullstop_mutex){+.+.}-{4:4}, at: torture_init_begin+0x24/0xa0 #1: ffffffffb5307940 (rcu_read_lock){....}-{1:3}, at: rcu_torture_init+0x1ec7/0x2370 #2: ffffffffb536af40 (vmap_area_lock){+.+.}-{3:3}, at: find_vmap_area+0x1f/0x70 irq event stamp: 565512 hardirqs last enabled at (565511): [<ffffffffb379b138>] __call_rcu_common+0x218/0x940 hardirqs last disabled at (565512): [<ffffffffb5804262>] rcu_torture_init+0x20b2/0x2370 softirqs last enabled at (399112): [<ffffffffb36b2586>] __local_bh_enable_ip+0x126/0x170 softirqs last disabled at (399106): [<ffffffffb43fef59>] inet_register_protosw+0x9/0x1d0 Preemption disabled at: [<ffffffffb58040c3>] rcu_torture_init+0x1f13/0x2370 CPU: 0 PID: 1 Comm: swapper/0 Tainted: G W 6.5.0-rc4-rt2-yocto-preempt-rt+ #15 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xb0 dump_stack+0x14/0x20 __might_resched+0x1aa/0x280 ? __pfx_rcu_torture_err_cb+0x10/0x10 rt_spin_lock+0x53/0x130 ? find_vmap_area+0x1f/0x70 find_vmap_area+0x1f/0x70 vmalloc_dump_obj+0x20/0x60 mem_dump_obj+0x22/0x90 __call_rcu_common+0x5bf/0x940 ? debug_smp_processor_id+0x1b/0x30 call_rcu_hurry+0x14/0x20 rcu_torture_init+0x1f82/0x2370 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_leak_cb+0x10/0x10 ? __pfx_rcu_torture_init+0x10/0x10 do_one_initcall+0x6c/0x300 ? debug_smp_processor_id+0x1b/0x30 kernel_init_freeable+0x2b9/0x540 ? __pfx_kernel_init+0x10/0x10 kernel_init+0x1f/0x150 ret_from_fork+0x40/0x50 ? __pfx_kernel_init+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> The previous patch fixes this by using the deadlock-safe best-effort version of find_vm_area. However, in case of failure print the fact that the pointer was a vmalloc pointer so that we print at least something.
CVE-2023-54073 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tpm: Add !tpm_amd_is_rng_defective() to the hwrng_unregister() call site The following crash was reported: [ 1950.279393] list_del corruption, ffff99560d485790->next is NULL [ 1950.279400] ------------[ cut here ]------------ [ 1950.279401] kernel BUG at lib/list_debug.c:49! [ 1950.279405] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 1950.279407] CPU: 11 PID: 5886 Comm: modprobe Tainted: G O 6.2.8_1 #1 [ 1950.279409] Hardware name: Gigabyte Technology Co., Ltd. B550M AORUS PRO-P/B550M AORUS PRO-P, BIOS F15c 05/11/2022 [ 1950.279410] RIP: 0010:__list_del_entry_valid+0x59/0xc0 [ 1950.279415] Code: 48 8b 01 48 39 f8 75 5a 48 8b 72 08 48 39 c6 75 65 b8 01 00 00 00 c3 cc cc cc cc 48 89 fe 48 c7 c7 08 a8 13 9e e8 b7 0a bc ff <0f> 0b 48 89 fe 48 c7 c7 38 a8 13 9e e8 a6 0a bc ff 0f 0b 48 89 fe [ 1950.279416] RSP: 0018:ffffa96d05647e08 EFLAGS: 00010246 [ 1950.279418] RAX: 0000000000000033 RBX: ffff99560d485750 RCX: 0000000000000000 [ 1950.279419] RDX: 0000000000000000 RSI: ffffffff9e107c59 RDI: 00000000ffffffff [ 1950.279420] RBP: ffffffffc19c5168 R08: 0000000000000000 R09: ffffa96d05647cc8 [ 1950.279421] R10: 0000000000000003 R11: ffffffff9ea2a568 R12: 0000000000000000 [ 1950.279422] R13: ffff99560140a2e0 R14: ffff99560127d2e0 R15: 0000000000000000 [ 1950.279422] FS: 00007f67da795380(0000) GS:ffff995d1f0c0000(0000) knlGS:0000000000000000 [ 1950.279424] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1950.279424] CR2: 00007f67da7e65c0 CR3: 00000001feed2000 CR4: 0000000000750ee0 [ 1950.279426] PKRU: 55555554 [ 1950.279426] Call Trace: [ 1950.279428] <TASK> [ 1950.279430] hwrng_unregister+0x28/0xe0 [rng_core] [ 1950.279436] tpm_chip_unregister+0xd5/0xf0 [tpm] Add the forgotten !tpm_amd_is_rng_defective() invariant to the hwrng_unregister() call site inside tpm_chip_unregister().
CVE-2022-50725 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix use-after-free in vidtv_bridge_dvb_init() KASAN reports a use-after-free: BUG: KASAN: use-after-free in dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] Call Trace: ... dvb_dmxdev_release+0x4d5/0x5d0 [dvb_core] vidtv_bridge_probe+0x7bf/0xa40 [dvb_vidtv_bridge] platform_probe+0xb6/0x170 ... Allocated by task 1238: ... dvb_register_device+0x1a7/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... Freed by task 1238: dvb_register_device+0x6d2/0xa70 [dvb_core] dvb_dmxdev_init+0x2af/0x4a0 [dvb_core] vidtv_bridge_probe+0x766/0xa40 [dvb_vidtv_bridge] ... It is because the error handling in vidtv_bridge_dvb_init() is wrong. First, vidtv_bridge_dmx(dev)_init() will clean themselves when fail, but goto fail_dmx(_dev): calls release functions again, which causes use-after-free. Also, in fail_fe, fail_tuner_probe and fail_demod_probe, j = i will cause out-of-bound when i finished its loop (i == NUM_FE). And the loop releasing is wrong, although now NUM_FE is 1 so it won't cause problem. Fix this by correctly releasing everything.
CVE-2025-68377 1 Linux 1 Linux Kernel 2025-12-29 N/A
In the Linux kernel, the following vulnerability has been resolved: ns: initialize ns_list_node for initial namespaces Make sure that the list is always initialized for initial namespaces.
CVE-2022-50742 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: misc: ocxl: fix possible refcount leak in afu_ioctl() eventfd_ctx_put need to be called to put the refcount that gotten by eventfd_ctx_fdget when ocxl_irq_set_handler fails.
CVE-2022-50766 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: set generation before calling btrfs_clean_tree_block in btrfs_init_new_buffer syzbot is reporting uninit-value in btrfs_clean_tree_block() [1], for commit bc877d285ca3dba2 ("btrfs: Deduplicate extent_buffer init code") missed that btrfs_set_header_generation() in btrfs_init_new_buffer() must not be moved to after clean_tree_block() because clean_tree_block() is calling btrfs_header_generation() since commit 55c69072d6bd5be1 ("Btrfs: Fix extent_buffer usage when nodesize != leafsize"). Since memzero_extent_buffer() will reset "struct btrfs_header" part, we can't move btrfs_set_header_generation() to before memzero_extent_buffer(). Just re-add btrfs_set_header_generation() before btrfs_clean_tree_block().
CVE-2022-50718 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix pci device refcount leak As comment of pci_get_domain_bus_and_slot() says, it returns a pci device with refcount increment, when finish using it, the caller must decrement the reference count by calling pci_dev_put(). So before returning from amdgpu_device_resume|suspend_display_audio(), pci_dev_put() is called to avoid refcount leak.
CVE-2023-54084 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: firewire-digi00x: prevent potential use after free This code was supposed to return an error code if init_stream() failed, but it instead freed dg00x->rx_stream and returned success. This potentially leads to a use after free.
CVE-2023-54096 1 Linux 1 Linux Kernel 2025-12-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: soundwire: fix enumeration completion The soundwire subsystem uses two completion structures that allow drivers to wait for soundwire device to become enumerated on the bus and initialised by their drivers, respectively. The code implementing the signalling is currently broken as it does not signal all current and future waiters and also uses the wrong reinitialisation function, which can potentially lead to memory corruption if there are still waiters on the queue. Not signalling future waiters specifically breaks sound card probe deferrals as codec drivers can not tell that the soundwire device is already attached when being reprobed. Some codec runtime PM implementations suffer from similar problems as waiting for enumeration during resume can also timeout despite the device already having been enumerated.